Utilities pledge to be ready for plug-ins

By Reuters


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
If electric cars plug in at rates hoped for by automakers in the coming years, there will be enough power to serve them, the biggest U.S. electric utilities industry group vowed.

The utilities have pledged to make sure the electricity is there on demand, to work with policy makers on tax rebates and customer financial incentives and to make it easy for consumers to charge up car batteries, according to the Edison Electric Institute.

Convincing Americans of the benefits of plugging in will be a big part of the utilities-automakers efforts, announced at a plug-in conference in Detroit. They will also try to convince consumers to charge up an electric vehicle's batteries at night when power is cheaper and easily available.

"Our industry acutely recognizes that now is the time to redouble our ongoing efforts to lay the groundwork for making plug-in electric transportation in this country a reality, not just a vision," said Anthony F. Earley, Jr., Chairman and CEO of Detroit-based DTE Energy, who is this year's chairman of the Edison Electric Institute.

One of the biggest hurdles in electrifying the U.S. vehicle fleet is the need for standardization of hooking into the power grid.

A report by PriceWaterhouseCoopers noted that the promise of electric vehicles depends on infrastructure development, environmental impact and government support.

It calls for more government assistance to make EVs more affordable, particularly in the next few years.

"It's important that the customer experience with plug-in electric vehicles be a good one," said Ted Craver, chief executive of Southern California Edison. "As the market for plug-in vehicles develops and matures, electric utilities will need to work closely with state and local officials, public and private entities, automakers and other stakeholders to make sure the charging infrastructure is ready."

While Obama wants a million plug-in vehicles by 2015 in the United States alone, the report by PriceWaterhouseCoopers estimated that by 2015 to be near 600,000 to 700,000 vehicles.

Related News

Canada's Electricity Exports at Risk Amid Growing U.S.-Canada Trade Tensions

US-Canada Electricity Tariff Dispute intensifies as proposed tariffs spur Canadian threats to restrict hydroelectric exports, risking cross-border energy supply, grid reliability, higher electricity prices, and clean energy goals in the Northeast and Midwest.

 

Key Points

Trade clash over tariffs and hydroelectric exports that threatens power supply, prices, and grid reliability.

✅ Potential export curbs on Canadian hydro to US markets

✅ Risks: higher prices, strained grids, reduced clean energy

✅ Diplomacy urged to avoid retaliatory trade measures

 

In early February 2025, escalating trade tensions between the United States and Canada have raised concerns about the future of electricity exports from Canada to the U.S. The potential imposition of tariffs by the U.S. has prompted Canadian officials to consider retaliatory measures, including restricting electricity exports and pursuing high-level talks such as Ford's Washington meeting with federal counterparts.

Background of the Trade Dispute

In late November 2024, President-elect Donald Trump announced plans to impose a 25% tariff on all Canadian products, citing issues related to illegal immigration and drug trafficking. This proposal has been met with strong opposition from Canadian leaders, who view such tariffs as unjustified and detrimental to both economies, even as tariff threats boost support for Canadian energy projects among some stakeholders.

Canada's Response and Potential Retaliatory Measures

In response to the proposed tariffs, Canadian officials have discussed various countermeasures. Ontario Premier Doug Ford has threatened to cut electricity supplies to 1.5 million Americans and ban imports of U.S.-made beer and liquor. Other provinces, such as Quebec and Alberta, are also considering similar actions, though experts advise against cutting Quebec's energy exports due to reliability concerns.

Impact on U.S. Energy Supply

Canada is a significant supplier of electricity to the United States, particularly in regions like the Northeast and Midwest. A reduction or cessation of these exports could lead to energy shortages and increased electricity prices in affected U.S. states, with New York especially vulnerable according to regional assessments. For instance, Ontario exports substantial amounts of electricity to neighboring U.S. states, and any disruption could strain local energy grids.

Economic Implications

The imposition of tariffs and subsequent retaliatory measures could have far-reaching economic consequences. In Canada, industries such as agriculture, manufacturing, and energy could face significant challenges due to reduced access to the U.S. market, even as many Canadians support energy and mineral tariffs as leverage. Conversely, U.S. consumers might experience higher prices for goods and services that rely on Canadian imports, including energy products.

Environmental Considerations

Beyond economic factors, the trade dispute could impact environmental initiatives. Canada's hydroelectric power exports are a clean energy source that helps reduce carbon emissions in the U.S., where policymakers look to Canada for green power to meet targets. A reduction in these exports could lead to increased reliance on fossil fuels, potentially hindering environmental goals.

