NTPC bags order to supply 300 MW electricity to Bangladesh


ntpc logo

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

NTPC Bangladesh Power Supply Tender sees NVVN win 300 MW, long-term cross-border electricity trade to BPDB, enabled by 500 MW HVDC interconnection; rivals included Adani, PTC, and Sembcorp in the competitive bidding process.

 

Key Points

It is NTPC's NVVN win to supply 300 MW to Bangladesh's BPDB for 15 years via a 500 MW HVDC link.

✅ NVVN selected as L1 for short and long-term supply

✅ 300 MW to BPDB; delivery via India-Bangladesh HVDC link

✅ Competing bidders: Adani, PTC, Sembcorp

 

NTPC, India’s biggest electricity producer in a nation that is now the third-largest electricity producer globally, on Tuesday said it has won a tender to supply 300 megawatts (MW) of electricity to Bangladesh for 15 years.

Bangladesh Power Development Board (BPDP), in a market where Bangladesh's nuclear power is expanding with IAEA assistance, had invited tenders for supply of 500 MW power from India for short term (1 June, 2018 to 31 December, 2019) and long term (1 January, 2020 to 31 May, 2033). NTPC Vidyut Vyapar Nigam (NVVN), Adani Group, PTC and Singapore-bases Sembcorp submitted bids by the scheduled date of 11 January.

Financial bid was opened on 11 February, the company said in a statement, amid rising electricity prices domestically. “NVVN, wholly-owned subsidiary of NTPC Limited, emerged as successful bidder (L1), both in short term and long term for 300 MW power,” it said.

Without giving details of the rate at which power will be supplied, NTPC said supply of electricity is likely to commence from June 2018 after commissioning of 500 MW HVDC inter-connection project between India and Bangladesh, and as the government advances nuclear power initiatives to bolster capacity in the sector. India currently exports approximately 600 MW electricity to Bangladesh even as authorities weigh coal rationing measures to meet surging demand domestically.

Related News

Louisiana power grid needs 'complete rebuild' after Hurricane Laura, restoration to take weeks

Louisiana Grid Rebuild After Hurricane Laura will overhaul transmission lines and distribution networks in Lake Charles, as Entergy restores power after catastrophic outages, replacing poles, transformers, and spans to stabilize critical electric infrastructure.

 

Key Points

Entergy's project replacing transmission and distribution in Lake Charles to restore power after the Cat 4 storm

✅ 1,000+ transmission structures and 6,637 poles damaged

✅ Entergy targets first energized line into Lake Charles in 2 weeks

✅ Full rebuild of Calcasieu and Cameron lines will take weeks

 

The main power utility for southwest Louisiana will need to "rebuild" the region's grid after Hurricane Laura blasted the region with 150 mph winds last week, top officials said.

The Category 4 hurricane made landfall last Thursday just south of Lake Charles near Cameron, damaging or destroying thousands of electric poles as well as leaving "catastrophic damages" to the transmission system for southwest Louisiana, similar to impacts seen during Typhoon Mangkhut outages in Hong Kong that left many without electricity.

“This is not a restoration," Entergy Louisiana president and CEO Phillip May said in a statement. "It’s almost a complete rebuild of our transmission and distribution system that serves Calcasieu and Cameron parishes.”

According to Entergy, all nine transmission lines that deliver power into the Lake Charles area are currently out service due to storm damage to multiple structures and spans of wire.

The transmission system is a critical component in the delivery of power to customers’ homes, and failures at substations can trigger large outages, as seen in Los Angeles station fire outage reported recently, according to the company.

Of those structures impacted, many were damaged "beyond repair" and require complete replacement.

Broken electrical poles are seen in Holly Beach, La., in the aftermath of Hurricane Laura, Saturday, Aug. 29, 2020. (AP Photo/Gerald Herbert)

Entergy said the damage in southwest Louisiana includes 1,000 transmission structures, 6,637 broken poles, 2,926 transformers and 338 miles of downed distribution wire, highlighting why proactive reliability investments in Hamilton are being pursued by other utilities.

