Homespun power from wind

By New York Times


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
When Rena Wilson Jones and her husband, Drew, were building a house 10 years ago in a subdivision near the edge of Urbana, Ill., they knew the property was likely to be windy, bordered as it was by open fields to the north and west. But they did not realize how fierce the winds would be until construction of their house was under way.

In the decade that followed, the wind drove Ms. Wilson Jones crazy from November through April, she said, whipping across her yard and making it difficult to work in the garden. At times, it was hard to walk outside.

Eventually, the couple decided to capitalize on their affliction. Last summer, they installed a 56-foot wind turbine in their yard to draw electrical power from the wind, which sometimes gets up to 40 miles per hour. They did the work themselves over a weekend, digging a four-foot-deep hole for the foundation and raising the $13,000 turbine with a winch on their Jeep. It was spinning by early September, and their electricity bills dropped sharply, from $90 to $10 for November, one of the windier months.

“Now, the faster the wind goes, the happier I am,” said Ms. Wilson Jones, a director of nursing at Community Blood Services of Illinois.

Until recently, wind turbines were used primarily by those who lived outside the range of local utility lines, or who wanted to live completely off the grid. Now, reductions in their size and cost, along with improvements in their efficiency, are allowing suburban homeowners with no dissident leanings to speak of to install them in growing numbers, with concerns over rising energy costs and global warming driving the demand.

Sales of wind turbines have been growing steadily since 1990, when the American Wind Energy Association, a nonprofit advocacy group in Washington, D.C., began tracking them. Last year, about 7,000 small wind turbines — defined as those that have a capacity of up to 100 kilowatts, roughly enough to power a large school — were purchased in the United States, according to the group, which said it expects sales to reach about 10,000 this year.

Residential turbines, which account for half those sales, are typically 33 to 100 feet tall, with outputs of two to 10 kilowatts. They cost between $12,000 and $55,000, but in recent years, 19 states, including California, New Jersey, New York, Massachusetts and Ohio, have begun offering incentives and rebates that can cut purchase prices by up to 50 percent. And just recently, the United States House of Representatives passed a bill that would help states provide grants and low-interest loans for residential turbines (as well as solar panels and geothermal heat pumps), and that would offer a 30 percent federal tax credit on turbine purchases, up to $4,000; the Senate is now considering a similar measure.

A 10-kilowatt turbine in an area with an average wind speed of 12 miles per hour can lead to a reduction in carbon dioxide emissions equivalent to removing 1.3 cars from the road, according to the wind energy association. But for some, the financial savings made possible by turbines are at least as important.

Marc Schambers eliminated his payments to Southern California Edison after he installed a turbine in his backyard in the town of Phelan five years ago. Mr. Schambers, the owner of CleanMessage, a spam-filtering service, opted for an unusually tall 120-foot model (taller devices generate more energy) because his electricity bills were as much as $1,000 a month in summer, he said, when he was paying to cool both his home office and his 1,800-square-foot house.

He has since paid off his $25,000 investment — the turbine cost $46,000, but he received a $21,000 rebate from the California Energy Commission — and now produces more power than he can use. Since California is one of 23 states that require power companies to offer “net metering,” by which customers receive credit for any extra power they generate, he comes out ahead.

“One of the top 10 pleasures in life is watching your electrical meter go backward,” he said.

Mr. SchambersÂ’s neighbors apparently agree; he said he can see 20 turbines from his backyard.

Other parts of the country, too, offer ideal conditions for turbines: The Great Plains, for example, are the “Saudi Arabia of wind,” according to Karl Bergey, the chairman and chief executive of Bergey Windpower, a turbine manufacturer in Norman, Okla.

Some consumers have installed turbines in low-wind areas. In August, Curt and Christine Mann put up a turbine next to their Craftsman-style house in the Grant Park neighborhood of Atlanta, despite an average wind speed of only nine miles per hour, the minimum recommended by the wind energy association. (The group also says that home turbines should be at least 30 feet tall and surrounded by at least an acre of land, free of any large obstructions like dense trees.)

So far, their turbine has led to only a modest reduction in electricity costs, from around $95 to roughly $75 a month, and it could take up to 20 years at that rate to recoup their initial investment. But they were more interested in ecological benefits than financial ones, said Mr. Mann, a real estate developer whose company is called City Crest Holdings.