The escalating trade tensions between the United States and Canada, particularly concerning electricity exports, underscore the complex interdependence of the two nations. While the situation remains fluid, it highlights the need for diplomatic engagement to resolve disputes and maintain the stability of cross-border energy trade.

 

Related News

View more

First US coal plant in years opens where no options exist

Alaska Coal-Fired CHP Plant opens near Usibelli mine, supplying electricity and district heat to UAF; remote location without gas pipelines, low wind and solar potential, and high heating demand shaped fuel choice.

 

Key Points

A 17 MW coal CHP at UAF producing power and campus heat, chosen for remoteness and lack of gas pipelines.

✅ 17 MW generator supplying electricity and district heat

✅ Near Usibelli mine; limited pipeline access shapes fuel

✅ Alternative options like LNG, wind, solar not cost-effective

 

One way to boost coal in the US: Find a spot near a mine with no access to oil or natural gas pipelines, where it’s not particularly windy and it’s dark much of the year.

That’s how the first coal-fired plant to open in the U.S. since 2015 bucked the trend in an industry that’s seen scores of facilities close in recent years. A 17-megawatt generator, built for $245 million, is set to open in April at the University of Alaska Fairbanks, just 100 miles from the state’s only coal mine.

“Geography really drove what options are available to us,” said Kari Burrell, the university’s vice chancellor for administrative services, in an interview. “We are not saying this is ideal by any means.”

The new plant is arriving as coal fuels about 25 percent of electrical generation in the U.S., down from 45 percent a decade earlier, even as some forecasts point to a near-term increase in coal-fired generation in 2021. A near-record 18 coal plants closed in 2018, and 14 more are expected to follow this year, according to BloombergNEF.

The biggest bright spot for U.S. coal miners recently has been exports to overseas power plants. At home, one of the few growth areas has been in pizza ovens.

There are a handful of other U.S. coal power projects that have been proposed, including plans to build an 850 megawatt facility in Georgia and an 895 megawatt plant in Kansas, even as a Minnesota utility reports declining coal returns across parts of its portfolio. But Ashley Burke, a spokeswoman for the National Mining Association, said she’s unaware of any U.S. plants actively under development besides the one in Alaska.

 

Future of power

“The future of power in the U.S. does not include coal,” Tessie Petion, an analyst for HSBC Holdings Plc, said in a research note, a view echoed by regions such as Alberta retiring coal power early in their transition.

Fairbanks sits on the banks of the Chena River, amid the vast subarctic forests in the heart of Alaska. The oil and gas fields of the state’s North slope are 500 miles north. The nearest major port is in Anchorage, 350 miles south.

The university’s new plant is a combined heat and power generator, which will create steam both to generate electricity and heat campus buildings. Before opting for coal, the school looked into using liquid natural gas, wind and solar, bio-mass and a host of other options, as new projects in Southeast Alaska seek lower electricity costs across the region. None of them penciled out, said Mike Ruckhaus, a senior project manager at the university.

The project, financed with university and state-municipal bonds, replaces a coal plant that went into service in 1964. University spokeswoman Marmian Grimes said it’s worth noting that the new plant will emit fewer emissions.

The coal will come from Usibelli Coal Mine Inc., a family-owned business that produces between 1.2 and 2 million tons per year from a mine along the Alaska railroad, according to the company’s website.

While any new plant is good news for coal miners, Clarksons Platou Securities Inc. analyst Jeremy Sussman said this one is "an isolated situation."

“We think the best producers can hope for domestically is a slow down in plant closures,” he said, even as jurisdictions like Alberta close their last coal plant entirely.

 

Related News

View more

Starved of electricity, Lebanon picks Dubai's ENOC to swap Iraqi fuel

Lebanon-ENOC Fuel Swap secures Iraqi high sulphur fuel oil, Grade B fuel oil, and gasoil via tender, easing electricity generation shortfalls, diesel shortages, and grid outages amid Lebanon's energy crisis and power sector emergency.

 

Key Points

A tender-based exchange trading Iraqi HSFO for cleaner fuel oil and gasoil to stabilize Lebanon's electricity generation.

✅ Swaps 84,000t Iraqi HSFO for 30,000t Grade B fuel oil and 33,000t gasoil

✅ Supports state electricity generation during acute power shortages

✅ Tender won by ENOC under Lebanon-Iraq goods-for-fuel deal

 

Lebanon's energy ministry said it had picked Dubai's ENOC in a tender to swap 84,000 tonnes of Iraqi high sulphur fuel oil, as LNG export authorizations expand globally, with 30,000 tonnes of Grade B fuel oil and 33,000 tonnes of gasoil.