Some 8,300 workers are now in the area working to rebuild the transmission lines, but Entergy said that it will be about two to three weeks before power is available to customers in the Lake Charles area, a timeline similar to Tennessee outages after severe storms reported recently in other states.

"Restoring power will take longer to customers in inaccessible areas of the region," the company said. "While not impacting the expected restoration of service to residential customers, initial estimates are it will take weeks to rebuild all transmission lines in Calcasieu and Cameron parishes."

Entergy Louisiana expects to energize the first of its transmission lines into Lake Charles in two weeks.

“We understand going without power for this extended period will be challenging, and this is not the news customers want to hear. But we have thousands of workers dedicated to rebuilding our grid as quickly as they safely can to return some normalcy to our customers’ lives,” May said.

According to power outage tracking website poweroutage.us, over 164,000 customers remain without service in Louisiana as of Thursday morning, while a Carolinas outage update shows hundreds of thousands affected there as well.

On Wednesday, the Edison Electric Institute, the association of investor-owned electric companies in the U.S., said in a statement to FOX Business that electricity has been restored to approximately 737,000 customers, or 75% of those impacted by the storm across Louisiana, eastern Texas, Mississippi, and Arkansas, even as utilities adapt to climate change to improve resilience.

At least 29,000 workers from 29 states, the District of Columbia and Canada are working to restore power in the region, according to the Electricity Subsector Coordinating Council (ESCC), which is coordinating efforts from government and power industry.

“The transmission loss in Louisiana is significant, with more than 1,000 transmission structures damaged or destroyed by the storm," Department of Energy (DOE) Deputy Secretary Mark Menezes said in a statement. Rebuilding the transmission system is essential to the overall restoration effort and will take weeks given the massive scale and complexity of the work. We will continue to coordinate closely to ensure the full capabilities of the industry and government are marshaled to rebuild this critical infrastructure as quickly as possible.” 

At least 17 deaths in Louisiana have been attributed to the storm; more than half of those killed by carbon monoxide poisoning from the unsafe operation of generators, and residents are urged to follow generator safety tips to reduce these risks. Two additional deaths were verified on Wednesday in Beauregard Parish, which health officials said were due to heat-related illness following the storm.

 

Related News

View more

Honda Accelerates Electric Vehicle Push with Massive Investment in Ontario

Honda Ontario EV Investment accelerates electric vehicle manufacturing in Canada, adding a battery plant, EV assembly capacity, clean energy supply chains, government subsidies, and thousands of jobs to expand North American production and innovation.

 

Key Points

The Honda Ontario EV Investment is a $18.4B plan for EV assembly and battery production, jobs, and clean growth.

✅ $18.4B for EV assembly and large-scale battery production

✅ Thousands of Ontario manufacturing jobs and supply chain growth

✅ Backed by Canadian subsidies to accelerate clean transportation

 

The automotive industry in Ontario is on the verge of a significant transformation amid an EV jobs boom across the province, as Honda announces plans to build a new electric vehicle (EV) assembly plant and a large-scale battery production facility in the province. According to several sources, Honda is prepared to invest an estimated $18.4 billion in this initiative, signalling a major commitment to accelerating the automaker's shift towards electrification.


Expanding Ontario's EV Ecosystem

This exciting new investment from Honda builds upon the growing momentum of electric vehicle development in Ontario. The province is already home to a burgeoning EV manufacturing ecosystem, with automakers like Stellantis and General Motors investing heavily in retooling existing plants for EV production, including GM's $1B Ontario EV plant in the province. Honda's new facilities will significantly expand Ontario's role in the North American electric vehicle market.


Canadian Government Supports Clean Vehicles

The Canadian government has been actively encouraging the transition to cleaner transportation by offering generous subsidies to bolster EV manufacturing and adoption, exemplified by the Ford Oakville upgrade that received $500M in support. These incentives have been instrumental in attracting major investments from automotive giants like Honda and solidifying Canada's position as a global leader in EV technology.