Local governments have put up roadblocks to the devices. A few towns, like Blowing Rock, N.C., have banned them outright because of their appearance, and others require homeowners to petition the local zoning board for a variance to exceed building height limits. Some cities require letters of support from neighbors, which can be hard to obtain because some people believe turbines may threaten birds, reduce property values and make too much noise.

At Altamont Pass Wind Resource Area in California, it is estimated that between 1,700 to 4,700 birds are killed each year. But Michael Daulton, director of conservation policy for the National Audubon Society, said it is not clear what effect individual wind turbines have on birds. The society suggests that homeowners learn whether they live close to a wildlife preserve that attracts a lot of birds, or are situated on a bird migratory route, as the Altamont wind farm is.

TurbinesÂ’ effects on property values is not clear. Ryan Wiser, a staff scientist at the Lawrence Berkeley National Laboratory, said the effect of large wind farms on home values has been mixed, and added that there are no studies covering small turbines. When calculating the sale price of a home with a turbine, some brokers value them as they would a swimming pool, adding half of the purchase and installation costs to a homeÂ’s price.

The noise and shadows turbines make have resulted in some concerns. In July, residents of Beach Haven Terrace, N.J., sued a neighbor, saying that the noise from his 35-foot turbine exceeded 50 decibels (the sound level of light traffic or an average home), and that it cast “strobe-like shadows” on their property for several hours a day.

When Kurt Karpavich, a resident of Watertown, Conn., an affluent rural town in Litchfield County, sought a variance from the town to put up a 55-foot turbine behind his house last summer, a dozen neighbors signed a petition against it and placed signs reading “No to the Windmill” on their lawns.

Jacqueline and David Daddona, who live next to Mr. Karpavich, are concerned that his turbine will cast shadows on their house, attract lightning and mar their view of the Naugatuck Valley. Others objected to the presence of a tower rising above the roofline.

“I’m not against the environment, but I just think there’s a place for all this,” said Mr. Daddona. “You shouldn’t try to save a little bit on your electrical bill if it affects your neighbors.”

Mr. Karpavich was granted the variance in early summer, but the Daddonas appealed the decision and sued the town planning and zoning appeals commission as well as Mr. Karpavich. The various parties have a January date to meet in Watertown Superior Court. Mr. Karpavich hopes the legal wrangling is done by this winter so he can install the turbine — the town’s first — in the spring.

“It’s been a tough fight,” said Mr. Karpavich. “But it’s more of a crusade now.”

Related News

Washington State's Electric Vehicle Rebate Program

Washington EV Rebate Program drives EV adoption with incentives, funding, and clean energy goals, cutting greenhouse gas emissions. Residents embrace electric vehicles as charging infrastructure expands, supporting sustainable transportation and state climate targets.

 

Key Points

Washington EV Rebate Program provides incentives to cut EV costs, accelerate adoption, and support clean energy targets.

✅ Over half of allocated funding already utilized statewide.

✅ Incentives lower upfront costs and spur EV demand.

✅ Charging infrastructure expansion remains a key priority.

 

Washington State has reached a significant milestone in its electric vehicle (EV) rebate program, with more than half of the allocated funding already utilized. This rapid uptake highlights the growing interest in electric vehicles as residents seek more sustainable transportation options. As the state continues to prioritize environmental initiatives, this development showcases both the successes and challenges of promoting electric vehicle adoption.

A Growing Demand for Electric Vehicles

The substantial drawdown of rebate funds indicates a robust demand for electric vehicles in Washington. As consumers become increasingly aware of the environmental benefits associated with EVs—such as reduced greenhouse gas emissions and improved air quality—more individuals are making the switch from traditional gasoline-powered vehicles. Additionally, rising fuel prices and advancements in EV technology, alongside zero-emission incentives are further incentivizing this shift.

Washington's rebate program, which offers financial incentives to residents who purchase or lease eligible electric vehicles, plays a critical role in making EVs more accessible. The program helps to lower the upfront costs associated with purchasing electric vehicles, and similar approaches like New Brunswick EV rebates illustrate how regional incentives can boost adoption, thus encouraging more drivers to consider these greener alternatives. As the state moves toward its goal of a more sustainable transportation system, the popularity of the rebate program is a promising sign.

The Impact of Funding Utilization

With over half of the rebate funding already used, the program's popularity raises questions about the sustainability of its financial support and the readiness of state power grids to accommodate rising EV demand. Originally designed to spur adoption and reduce barriers to entry for potential EV buyers, the rapid depletion of funds could lead to future challenges in maintaining the program’s momentum.