ENOC won the tender, part of a deal between the two countries that allows the cash-strapped Lebanese government, even as electricity tensions persist, to pay for 1 million tonnes of Iraqi heavy fuel oil a year in goods and services.

As Lebanon suffers what the World Bank has described as one of the deepest depressions of modern history, shortages of fuel this month have meant state-powered electricity, alongside ongoing electricity sector reform, has been available for barely a few hours a day if at all.

Residents turning to private generators for their power supply face diesel shortages, even as other countries roll out measures to secure electricity supplies to mitigate risks.

The swap tenders are essential as Iraqi fuel is unsuitable for Lebanese electricity generation, and regional projects like the Jordan-Saudi electricity linkage underscore broader grid strategies.

Lebanese caretaker Energy Minister Raymond Ghajar said in July the fuel from the Iraqi deal would be used for electricity generation by the state provider, even as France advances a new electricity pricing scheme in Europe, and was enough for around four months.

ENOC is set to receive the Iraq fuel between Sept. 3-5 and will deliver it to Lebanon two weeks after, the energy ministry said, following a recent deal on electricity prices abroad that could influence markets.

 

Related News

View more

Military Is Ramping Up Preparation For Major U.S. Power Grid Hack

DARPA RADICS Power Grid Security targets DoD resilience to cyber attacks, delivering early warning, detection, isolation, and characterization tools, plus a secure emergency network to protect critical infrastructure and speed grid restoration and communications.

 

Key Points

A DoD/DARPA initiative to detect, contain, and rapidly recover the U.S. grid from sophisticated cyber attacks.

✅ Early warning separates attacks from routine outages

✅ Pinpoints intrusion points and malware used

✅ Builds secure emergency network for rapid restoration

 

The U.S. Department of Defense is growing increasingly concerned about hackers taking down our power grid and crippling the nation, reflecting a renewed focus on grid protection across agencies, which is why the Pentagon has created a $77-million security plan that it hopes will be up and running by 2020.

The U.S. power grid is threatened every few days. While these physical and cyber attacks have never led to wide-scale outages, attacks are getting more sophisticated. According to a 494-page report released by the Department of Energy in January and a new grid report card, the nation’s grid “faces imminent danger from cyber attacks.” Such a major, sweeping attack could threaten “U.S. lifeline networks, critical defense infrastructure, and much of the economy; it could also endanger the health and safety of millions of citizens.” If it were to happen today, America could be powered-down and vulnerable for weeks.

#google#

The DoD is working on an automated system to speed up recovery time to a week or less — what it calls the Rapid Attack Detection, Isolation, and Characterization (RADICS) program. DARPA, the Pentagon’s research arm, originally solicited proposals in late 2015, asking for technology that did three things. Primarily, it had to detect early warning signs and distinguish between attacks and normal outages, especially after intrusions at U.S. electric utilities underscored the risk, but it also had to pinpoint the access point of the attack and determine what malicious software was used. Finally, it must include an emergency system that can rapidly connect various power-supply centers, without any human coordination. This would allow emergency and military responders to have an ad hoc communication system in place moments after an attack.

“If a well-coordinated cyberattack on the nation’s power grid were to occur today, the time it would take to restore power would pose daunting national security challenges,” said DARPA program manager John Everett, in a statement, at the time. “Beyond the severe domestic impacts, including economic and human costs, prolonged disruption of the grid would hamper military mobilization and logistics, impairing the government’s ability to project force or pursue solutions to international crises.”

DARPA plans to spend $77 million on RADICS, while DOE funding to improve the grid complements these initiatives. Last November, SRI International announced it had received $7.3 million from the program. In December, Raython was granted $9 million. The latest addition is BAE Systems, which received $8.6 million last month to develop technology that detects and contains power-grid threats, and creates a secure emergency provisional system that restores some power and communication in the wake of an attack — what is being called a secure emergency network.

According to the military news site Defense Systems, BAE’s SEN would rely on radio, satellite, or wireless internet — particularly as ransomware attacks continue to rise — whatever is available that allows the grid to continue working. The SEN would serve as a wireless connection between separate power grid stations.

While the ultimate goal of the RADICS program will be the restoration of civilian power and communications, the SEN will prioritize communication networks that would be used for defense or combat, so the U.S. government can still wage war while the rest of us are in the dark.