Thousands of New Jobs

Honda's investment is not only excellent news for the Canadian economy but also promises to create thousands of new jobs in Ontario, boosting the province's manufacturing sector. The presence of a significant EV and battery production hub will attract a skilled workforce, as seen with a Niagara Region battery plant that is bolstering the region's EV future, and likely lead to the creation of related businesses and industries that support the EV supply chain.


Details of the Plan

While the specific location of the proposed Honda plants has not yet been confirmed, sources indicate that the facilities will likely be built in Southwestern Ontario, near Ford's Oakville EV program and other established sites. Honda's existing assembly plant in Alliston will be converted to produce hybrid models as part of the company's broader plan to electrify its lineup.


Honda's Global EV Ambitions

This substantial investment in Canada aligns with Honda's global commitment to electrifying its vehicle offerings. The company has set ambitious goals to phase out traditional gasoline-powered cars and achieve net-zero carbon emissions by 2040.  Honda aims to expand EV production in North America to meet growing consumer demand and deepen Canada-U.S. collaboration in the EV industry.


The Future of Transportation

Honda's announcement signifies a turning point for the automotive landscape in Canada. This major investment reinforces the shift toward electric vehicles as an inevitable future, with EV assembly deals putting Canada in the race as well.  The move highlights Canada's dedication to fostering a sustainable, clean-energy economy while establishing a robust automotive manufacturing industry for the 21st century.

 

Related News

View more

Six key trends that shaped Europe's electricity markets in 2020

European Electricity Market Trends 2020 highlight decarbonisation, rising renewables, EV adoption, shifting energy mix, COVID-19 impacts, fuel switching, hydro, wind and solar growth, gas price dynamics, and wholesale electricity price increases.

 

Key Points

EU power in 2020 saw lower emissions, more renewables, EV growth, demand shifts, and higher wholesale prices.

✅ Power sector CO2 down 14% on higher renewables, lower coal

✅ Renewables 39% vs fossil 36%; hydro, wind, solar expanded

✅ EV share hit 17%; wholesale prices rose with gas, ETS costs

 

According to the Market Observatory for Energy DG Energy report, the COVID-19 pandemic and favorable weather conditions are the two key drivers of the trends experienced within the European electricity market in 2020. However, the two drivers were exceptional or seasonal.

The key trends within Europe’s electricity market include:


1. Decrease in power sector’s carbon emissions

As a result of the increase in renewables generation and decrease in fossil-fueled power generation in 2020, the power sector was able to reduce its carbon footprint by 14% in 2020. The decrease in the sector’s carbon footprint in 2020 is similar to trends witnessed in 2019 when fuel switching was the main factor behind the decarbonisation trend.

However, most of the drivers in 2020 were exceptional or seasonal (the pandemic, warm winter, high
hydro generation). However, the opposite is expected in 2021, with the first months of 2021 having relatively cold weather, lower wind speeds and higher gas prices, with stunted hydro and nuclear output also cited, developments which suggest that the carbon emissions and intensity of the power sector could rise.

The European Union is targeting to completely decarbonise its power sector by 2050 through the introduction of supporting policies such as the EU Emissions Trading Scheme, the Renewable Energy Directive and legislation addressing air pollutant emissions from industrial installations, with expectations that low-emissions sources will cover most demand growth in the coming years.

According to the European Environment Agency, Europe halved its power sector’s carbon emissions in 2019 from 1990 levels.


2. Changes in energy consumption

EU consumption of electricity fell by -4% as majority of industries did not operate at full level during the first half of 2020. Although majority of EU residents stayed at home, meaning an increase in residential energy use, rising demand by households could not reverse falls in other sectors of the economy.

However, as countries renewed COVID-19 restrictions, energy consumption during the 4th quarter was closer to the “normal levels” than in the first three quarters of 2020. 

The increase in energy consumption in the fourth quarter of 2020 was also partly due to colder temperatures compared to 2019 and signs of surging electricity demand in global markets.