The Washington State Department of Ecology, which oversees the rebate program, will need to assess the current funding levels and consider future allocations to meet the ongoing demand. If the funds run dry, it could slow down the adoption of electric vehicles, potentially impacting the state’s broader climate goals. Ensuring a consistent flow of funding will be essential for keeping the program viable and continuing to promote EV usage.

Environmental Benefits and Climate Goals

The increasing adoption of electric vehicles aligns with Washington’s ambitious climate goals, including a commitment to reduce carbon emissions significantly by 2030. The state aims to transition to a clean energy economy and has set a target for all new vehicles sold by 2035 to be electric, and initiatives such as the hybrid-electric ferry upgrade demonstrate progress across the transportation sector. The success of the rebate program is a crucial step in achieving these objectives.

As more residents switch to EVs, the overall impact on air quality and carbon emissions can be profound. Electric vehicles produce zero tailpipe emissions, which contributes to improved air quality, particularly in urban areas that struggle with pollution. The transition to electric vehicles can also help to reduce dependence on fossil fuels, further enhancing the state’s sustainability efforts.

Challenges Ahead

While the current uptake of the rebate program is encouraging, there are challenges that need to be addressed. One significant issue is the availability of EV models. Although the market is expanding, not all consumers have equal access to a variety of electric vehicle options. Affordability remains a barrier for many potential buyers, especially in lower-income communities, but targeted supports like EV charger rebates in B.C. can ease costs for households. Ensuring that all residents can access EVs and the associated incentives is vital for equitable participation in the transition to electric mobility.

Additionally, there are concerns about charging infrastructure. For many potential EV owners, the lack of accessible charging stations can deter them from making the switch. Expanding charging networks, particularly in underserved areas, is essential for supporting the growing number of electric vehicles on the road, and B.C. EV charging expansion offers a regional model for scaling access.

Looking to the Future

As Washington continues to advance its electric vehicle initiatives, the success of the rebate program is a promising indication of changing consumer attitudes toward sustainable transportation. With more than half of the funding already used, the focus will need to shift to sustaining the program and ensuring that it meets the needs of all residents, while complementary incentives like home and workplace charging rebates can amplify its impact.

Ultimately, Washington’s commitment to electric vehicles is not just about rebates; it’s about fostering a comprehensive ecosystem that supports clean energy, infrastructure, and equitable access. By addressing these challenges head-on, the state can continue to lead the way in the transition to electric mobility, benefiting both the environment and its residents in the long run.

 

Related News

View more

B.C. Hydro misled regulator: report

BC Hydro SAP Oversight Report assesses B.C. Utilities Commission findings on misleading testimony, governance failures, public funds oversight, IT project risk, compliance gaps, audit controls, ratepayer impacts, and regulatory accountability in major enterprise software decisions.

 

Key Points

A summary of BCUC findings on BC Hydro's SAP IT project oversight, governance lapses, and regulatory compliance.

✅ BCUC probed testimony, cost overruns, and governance failures

✅ Project split to avoid scrutiny; incomplete records and late corrections

✅ Reforms pledged: stronger business cases, compliance, audit controls

 

B.C. Hydro misled the province’s independent regulator about an expensive technology program, thereby avoiding scrutiny on how it spent millions of dollars in public money, according to a report by the B.C. Utilities Commission.

The Crown power corporation gave inaccurate testimony to regulators about the software it had chosen, called SAP, for an information technology project that has cost $197 million, said the report.

“The way the SAP decision was made prevented its appropriate scrutiny by B.C. Hydro’s board of directors and the BCUC, reflecting governance risks seen in Manitoba Hydro board changes in other jurisdictions,” the commission found.

“B.C. Hydro’s CEO and CFO and its (audit and risk management board committee) members did not exhibit good business judgment when reviewing and approving the SAP decision without an expenditure approval or business case, highlighting how board upheaval at Hydro One can carry market consequences.”

The report was the result of a complaint made in 2016 by then-opposition NDP MLA Adrian Dix, who alleged B.C. Hydro lied to the regulatory commission to try to get approval for a risky IT project in 2008 that then went over budget and resulted in the firing of Hydro’s chief information officer.