 

Related News

View more

Growing pot sucks up electricity and pumps out an astounding amount of carbon dioxide — it doesn't have to

Sustainable Cannabis Cultivation leverages greenhouse design, renewable energy, automation, and water recapture to cut electricity use, emissions, and pesticides, delivering premium yields with natural light, smart sensors, and efficient HVAC and irrigation control.

 

Key Points

A data-driven, low-impact method that cuts energy, water, and chemicals while preserving premium yields.

✅ 70-90% less electricity vs. conventional indoor grows

✅ Natural light, solar, and rainwater recapture reduce footprint

✅ Automation, sensors, and HVAC stabilize microclimates

 

In the seven months since the Trudeau government legalized recreational marijuana use, licensed producers across the country have been locked in a frenetic race to grow mass quantities of cannabis for the new market.

But amid the rush for scale, questions of sustainability have often taken a back seat, and in Canada, solar adoption has lagged in key sectors.

According to EQ Research LLC, a U.S.-based clean-energy consulting firm, cannabis facilities can need up to 150 kilowatt-hours of electricity per year per square foot. Such input is on par with data centres, which are themselves 50 to 200 times more energy-intensive than a typical office building, and achieving zero-emission electricity by 2035 would help mitigate the associated footprint.

At the Lawrence Berkley National Laboratory in California, a senior scientist estimated that one per cent of U.S. electricity use came from grow ops. The same research — published in 2012 — also found that the procedures for refining a kilogram of weed emit around 4,600 kilograms of carbon dioxide to the atmosphere, equivalent to operating three million cars for a year, though a shift to zero-emissions electricity by 2035 could substantially cut those emissions.

“All factors considered, a very large expenditure of energy and consequent ‘environmental imprint’ is associated with the indoor cultivation of marijuana,” wrote Ernie Small, a principal research scientist for Agriculture and Agri-Food Canada, in the 2018 edition of the Biodiversity Journal.

Those issues have left some turning to technology to try to reduce the industry’s footprint — and the economic costs that come with it — even as more energy sources make better projects for forward-looking developers.

“The core drawback of most greenhouse environments is that you’re just getting large rooms, which are harder to control,” says Dan Sutton, the chief executive officer of Tantalus Labs., a B.C.-based cannabis producer. “What we did was build a system specifically for cannabis.”

Sutton is referring to SunLab, the culmination of four years of construction, and at present the main site where his company nurtures rows of the flowering plant. The 120,000-square foot structure was engineered for one purpose: to prove the merits of a sustainable approach.

“We’re actually taking time-series data on 30 different environmental parameters — really simple ones like temperature and humidity — all the way down to pH of the soil and water flow,” says Sutton. “So if the temperature gets a little too cold, the system recognizes that and kicks on heaters, and if the system senses that the environment is too hot in the summertime, then it automatically vents.”

A lot is achieved without requiring much human intervention, he adds. Unlike conventional indoor operations, SunLab demands up to 90 per cent less electricity, avoids using pesticides, and draws from natural light and recaptured rainwater to feed its crops.

The liquid passes through a triple-filtration process before it is pumped into drip irrigation tubing. “That allows us to deliver a purity of water input that is cleaner than bottled water,” says Sutton.

As transpiration occurs, a state-of-the-art, high-capacity airflow suspended below the ceiling cycles air at seven-minute intervals, repeatedly cooling the air and preventing outbreaks of mould, while genetically modified “guardian” insects swoop in to eliminate predatory pests.

“When we first started, people never believed we would cultivate premium quality cannabis or cannabis that belongs on the top shelf, shoulder to shoulder with the best in the world and the best of indoor,” says Sutton.

Challenges still exist, but they pale in comparison to the obstacles that American companies with an interest in adopting greener solutions persistently face, and in provinces like Alberta, an Alberta renewable energy surge is reshaping the opportunity set.

Although cannabis is legal in a number of states, it remains illegal federally, which means access to capital and regulatory clarity south of the border can be difficult to come by.

“Right now getting a new project built is expensive to do because you can’t get traditional bank loans,” says Canndescent CEO Adrian Sedlin, speaking by phone from California.

In retrofitting the company’s farm to accommodate a sizeable solar field, he struggled to secure investors, even as a solar-powered cannabis facility in Edmonton showcased similar potential.

“We spent over a year and a half trying to get it financed,” says Sedlin. “Finding someone was the hard part.”

Decriminalizing the drug would ultimately increase the supply of capital and lower the costs for innovative designs, something Sedlin says would help incentivize producers to switch to more effective and ecologically sound techniques.

Some analysts argue that selling renewable energy in Alberta could become a major growth avenue that benefits energy-intensive industries like cannabis cultivation.

Canndescent, however, is already there.