3. Increase in demand for EVs

As the electrification of the transport system intensifies, the demand for electric vehicles increased in 2020 with almost half a million new registrations in the fourth quarter of 2020. This was the highest figure on record and translated into an unprecedented 17% market share, more than two times higher than in China and six times higher than in the United States.

However, the European Environment Agency (EEA)argues that the EV registrations were lower in 2020 compared to 2019. EEA states that in 2019, electric car registrations were close to 550 000 units, having reached 300 000 units in 2018.


4. Changes in the region’s energy mix and increase in renewable energy generation

The structure of the region’s energy mix changed in 2020, according to the report.

Owing to favorable weather conditions, hydro energy generation was very high and Europe was able to expand its portfolio of renewable energy generation such that renewables (39%) exceeded the share of fossil fuels (36%) for the first time ever in the EU energy mix.

Rising renewable generation was greatly assisted by 29 GW of wind and solar capacity additions in 2020, which is comparable to 2019 levels. Despite disrupting the supply chains of wind and solar resulting in project delays, the pandemic did not significantly slow down renewables’ expansion.

In fact, coal and lignite energy generation fell by 22% (-87 TWh) and nuclear output dropped by 11% (-79 TWh). On the other hand, gas energy generation was not significantly impacted owing to favorable prices which intensified coal-to-gas and lignite-to-gas switching, even as renewables crowd out gas in parts of the market.


5. Retirement of coal energy generation intensify

 As the outlook for emission-intensive technologies worsens and carbon prices rise, more and more early coal retirements have been announced. Utilities in Europe are expected to continue transitioning from coal energy generation under efforts to meet stringent carbon emissions reduction targets and as they try to prepare themselves for future business models that they anticipate to be entirely low-carbon reliant.

6. Increase in wholesale electricity prices

In recent months, more expensive emission allowances, along with rising gas prices, have driven up wholesale electricity prices on many European markets to levels last seen at the beginning of 2019. The effect was most pronounced in countries that are dependent on coal and lignite. The wholesale electricity prices dynamic is expected to filter through to retail prices.

The rapid sales growth in the EVs sector was accompanied by expanding charging infrastructure. The number of high-power charging points per 100 km of highways rose from 12 to 20 in 2020.

 

Related News

View more

Rio Tinto Completes Largest Off-Grid Solar Plant in Canada's Northwest Territories

Rio Tinto Off-Grid Solar Power Plant showcases renewable energy at the Diavik Diamond Mine in Canada's Northwest Territories, cutting diesel use, lowering carbon emissions, and boosting remote mining resilience with advanced photovoltaic technology.

 

Key Points

A remote solar PV plant at Diavik mine supplying clean power while cutting diesel use, carbon emissions, and costs.

✅ Largest off-grid solar in Northwest Territories

✅ Replaces diesel generators during peak solar hours

✅ Enhances sustainability and lowers operating costs

 

In a significant step towards sustainable mining practices, Rio Tinto has completed the largest off-grid solar power plant in Canada’s Northwest Territories. This groundbreaking achievement not only highlights the company's commitment to renewable energy, as Canada nears 5 GW of solar capacity nationwide, but also sets a new standard for the mining industry in remote and off-grid locations.

Located in the remote Diavik Diamond Mine, approximately 220 kilometers south of the Arctic Circle, Rio Tinto's off-grid solar power plant represents a technological feat in harnessing renewable energy in challenging environments. The plant is designed to reduce reliance on diesel fuel, traditionally used to power the mine's operations, and mitigate carbon emissions associated with mining activities.

The decision to build the solar power plant aligns with Rio Tinto's broader sustainability goals and commitment to reducing its environmental footprint. By integrating renewable energy sources like solar power, a strategy that renewable developers say leads to better, more resilient projects, the company aims to enhance energy efficiency, lower operational costs, and contribute to global efforts to combat climate change.