The commission spent two years investigating. Its report outlined how B.C. Hydro split the IT project into smaller components to avoid scrutiny, failed to produce the proper planning document when asked, didn’t disclose cost increases of up to $38 million, reflecting pressures seen at Manitoba Hydro's debt across the sector, gave incomplete testimony and did not quickly correct the record when it realized the mistakes.

“Essentially all of the things I asserted were substantiated, and so I’m pleased,” Dix, who is now minister of health, said on Monday. “I think ratepayers can be pleased with it, because even though it was an elaborate process, it involves hundreds of millions of spending by a public utility and it clearly required oversight.”

The BCUC stopped short of agreeing with Dix’s allegation that the errors were deliberate. Instead it pointed toward a culture at B.C. Hydro of confusion, misunderstanding and fear of dealing with the independent regulatory process.

“Therefore, the panel finds that there was a culture of reticence to inform the BCUC when there was doubt about something, even among individuals that understood or should have understood the role of the BCUC, a pattern that can fuel Hydro One investor concerns in comparable markets,” read the report.

“Because of this doubt and uncertainty among B.C. Hydro staff, the panel finds no evidence to support a finding that the BCUC was intentionally misled. The panel finds B.C. Hydro’s culture of reticence to be inappropriate.”

By law, B.C. Hydro is supposed to get approval by the commission for rate changes and major expenditures. Its officials are often put under oath when providing information.

B.C. Hydro apologized for its conduct in 2016. The Crown corporation said Monday it supports the commission’s findings and has made improvements to management of IT projects, including more rigorous business case analyses.

“We participated fully in the commission’s process and acknowledged throughout the inquiry that we could have performed better during the regulatory hearings in 2008,” said spokesperson Tanya Fish.

“Since then, we have taken steps to ensure we meet the highest standards of openness and transparency during regulatory proceedings, including implementing a (thorough) awareness program to support staff in providing transparent and accurate testimony at all times during a regulatory process.”

The Ministry of Energy, which is responsible for B.C. Hydro, said in a statement it accepts all of the BCUC recommendations and will include the findings as part of a review it is conducting into Hydro’s operations and finances, including its deferred operating costs for context, and regulatory oversight.

Dix, who is now grappling with complex IT project management in his Health Ministry, said the lessons learned by B.C. Hydro and outlined in the report are important.

“I think the report is useful reading on all those scores,” he said. “It’s a case study in what shouldn’t happen in a major IT project.”

 

 

Related News

View more

Financial update from N.L energy corp. reflects pandemic's impact

Nalcor Energy Pandemic Loss underscores Muskrat Falls delays, hydroelectric risks, oil price shocks, and COVID-19 impacts, affecting ratepayers, provincial debt, timelines, and software commissioning for the Churchill River project and Atlantic Canada subsea transmission.

 

Key Points

A $171M Q1 2020 downturn linked to COVID-19, oil price collapse, and Muskrat Falls delays impacting schedules and costs.

✅ Q1 2020 profit swing: +$92M to -$171M amid oil price crash

✅ Muskrat Falls timeline slips; cost may reach $13.1B

✅ Software, workforce, COVID-19 constraints slow commissioning

 

Newfoundland and Labrador's Crown energy corporation reported a pandemic-related profit loss from the first quarter of 2020 on Tuesday, along with further complications to the beleaguered Muskrat Falls hydroelectric project.

Nalcor Energy recorded a profit loss of $171 million in the first quarter of 2020, down from a $92 million profit in the same period last year, due in part to falling oil prices during the COVID-19 pandemic.

The company released its financial statements for 2019 and the first quarter of 2020 on Tuesday, and officials discussed the numbers in a livestreamed presentation that detailed the impact of the global health crisis on the company's operations.

The loss in the first quarter was caused by lower profits from electricity sales and a drop in oil prices due to the pandemic and other global events, company officials said.

The novel coronavirus also added to the troubles plaguing the Muskrat Falls hydroelectric dam on Labrador's Churchill River, amid Quebec-N.L. energy tensions that long predate the pandemic.

Work at the remote site stopped in March over concerns about spreading the virus. Operations have been resuming slowly, with a reduced workforce tackling the remaining jobs.

Officials with Nalcor said it will likely be another year before the megaproject is complete.

CEO Stan Marshall estimates the months of delays could bring the total cost to $13.1 billion including financing, up from the previous estimate of $12.7 billion -- though the total impact of the coronavirus on the project's price tag has yet to be determined.