“We’re now harnessing the sun to reduce our reliance on fossil fuels and going to sustainable, or replenishable, energy sources, while leveraging the best and most efficient water practices,” says Sedlin. “It’s the right thing to do.”

 

Related News

View more

Operating record for Bruce Power as Covid-19 support Council announced

Bruce Power Life-Extension Programme advances Ontario nuclear capacity through CANDU Major Component Replacement, reliable operation milestones, supply chain retooling for COVID-19 recovery, PPE production, ventilator projects, and medical isotope supply security.

 

Key Points

A program to refurbish CANDU reactors, extend asset life, and mobilize Ontario nuclear supply chain and isotopes.

✅ Extends CANDU units via Major Component Replacement

✅ Supports COVID-19 recovery with PPE and ventilator projects

✅ Boosts Ontario energy reliability and medical isotopes

 

Canada’s Bruce Power said on 1 May that unit 1 at the Bruce nuclear power plant had set a record of 624 consecutive days of reliable operation – the longest since it was returned to service in 2012.

It exceeded Bruce 8’s run of 623 consecutive days between May 2016 and February 2018. Bruce 1, a Candu reactor, was put into service in 1977. It was shut down and mothballed by the former Ontario Hydro in 1997, and was refurbished and returned to service in 2012 by Bruce Power.

Bruce units 3 and 4 were restarted in 2003 and 2004. They are part of Bruce Power’s Life-Extension Programme, and future planning such as Bruce C project exploration continues across the fleet, with units 3 and 4 to undergo Major Component Replacement (MCR) Projects from 2023-28, adding about 30 years of life to the reactors.

The refurbishment of Bruce 6 has begun and will be followed by MCR Unit 3 which is scheduled to begin in 2023. Nuclear power accounts for more than 60% of Ontario’s supply, with Bruce Power providing more than 30%   of the province’s electricity.

Set up of Covid recovery council
On 30 April, Bruce Power announced the establishment of the Bruce Power Retooling and Economic Recovery Council to leverage the province’s nuclear supply chain to support Ontario’s fight against Covid-19 and to help aid economic recovery.

Bruce Power’s life extension programme is Canada’s second largest infrastructure project and largest private sector infrastructure programme. It is creating 22,000 direct and indirect jobs, delivering economic benefits that are expected to contribute $4 billion to Ontario’s GDP and $8-$11 billion to Canada’s gross domestic product (GDP), Bruce Power said.

“With 90% of the investment in manufactured goods and services coming from 480 companies in Ontario and other provinces, including recent manufacturing contracts with key suppliers, we can harness these capabilities in the fight against Covid-19, and help drive our economic recovery,” the company said.

“An innovative and dynamic nuclear supply chain is more important than ever in meeting this new challenge while successfully implementing our mission of providing clean, reliable, flexible, low-cost nuclear energy and a global supply of medical isotopes,” said Bruce Power president and CEO Mike Rencheck. “We are mobilising a great team with our extended supply chain, which spans the province, to assist in the fight against Covid-19 and to help drive our economic recovery in the future.”

Greg Rickford, the Minister of Energy, Mines, Northern Development, and Minister of Indigenous Affairs, said the launch of the council is consistent with Ontario’s focus to fight Covid-19 as a top priority and a look ahead to economic recovery, and initiatives like Pickering life extensions supporting long-term system reliability.

The creation of the Council was announced during a live event on Bruce Power's Facebook page, in which Rencheck was joined by Associate Minister of Energy Bill Walker and Rocco Rossi, the president and CEO of the Ontario Chamber of Commerce.

Walker reiterated the Government of Ontario’s commitment to nuclear power over the long term and to the life extension programme, including the Pickering B refurbishment as part of this strategy.

The Council, which will be formed for the duration of the pandemic and will include of all of Bruce Power’s Ontario-based suppliers, will focus on the continued retooling of the supply chain to meet front-line Covid-19 needs to contribute to the province’s economy recovery in the short, medium and long term.

New uses for nuclear medical applications will be explored, including isotopes for the sterilisation of medical equipment and long-term supply security.

The supply chain will be leveraged to support the health care sector through the rapid production of medical Personal Protection Equipment for front line-workers and large-scale PPE donations to communities as well as participation in pilot projects to make ventilators within the Bruce Power supply chain or help identify technology to better utilise existing ventilators;

“Buy Local” tools and approaches will be emphasised to ensure small businesses are utilised fully in communities where nuclear suppliers are located.

The production of hand sanitiser and other cleaning products will be facilitated for distribution to communities.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.