The Diavik Diamond Mine, jointly owned by Rio Tinto and Dominion Diamond Mines, operates in a remote region where access to traditional energy infrastructure is limited, and where, despite lagging solar demand in Canada, off-grid solutions are increasingly vital for reliability. Historically, diesel generators have been the primary source of power for the mine's operations, posing logistical challenges and environmental impacts due to fuel transportation and combustion.

Rio Tinto's investment in the off-grid solar power plant addresses these challenges by leveraging abundant sunlight in the Northwest Territories to generate clean electricity directly at the mine site. The solar array, equipped with advanced photovoltaic technology, which mirrors deployments such as Arvato's first solar plant in other sectors, is capable of producing a significant portion of the mine's electricity needs during peak solar hours, reducing reliance on diesel generators and lowering overall carbon emissions.

Moreover, the completion of the largest off-grid solar power plant in Canada's Northwest Territories underscores the feasibility and scalability of renewable energy solutions, from rooftop arrays like Edmonton's largest rooftop solar to off-grid systems in remote and resource-intensive industries like mining. The success of this project serves as a model for other mining companies seeking to enhance sustainability practices and operational resilience in challenging geographical locations.

Beyond environmental benefits, Rio Tinto's initiative is expected to have positive economic and social impacts on the local community. By reducing diesel consumption, the company mitigates air pollution and noise levels associated with mining operations, improving environmental quality and contributing to the well-being of nearby residents and wildlife.

Looking ahead, Rio Tinto's investment in renewable energy at the Diavik Diamond Mine sets a precedent for responsible resource development and sustainable mining practices in Canada, where solar growth in Alberta is accelerating, and globally. As the mining industry continues to evolve, integrating renewable energy solutions like off-grid solar power plants will play a crucial role in achieving long-term environmental sustainability and operational efficiency.

In conclusion, Rio Tinto's completion of the largest off-grid solar power plant in Canada's Northwest Territories marks a significant milestone in the mining industry's transition towards renewable energy. By harnessing solar power to reduce reliance on diesel generators, the company not only improves operational efficiency and environmental stewardship but also adds to momentum from corporate power purchase agreements like RBC's Alberta solar deal, setting a positive example for sustainable development in remote regions. As global demand for responsible mining practices grows, initiatives like Rio Tinto's off-grid solar project demonstrate the potential of renewable energy to drive positive change in resource-intensive industries.

 

Related News

View more

Utilities see benefits in energy storage, even without mandates

Utility Battery Storage Rankings measure grid-connected capacity, not ownership, highlighting MW, MWh, and watts per customer across PJM, MISO, and California IOUs, featuring Duke Energy, IPL, ancillary services, and frequency regulation benefits.

 

Key Points

Rankings that track energy storage connected to utility grids, comparing MW, MWh, and W/customer rather than ownership.

✅ Ranks by MW, MWh, and watts per customer, not asset ownership

✅ Highlights PJM, MISO cases and California IOUs' deployments

✅ Examples: Duke Energy, IPL, IID; ancillary services, frequency response

 

The rankings do not tally how much energy storage a utility built or owns, but how much was connected to their system. So while IPL built and owns the storage facility in its territory, Duke does not own the 16 MW of storage that connected to its system in 2016. Similarly, while California’s utilities are permitted to own some energy storage assets, they do not necessarily own all the storage facilities connected to their systems.

Measured by energy (MWh), IPL ranked fourth with 20 MWh, and Duke Energy Ohio ranked eighth with 6.1 MWh.

Ranked by energy storage watts per customer, IPL and Duke actually beat the California utilities, ranking fifth and sixth with 42 W/customer and 23 W/customer, respectively.

Duke ready for next step

Given Duke’s plans, including projects in Florida that are moving ahead, the utility is likely to stay high in the rankings and be more of a driving force in development. “Battery technology has matured, and we are ready to take the next step,” Duke spokesman Randy Wheeless told Utility Dive. “We can go to regulators and say this makes economic sense.”