"If we're going to shut down again, all of that's wrong," Marshall said. "But otherwise, we can just carry on and we'll have a good idea of the productivity level. I'm hoping that by September we'll have a more definitive number here."

The 824 megawatt hydroelectric dam will eventually send power to Newfoundland, and later Nova Scotia, through subsea cables, even as Nova Scotia boosts wind and solar in its energy mix.

It has seen costs essentially double since it was approved in 2012, and faced significant delays even before pandemic-forced shutdowns in North America and around the world this spring.

Cost and schedule overruns were the subject of a sweeping inquiry that held hearings last year, while broader generation choices like biomass use have drawn scrutiny as well.

The commissioner's report faulted previous governments for failing to protect residents by proceeding with the project no matter what, and for placing trust in Nalcor executives who "frequently" concealed information about schedule, cost and related risks.

Some of the latest delays have come from challenges with the development of software required to run the transmission link between Labrador and Newfoundland, where winter reliability issues have been flagged in reports.

The software is still being worked out, Marshall said Tuesday, and the four units at the dam will come online gradually over the next year.

"It's not an all or nothing thing," Marshall said of the final work stages.
Nalcor's financial snapshot follows a bleak fiscal update from the province this month. The Liberal government reported a net debt of $14.2 billion and a deficit of more than $1.1 billion, even as a recent Churchill Falls deal promised new revenues for the province, citing challenges from pandemic-related closures and oil production shutdowns.

Finance Minister Tom Osborne said at the time that help from Ottawa will be necessary to get the province's finances back on track.

Muskrat Falls represents about one-third of the province's debt, and is set to produce more power than the province of about half a million people requires. Anticipated rate increases due to the ballooning costs and questions about Muskrat Falls benefits have posed a significant political challenge for the provincial government.

Ottawa has agreed to work with Newfoundland and Labrador on a rewrite of the project's financial structure, scrapping the format agreed upon in past federal-provincial loan agreements in order to ease the burden on ratepayers, while some argue independent planning would better safeguard ratepayers.

Marshall, a former Fortis CEO who was brought in to lead Nalcor in 2016, has called the project a "boondoggle" and committed to seeing it completed within four years. Though that plan has been disrupted by the pandemic, Marshall said the end is in sight.

"I'm looking forward to a year from now. And I hope to be gone," Marshall said.

 

Related News

View more

Yukon receives funding for new wind turbines

Yukon Renewable Energy Funding backs wind turbines, grid-scale battery storage, and transmission line upgrades, cutting diesel dependence, lowering greenhouse gas emissions, and strengthening Yukon Energy's isolated grid for remote communities, local jobs, and future growth.

 

Key Points

Federal support for Yukon projects adding wind, battery storage, and grid upgrades to cut diesel use and emissions.

✅ Three 100 kW wind turbines will power Destruction Bay.

✅ 8 MW battery storage smooths peaks and reduces diesel.

✅ Mayo-McQuesten 138 kV line upgrade boosts reliability.

 

Kluane First Nation in Yukon will receive a total of $3.1 million in funding from the federal government to install and operate wind turbines that will help reduce the community’s diesel reliance.

According to a release, the community will integrate three 100-kilowatt turbines in Destruction Bay, Yukon, providing a renewable energy source for their local power grid that will reduce greenhouse gas emissions and create local jobs in the community.

A $2-million investment from Natural Resources Canada came from the Clean Energy for Rural and Remote Communities Program, part of the Government of Canada’s Investing in Canada infrastructure plan, which supports green energy solutions across jurisdictions. Crown-Indigenous Relations’ and Northern Affairs Canada also contributed a $1.1-million investment from the Northern REACHE Program.

Also, the Government of Canada announced more than $39.2 million in funding for two Yukon Energy projects that will increase the reliability of Yukon’s electrical grid, including exploration of a potential connection to the B.C. grid to bolster resiliency, and help build the robust energy system needed to support future growth. The investment comes from the government’s Green Infrastructure Stream (GIS) of the Investing in Canada infrastructure plan.

 

Project 1: Grid-scale battery storage

The federal government is investing $16.5 million in Yukon Energy’s construction of a new battery storage system in Yukon. Once completed, the 8 MW battery will be the largest grid-connected battery in the North, and one of the largest in Canada, alongside major Ontario battery projects underway.