Duke began exploring energy storage in 2012, and until now most of its energy storage efforts were focused on commercial projects in competitive markets where it was possible to earn revenues. Those included its 36 MW Notrees battery storage project developed in partnership with the Department of Energy in 2012 that provides frequency regulation for the Electric Reliability Council of Texas market and two 2 MW storage projects at its retired W.C. Beckjord plant in New Richmond, Ohio, that sells ancillary services into the PJM Interconnection market.

On the regulated side, most of Duke’s storage projects have had “an R&D slant to them,” Wheeless said, but “we are moving beyond the R&D concept in our regulated territory and are looking at storage more as a regulated asset.”

“We have done the demos, and they have proved out,” Wheeless said. Storage may not be ready for prime time everywhere, he said, but in certain locations, especially where it can it can be used to do more than one thing, it can make sense.

Wheeless said Duke would be making “a number of energy storage announcements in the next few months in our regulated states.” He could not provide details on those projects.

More flexible resources
Location can be a determining factor when building a storage facility. For IPL, serving the wholesale market was a driving factor in the rationale to build its 20 MW, 20 MWh storage facility in Indianapolis.

IPL built the project to address a need for more flexible resources in light of “recent changes in our resource mix,” including decreasing coal-fired generation and increasing renewables and natural gas-fired generation, as other regions plan to rely on battery storage to meet rising demand, Joan Soller, IPL’s director of resource planning, told Utility Dive in an email. The storage facility is used to provide primary frequency response necessary for grid stability.

The Harding Street storage facility in May. It was the first energy storage project in the Midcontinent ISO. But the regulatory path in MISO is not as clear as it is in PJM, whereas initiatives such as Ontario storage framework are clarifying participation. In November, IPL with the Federal Energy Regulatory Commission, asking the regulator to find that MISO’s rules for energy storage are deficient and should be revised.

Soller said IPL has “no imminent plans to install energy storage in the future but will continue to monitor battery costs and capabilities as potential resources in future Integrated Resource Plans.”

California legislative and regulatory push

In California, energy storage did not have to wait for regulations to catch up with technology. With legislative and regulatory mandates, including CEC long-duration storage funding announced recently, as a push, California’s IOUs took high places in SEPA’s rankings.

Southern California Edison and San Diego Gas & Electric were first and fourth (63.2 MW and 17.2 MW), respectively, in terms of capacity. SoCal Ed and SDG&E were first and second (104 MWh and 28.4 MWh), respectively, and Pacific Gas and Electric was fifth (17 MWh) in terms of energy.

But a public power utility, the Imperial Irrigation District (IID), ended up high in the rankings – second in capacity (30 MW) and third  in energy (20 MWh) – even though as a public power entity it is not subject to the state’s energy storage mandates.

But while IID was not under state mandate, it had a compelling regulatory reason to build the storage project. It was part of a settlement reached with FERC over a September 2011 outage, IID spokeswoman Marion Champion said.

IID agreed to a $12 million fine as part of the settlement, of which $9 million was applied to physical improvements of IID’s system.

IID ended up building a 30 MW, 20 MWh lithium-ion battery storage system at its El Centro generating station. The system went into service in October 2016 and in May, IID used the system’s 44 MW combined-cycle natural gas turbine at the generating station.

Passing savings to customers
The cost of the storage system was about $31 million, and based on its experience with the El Centro project, Champion said IID plans to add to the existing batteries. “We are continuing to see real savings and are passing those savings on to our customers,” she said.

Champion said the battery system gives IID the ability to provide ancillary services without having to run its larger generation units, such as El Centro Unit 4, at its minimum output. With gas prices at $3.59 per million British thermal units, it costs about $26,880 a day to run Unit 4, she said.

IID’s territory is in southeastern California, an area with a lot of renewable resources. IID is also not part of the California ISO and acts as its own balancing authority. The battery system gives the utility greater operational flexibility, in addition to the ability to use more of the surrounding renewable resources, Champion said.