The new battery is a critical investment in Yukon Energy’s ability to meet growing demands for power and securing Yukon’s energy future. As an isolated grid, one of the largest challenges Yukon Energy faces is meeting peak demands for power during winter months, as electrification grows with EV adoption in the N.W.T. and beyond.

When complete, the new system will store excess electricity generated during off-peak periods, complementing emerging vehicle-to-grid integration approaches, and provide Yukoners with access to more power during peak periods. This new energy storage system will create a more reliable power supply and help reduce the territory’s reliance on diesel fuel. Over the 20-year life of project, the new battery is expected to reduce carbon emissions in Yukon by more than 20,000 tonnes.

A location for the new battery energy storage system has not been identified. Yukon Energy will begin permitting of the project in 2020 with construction targeted to be complete by mid-2023.

 

Project 2: Replacing and upgrading the Mayo to McQuesten Transmission Line

Yukon Energy has received $22.7 million in federal funding to proceed with Stage 1 of the Stewart to Keno City Transmission Project – replacing and upgrading the 65 year-old transmission line between Mayo and McQuesten. The project also includes the addition of system protection equipment at the Stewart Crossing South substation. The Yukon government, through the Yukon Development Corporation, has already provided $3.5 million towards planning for the project.

Replacing the Mayo to McQuesten transmission line is critical to Yukon Energy’s ability to deliver safe and reliable electricity to customers in the Mayo and Keno regions, mirroring broader regional transmission initiatives that enhance grid resilience, and to support economic growth in Yukon. The transmission line has reached end-of-life and become increasingly unreliable for customers in the area.

The First Nation of Na-Cho Nyak Dun has expressed their support of this project. The project has also been approved by the Yukon Environmental and Socio-Economic Assessment Board.

Yukon Energy will begin replacing and upgrading the 31 km transmission line between Mayo and McQuesten in 2020. Construction is expected to be complete in late 2020. When finished, the new 138 kV transmission line will provide more reliable electricity to customers in the Mayo and Keno regions and be equipped to support industrial growth and development in the area, including the Victoria Gold Mine, with renewable power from the Yukon grid.

Planning work for the remainder of the Stewart to Keno City Transmission Project has been completed. Yukon Energy continues to explore funding opportunities that are needed to proceed with other stages of the project.

 

Related News

View more

Coronavirus puts electric carmakers on alert over lithium supplies

Western Lithium Supply Localization is accelerating as EV battery makers diversify from China, boosting lithium hydroxide sourcing in North America and Europe, amid Covid-19 disruptions and rising prices, with geothermal brines and local processing.

 

Key Points

An industry shift to source lithium and processing near EV hubs, reducing China reliance and supply chain risk.

✅ EV makers seek North American and European lithium hydroxide

✅ Prices rise amid Covid-19 and logistics constraints

✅ New extraction: geothermal and oilfield brine projects

 

The global outbreak of coronavirus will accelerate efforts by western carmakers to localise supplies of lithium for electric car batteries, according to US producer Livent.

The industry was keen to diversify away from China, which produces the bulk of the world’s lithium, a critical material for lithium-ion batteries, said Paul Graves, Livent’s chief executive.

“It’s a conversation that’s starting to happen that was not happening even six months ago,” especially in the US, the former Goldman Sachs banker added.

China produced about 79 per cent of the lithium hydroxide used in electric car batteries last year, according to consultancy CRU, a supply chain that has been disrupted by the virus outbreak and EV shortages in some markets.

Prices for lithium hydroxide rose 3.1 per cent last month, their first increase since May 2018, according to Benchmark Mineral Intelligence, due to the impact of the Covid-19 bug.

Chinese lithium producer Ganfeng Lithium, which supplies major carmakers from Tesla to Volkswagen, said it had raised prices by less than 10 per cent, due to higher production costs and logistical difficulties.

“We can get lithium from lots of places . . . is that really something we’re prepared to rely upon?” Mr Graves said. “People are going to relook at supply chains, including battery recycling initiatives that enhance resilience, and relook at their integrity . . . and they’re going to say is there something we need to do to change our supply chains to make them more shockproof?”

General Motors last week said it was looking to source battery minerals such as lithium and nickel from North America for its new range of electric cars that will use cells made in Ohio by South Korea’s LG Chem.

“Some of these critical minerals could be challenging to obtain; it’s not just cobalt you need to be concerned about but also battery-grade nickel and lithium as well,” said Andy Oury, a lead engineer for batteries at GM. “We’re doing all of this with an eye to sourcing as much of the raw material from North America as possible.”