In May, IID’s board gave the utility’s staff approval to enter into contract negotiations for a 7 MW, 4 MWh expansion of its El Centro storage facility. The negotiations are ongoing, but approval could come in the next couple months, Champion said.

The heart of the issue, though, is “the ability of the battery system to lower costs for our ratepayers,” Champion said. “Our planning section will continue to utilize the battery, and we are looking forward to its expansion,” she said.” I expect it will play an even more important role as we continue to increase our percentage of renewables.”

 

Related News

View more

'Unlayering' peak demand could accelerate energy storage adoption

Duration Portfolio Energy Storage aligns layered peak demand with right-sized batteries, enabling peak shaving, gas peaker replacement, and solar-plus-storage synergy while improving grid flexibility, reliability, and T&D deferral through two- to four-hour battery durations.

 

Key Points

An approach that layers battery durations to match peaks, cut costs, replace peakers, and boost grid reliability.

✅ Layers 2- to 4-hour batteries by peak duration

✅ Enables solar-plus-storage and peak shaving

✅ Cuts T&D upgrades, emissions, and fuel costs

 

The debate over energy storage replacing gas-fired peakers has raged for years, but a new approach that shifts the terms of the argument could lead to an acceleration of storage deployments.

Rather than looking at peak demand as a single mountainous peak, some analysts now advocate a layered approach that allows energy storage to better match peak needs and complement ongoing efforts to improve solar and wind power across the grid.

"You don’t have to have batteries that run to infinity."

Some developers of solar-plus-storage projects, bolstered by cheap batteries, say they can already compete head-to-head with gas-fired peakers. "I can beat a gas peaker anywhere in the country today with a solar-plus-storage power plant," Tom Buttgenbach, president and CEO of developer 8minutenergy Renewables, recently told S&P Global.

Customers are very busy these days and rebate programs need to fit the speed of their life. Participation should be quick, easy, and accessible anywhere.

Others disagree. Storage is not disruptive for generation, but will be disruptive for transmission and distribution, Kris Zadlo, executive vice president and chief development officer at Invenergy, told the audience at a Bloomberg New Energy Finance conference last spring. Invenergy, like many renewable power developers, develops generation, energy storage and transmission projects.

But there is another path that avoids the pitfalls of positions on either end of the all-or-none approach. "Do the analysis of the need itself," Ray Hohenstein, market applications director at Fluence, told Utility Dive. If the need is only two hours in duration, it may be best served by a two-hour battery. "You don’t have to have batteries that run to infinity."

 

Storage vs. fossil fuel peakers

Energy storage has several benefits over traditional fossil fuel peaking plants, Hohenstein said. It is instantaneous, it has no emissions and requires no fuel, and has limited infrastructure needs. It can also help the grid absorb higher levels of renewable generation by soaking up excess output, such as solar power at noon, and many planned storage additions will be paired with solar in the next few years. But the one thing energy storage cannot do, he said, is provide limitless energy.

So, instead of looking at replacing an individual peaker, Hohenstein advocated a "duration portfolio" approach that uses energy storage to shave peak load.

If the need is for 150 MW of resources that will never need to run for more than two hours at a time, then a battery is "quite cheap," significantly less than a four or eight-hour battery, said Hohenstein. "If you fill up your peak by duration layer, it could be more cost effective."

 

NREL research driver

Fluence’s approach is informed by research by Paul Denholm and Robert Margolis at the National Renewable Energy Laboratory (NREL), released last spring.

The NREL researchers looked at the California market where they said 11 GW of fossil fuel capacity is expected to be retired by 2029 because of new once-through-cooling requirements that are taking effect. A lot of that capacity is peaking capacity and, according to NREL’s analysis, a large fraction could be replaced with four-hour energy storage, assuming continued storage cost reductions and growth in solar installations.

The key in NREL’s research was the level of solar power penetration. There is a "synergistic" relationship between solar penetration and storage deployment, the researchers wrote, and other studies suggest wind and solar could meet 80% of U.S. demand as these trends continue.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.