However, George Heppel, an analyst at CRU, warned it would be difficult to compete with China on costs. “China is always going to be the most competitive place to buy battery raw materials. That’s not likely to change anytime soon,” he said.

Livent, which extracts lithium from brines in northern Argentina, is looking at extracting the mineral from geothermal resources in the US and also wants to build a processing plant in Europe.

The Philadelphia-based company is also working with Canadian start-up E3 Metals to extract lithium from brines in Alberta's oil and gasfields for new projects in Canada.

“We’ll look at doing more in the US and more in Europe,” said Mr Graves, underscoring evolving Canada-U.S. collaboration across EV supply chains.


 

 

Related News

View more

Bruce Power awards $914 million in manufacturing contracts

Bruce Power Major Component Replacement secures Ontario-made nuclear components via $914M contracts, supporting refurbishment, clean energy, low-cost electricity, and advanced manufacturing, extending reactor life to 2064 while boosting jobs, supply chain growth, and economy.

 

Key Points

A refurbishment program investing $914M in advanced manufacturing to extend reactors and deliver low-cost, clean power.

✅ $914M Ontario-made components for steam generators, tubes, fittings

✅ Extends reactor life to 2064; clean, low-cost electricity for Ontario

✅ Supports 22,000 jobs annually; boosts supply chain and economy

 

Today, Bruce Power signed $914 million in advanced manufacturing contracts for its Major Component Replacement, which gets underway in 2020, as the reactor refurbishment begins across the site and will allow the site to provide low-cost, carbon-free electricity to Ontario through 2064.

The Major Component Replacement (MCR) Project agreements include:

  • $642 million to BWXT Canada Inc. for the manufacturing of 32 steam generators to be produced at BWXT’s Cambridge facility.
  • $144 million to Laker Energy Products for end fittings, liners and flow elements, which will be manufactured at its Oakville location.
  • $62 million to Cameco Fuel Manufacturing, in Cobourg, for calandria tubes and annulus spacers for all six MCRs.
  • $66 million for Nu-Tech Precision Metals, in Arnprior, for the production of zirconium alloy pressure tubes for Units 6 and 3.

 

Bruce Power’s Life-Extension Program, which started in January 2016 with Asset Management Program investments and includes the MCRs on Units 3-8, remains on time and on budget.”

#google#

By signing these contracts today, we have secured ‘Made in Ontario‘ solutions for the components we will need to successfully complete our MCR Projects, extending the life of our site to 2064,” said Mike Rencheck, Bruce Power’s President and CEO.

“Today’s announcements represent a $914 million investment in Ontario’s highly skilled workforce, which will create untold economic opportunities for the communities in which they operate for many years to come.”We look forward to growing our already excellent relationships with these supplier partners and unions as we work toward our common goal, supported by an operating record, of continuing to keep Canada’s largest infrastructure project on time and on budget."

By extending the life of Bruce Power’s reactors to 2064, the company will create and sustain 22,000 jobs annually, both directly and indirectly, across Ontario, while investing $4 billion a year into the province’s economy, underscoring the economic benefits of nuclear development across Canada.

At the same time, Bruce Power will produce 30 per cent of Ontario’s electricity at 30 per cent less than the average cost to generate residential power, while also producing zero carbon emissions, aligning with Pickering NGS life extensions across the province.The Hon. Glenn Thibeault, Minister of Energy, said today’s announcement is good news for the people of Ontario.”

Bruce Power’s Life-Extension Program makes sense for Ontario, and the announcements made today will create good jobs and benefit our economy for decades to come,” Minister Thibeault said.

“Moving forward with the refurbishment project is part of our government’s plan to support care and opportunity, while producing affordable, reliable and clean energy for the people of Ontario.”Kim Rudd, Parliamentary Secretary to the Minister of Natural Resources and MP for Northumberland-Peterborough South, offered her support and congratulations.”

Related planning includes Bruce C project exploration funding that supports long-term nuclear options in Ontario.

Canada’s nuclear industry, including its advanced manufacturing capability, is respected internationally,” Rudd said. “Bruce Power’s announcement today related to the advanced manufacturing of key components throughout Ontario as part of its Life-Extension Program will allow these suppliers to have a secure base to not only meet Canada’s needs, but export internationally.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified