Latest Test Equipment Articles

How to Use a Digital Multimeter

How to use a digital multimeter? Learn to measure AC/DC voltage, current, and resistance, test continuity and diodes, select ranges or autoranging, place probes safely, and troubleshoot circuits with accurate readings and safety best practices.

 

How to Use a Digital Multimeter?

Measure V, A, and resistance; run continuity and diode tests safely.

✅ Set range or use autoranging before contacting probes

✅ Insert black to COM, red to V/ohm/mA; select AC or DC

✅ Verify continuity, diode drop, and resistance; note polarity

 

How to Use a Digital Multimeter?
Digital multimeters are used to solve most electrical problems - at the hands of a qualified electrical test profession. In fact, With a good wiring diagram and a good meter, a trained electrical professional can find the cause of almost any problem.

There are two basic types of multimeters, digital and analog. Analog multimeters have a needle and DMs have an LCD or a LED display. WIth today's demand for accuracy in testing electrical systems, it makes more sense to have a digital multimeter but an analog multimeter still has its uses.

This article focuses on DMs. A Digital multimeter will have many functions built into it. As with any tool or piece of equipment, it is necessary to make certain you read and follow digital multimeter instructions and cautions. This will protect you and your electrical equipment. If you still work with legacy needle gauges, a quick refresher on analog multimeters can help you understand when their response characteristics are advantageous in specific tests.

They will test for voltage, current and resistance. These are the three functions needed when trying to diagnose a problem. When you purchase a digital multimeter, one of the most important things to look at is the meter's impedance, which is the meter's operating resistance. Most digital multimeters have very high impedance. Since the meter is part of the circuit being tested, its resistance will affect the current flow through that circuit.

Typical Amperage Test
Digital multimeters can have very high impedance or resistance and they will cause a slight increase in the circuit's current. This becomes a concern when you test electronic systems because the increased current draw can damage the components being tested or, at the very least, alter the readings or change a sensor signal. It's best to get a meter that has an impedance of at least 10 megaohms. That way the current draw is so low it becomes invisible. Almost all meters have an "auto-range" features that will automatically select the proper range. Some meters will let you override this feature and let you manually select the range you want. Some DMMs do not have this option and must be set manually. Check the documentation that came with your digital multimeter and make sure you know and understand its different ranges.

Most meters that have an auto-range will have the setting either before or after the reading. Ohms are measured in multiples of ten and given the designation 'K' or 'M' with 'K' standing for 1,000 ohms and 'M' standing for 100,000,000 ohms. Amps would be displayed as mA, milliamps or 1/1000 of an amp or A for full amps. Volts will also be displayed as mV or volts. When you take a reading with a Digital multimeter that has auto-range, be sure you note at what range the meter is on. You could mistake 10 mA as 10 amps. Evaluating meter burden and circuit behavior is part of sound electrical testing practice to prevent misleading readings and component stress.

When readings seem inconsistent across ranges, structured electrical troubleshooting steps can isolate whether the issue is technique, setup, or a faulty component.


Typical Voltage Test
Most Digital multimeters that have auto-range will show the reading with a decimal point. A reading of 1.2 amps will be 12 amps if you ignore the decimal point.

Digital Multimeters do have a limit on how much current they can test. Usually this limit is printed at the point where the red lead plugs into the meter. If it says, "10 Amps Max" then there is a 10-amp fuse inside the meter that will blow if the current is above 10 amps. If you take out the 10-amp fuse and put in a 20-amp fuse, you will burn out the meter beyond repair. I would suggest buying a DMM that will handle at least 20 amps for automotive testing.

Typical Resistance Test
Another useful function of the Digital multimeters is the ohmmeter. An ohmmeter measures the electrical resistance of a circuit. If you have no resistance in a circuit, the ohmmeter will read 0. If you have an open in a circuit, it will read infinite.

An ohmmeter uses its own battery to conduct a resistance test. Therefore there must be no power in the circuit being tested or the ohmmeter will become damaged.

When a component is tested, the red lead is placed on the positive side and the black lead on the negative side. Current from the battery will flow through the component and the meter will determine the resistance by how much the voltage drops. If the component has an open the meter will flash "1.000" or "OL" to show an open or infinite resistance. A reading of 0 ohms indicates that there is no resistance in the component and it is shorted. If a component is supposed to have 1,000 ohms of resistance and a test shows it has 100 ohms of resistance, which indicates a short. If it reads infinite, then it is open. For very high resistance values, a dedicated megohmmeter provides test voltages and sensitivity beyond a standard DMM for insulation assessments.

For insulation checks on cables and windings, an insulation resistance tester supplies controlled DC test voltage to reveal leakage paths reliably.

Comparing results over time using an electrical insulation resistance test procedure helps detect gradual moisture ingress or degradation before failure.

Before condemning a part as open or shorted, follow best practices for checking insulation resistance so that lead placement, temperature, and stabilization time are accounted for.

 

Related Articles

View more

Sign Up for Electricity Forum’s Test Equipment Newsletter

Stay informed with our FREE Test Equipment Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

NFPA 70B 2023: Electrical Maintenance Standard

NFPA 70B 2023 sets the standard for electrical equipment maintenance, reliability, and predictive testing. It helps facilities improve safety, reduce downtime, and extend asset life through condition-based maintenance programs.

 

What is NFPA 70B 2023?

NFPA 70B 2023 is the Standard for Electrical Equipment Maintenance, providing practical guidelines for maintaining safe, reliable, and cost-effective electrical systems.

✅ Defines condition-based and preventive maintenance practices

✅ Improves electrical safety and asset reliability in facilities

✅ Reduces downtime, failures, and long-term operating costs

NFPA 70B 2023 is the essential standard for electrical equipment maintenance, providing comprehensive guidelines to ensure the safety, reliability, and efficiency of electrical systems. Electrical workers must follow the guidance in NFPA 70B to prevent equipment failures, reduce downtime, and minimize the risk of electrical hazards. By adhering to this standard, workers can implement effective maintenance practices that extend the life of electrical equipment, protect workers from potential dangers, and ensure compliance with industry regulations. Following the standard is crucial for maintaining safe, reliable electrical operations in industrial, commercial, and institutional settings. Predictive testing, as outlined in NFPA 70B, often relies on specialized tools, such as insulation resistance testers, to detect early signs of equipment failure.

NFPA 70B Training Course

 

The Importance of NFPA 70B 2023

Electrical equipment forms the backbone of modern facilities, powering everything from essential machinery to lighting systems. However, improper maintenance of this equipment can lead to safety hazards, equipment failures, and costly downtime. The standard provides a comprehensive framework for developing electrical maintenance plans that mitigate these risks.

The standard mandates the establishment of comprehensive maintenance programs for electrical equipment to ensure safety, reliability, and efficiency. The primary goal is to prevent equipment failures and extend the lifespan of electrical systems through systematic maintenance practices. The standard emphasizes the importance of preventive maintenance, which involves regular inspections, testing, and servicing of electrical components to identify and address potential issues before they lead to failures. Condition-based maintenance programs recommended by NFPA 70B can benefit from advanced data loggers that record system performance trends.

 

Key Elements of NFPA 70B 2023 Edition

  • Developing an Electrical Maintenance Plan: The standard emphasizes the creation of a documented electrical maintenance plan. This plan should identify all equipment requiring maintenance, list the recommended maintenance tasks, and establish maintenance frequencies. The standard utilizes a risk-based approach, encouraging maintenance programs tailored to the specific equipment and its operating environment. Factors such as equipment age, operating conditions, and the equipment manufacturer's recommendations should be taken into account when determining maintenance needs and frequencies.

  • Condition-Based Maintenance: The 2023 edition places a strong emphasis on condition-based maintenance. This approach utilizes various testing and monitoring techniques to assess equipment conditions rather than relying solely on predetermined maintenance schedules. By focusing on identified needs, condition-based maintenance optimizes maintenance resources and minimizes unnecessary downtime of equipment. The standard also supports effective electrical troubleshooting practices to minimize downtime and improve system reliability.

  • Personnel Qualifications: The standard recognizes the importance of qualified personnel performing maintenance on electrical equipment. The standard does not prescribe specific qualifications but emphasizes the need for personnel to possess the knowledge and skills necessary to safely and effectively maintain electrical systems.

 

What are the Key Updates to the 2023 Version?

The latest version introduces several key updates compared to the 2019 edition, significantly enhancing its approach to maintaining electrical equipment. One of the major differences is the shift from a recommended practice to a mandatory standard, making compliance with the standard essential for ensuring safety and operational integrity. The 2023 edition emphasizes a risk-based maintenance strategy, enabling organizations to tailor their maintenance programs to the specific risks associated with their equipment and operations. Additionally, the updated version incorporates more detailed guidance on predictive maintenance techniques, such as thermography, partial discharge testing, and vibration analysis, to better detect potential issues before they result in failure. The 2023 update also aligns more closely with other key electrical safety standards, such as NFPA 70E, to create a comprehensive safety framework for electrical systems. Following NFPA 70B guidelines, facilities can implement industrial electrical maintenance strategies that extend equipment life and reduce risk.

The Standard for Electrical Equipment Maintenance provides guidelines for developing and implementing a maintenance program for electrical systems. Its purpose is to improve the safety and reliability of electrical equipment through systematic and proactive maintenance practices. This standard outlines the necessary steps to ensure that electrical systems function efficiently and safely, reducing the risk of electrical failures and accidents.

 

Difference Between NFPA 70E 2024 and NFPA 70B 2023

NFPA 70E 2024 and NFPA 70B serve different but complementary purposes in the realm of electrical safety and maintenance:

  • NFPA 70E (Standard for Electrical Safety in the Workplace): Focuses on protecting workers from electrical hazards during the operation and maintenance of electrical systems. It provides guidelines for safe work practices, including the use of personal protective equipment (PPE), arc flash hazard analysis, and safe work procedures to minimize the risk of electrical injuries.

  • NFPA 70B (Standard for Electrical Equipment Maintenance): Concentrates on the maintenance practices necessary to keep electrical equipment in safe and reliable operating condition. It emphasizes preventive maintenance to avoid equipment failures and ensure long-term reliability.

The key difference lies in their focus: NFPA 70E 2024 is concerned with safety during electrical work, whereas the standard addresses the ongoing maintenance of electrical equipment to ensure its safe operation. Preventive programs under NFPA 70B align with preventive maintenance training, helping workers apply best practices in the field.

 

Difference Between NFPA 70B 2023 Edition and NETA MTS

While NFPA 70B provides general guidelines for maintaining electrical equipment, NETA MTS-2023 (Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems) offers detailed procedures for testing and verifying the performance of electrical systems:

  • NFPA 70B provides a comprehensive framework for developing a maintenance program, emphasizing preventive maintenance practices and the overall condition of electrical equipment.

  • NETA MTS: Offers specific maintenance testing specifications, detailing the tests and inspections required to verify the operational integrity of electrical power systems. It includes precise methodologies for testing various components, such as transformers, circuit breakers, and protective relays.

The primary difference is that 70B outlines the necessary steps to maintain electrical equipment, whereas NETA MTS-2023 specifies the procedures for testing and validating the performance of these systems. Technicians applying NFPA 70B practices often rely on essential tools, such as digital multimeters and analog multimeters, for accurate electrical measurements.

 

How NFPA 70B and NETA MTS Work Together

NFPA 70B encourages the use of industry best practices for developing electrical maintenance plans. NETA MTS-2023 serves as a valuable resource to facilitate this process. Facility managers and maintenance personnel can leverage the standard to establish a foundational electrical maintenance plan, identifying equipment that requires maintenance and establishing maintenance frequencies. They can then refer to NETA MTS-2023 to find specific testing procedures and maintenance tasks tailored to their specific equipment.

Benefits of a Combined Approach:

  • Comprehensive Electrical Maintenance Plans: By combining 70B and NETA MTS-2023, facilities can develop comprehensive electrical maintenance plans that address both the framework and the specific needs of their equipment.

  • Enhanced Safety and Reliability: Following these best practices helps to ensure the safety and reliability of electrical systems. Through proper maintenance, the risk of electrical incidents is minimized, and the lifespan of equipment is maximized.

  • Reduced Downtime: Condition-based maintenance, promoted by both 70B and NETA MTS, helps to identify and address equipment issues before they lead to unexpected failures and downtime.

 

Importance of an Electrical Maintenance Plan

An effective electrical maintenance plan, guided by standards such as 70B and NETA MTS, is crucial for ensuring the reliability and safety of electrical systems. Equipment manufacturers often recommend specific maintenance practices for their products, which should be integrated into the overall maintenance strategy.

Preventive maintenance is a cornerstone of these standards, helping to identify and address potential issues before they lead to equipment failures. Regular inspections, testing, and servicing of electrical components are critical aspects of maintaining system reliability and safety.

Understanding and implementing the guidelines provided by 70B  and NETA MTS-2023 is crucial for maintaining a safe and reliable electrical system. The standard focuses on preventive maintenance to ensure the long-term reliability and safety of electrical equipment. In contrast, NETA MTS-2023 provides detailed testing procedures to verify the performance of electrical systems. By adhering to these standards, organizations can develop a robust electrical maintenance plan that minimizes risks and enhances the efficiency and safety of their electrical systems.

This comprehensive approach to maintenance not only ensures compliance with regulations but also enhances the overall safety culture within the organization, ultimately protecting both workers and assets from electrical hazards.

 

Related Articles

 

View more

What is Preventive Maintenance?

What Is Preventive Maintenance? A proactive approach for electrical systems using inspections, testing, lubrication, and calibration to reduce downtime, improve reliability, extend asset life, and meet NFPA 70B/IEC standards with CMMS-driven schedules and condition monitoring.

 

What Is Preventive Maintenance?

Planned electrical upkeep using inspections and testing to prevent failures, maximize uptime, and ensure code compliance.

✅ Schedules PM for switchgear, transformers, relays, and cables

✅ Uses infrared scans, insulation tests, and thermography

✅ Aligns with NFPA 70B, IEC 60364, and IEEE 3007 guidance

 

Preventive maintenance is a crucial aspect of equipment management that offers numerous benefits, including improved reliability, reduced downtime, and better asset management. By implementing a well-structured maintenance plan and leveraging available tools and software, organizations can optimize their operations and ensure the long-term success of their equipment maintenance programs. To build organizational capability, teams can leverage targeted preventive maintenance training that standardizes practices and improves consistency across sites.


 

In today's fast-paced world, keeping equipment running smoothly and efficiently is vital for organizations across various industries. One of the most effective ways to achieve this goal is through preventive maintenance, a practice that ensures equipment's proper functioning and longevity. This article will dive into preventive care, its benefits, and the essential components of an effective maintenance program. In manufacturing, utilities, and facilities management, comprehensive industrial electrical maintenance programs help align day-to-day tasks with long-term reliability goals.

Preventive maintenance is a systematic approach to maintaining equipment by performing routine tasks and inspections to prevent equipment breakdowns, increase reliability, and extend the operational life of assets. This proactive strategy focuses on maintaining equipment in optimal working condition to avoid unexpected failures and reduce downtime. Many organizations align their procedures with NFPA 70B 2023 to ensure maintenance activities meet recognized best practices and safety expectations.

One of the main benefits of adopting a preventive maintenance program is improved equipment reliability. Regularly scheduled maintenance tasks and inspections help identify potential issues before they escalate into costly failures. This, in turn, minimizes downtime, increases production efficiency, and reduces overall maintenance costs. Regular routes often include periodic electrical testing to validate equipment condition and detect degradation before it impacts operations.

Another key advantage is the role that preventive maintenance plays in asset management. By implementing a well-structured maintenance plan, organizations can better understand the current condition of their assets, predict equipment life cycles, and make more informed decisions regarding replacements and upgrades. Linking asset records with structured electrical troubleshooting procedures helps teams interpret failure modes and refine replacement strategies.

Creating a preventive maintenance plan requires a systematic approach, beginning with identifying all equipment and assets that need maintenance. Organizations should then develop a maintenance schedule based on the manufacturer's recommendations, historical data, and specific operational requirements. A comprehensive plan should also include procedures for routine inspections, equipment cleaning, component replacement or repair, and guidelines for documentation and record-keeping. Typical routines may specify checking insulation resistance on critical circuits to benchmark health and schedule timely interventions.

A common question when discussing preventive maintenance is the difference between this approach and predictive maintenance. While both strategies focus on preventing equipment failure, predictive maintenance uses advanced technologies and data analysis to predict when a component is likely to fail. This allows organizations to schedule maintenance only when necessary, thus optimizing resources and minimizing downtime. For rotating assets, periodic electric motor testing supports both preventive and predictive approaches by revealing trends in winding and bearing condition.

The essential components of a preventive maintenance program include a well-defined maintenance schedule, documentation and record-keeping systems, trained personnel, and appropriate tools and technologies. In addition, a successful program should be flexible and adaptable, allowing organizations to adjust based on feedback, performance metrics, and evolving needs.

Determining the frequency of preventive maintenance tasks depends on various factors, such as the type of equipment, its usage, environmental conditions, and manufacturer's recommendations. Maintenance should generally be performed regularly to ensure the equipment remains in optimal working condition.

Organizations can take advantage of various tools and software solutions available in the market to streamline the preventive maintenance process and improve efficiency. These technologies can help automate the scheduling of maintenance tasks, generate reports and analytics, track inventory and spare parts, and facilitate communication among team members.

 

Related Articles

View more

Insulation Resistance Tester For Electrical Maintenance

An insulation resistance tester measures the electrical resistance of insulating materials in cables, motors, and equipment. It helps detect insulation breakdown, leakage currents, and moisture intrusion, ensuring electrical safety, equipment longevity, and compliance with industry testing standards.

 

What is an Insulation Resistance Tester?

An insulation resistance tester is a diagnostic tool used to assess the quality of electrical insulation in systems and components.

✅ Ensures equipment safety by identifying insulation breakdown or degradation

✅ Measures high resistance values in megohms using test voltages

✅ Commonly used in the maintenance of motors, switchgear, and wiring systems

 

It is a crucial tool in electrical maintenance, used to evaluate the quality of dielectric in various systems. It measures how well the insulation prevents the flow of electrical current, helping to identify potential weaknesses or faults that could lead to equipment failure. Let's explore how these testers work, what features to consider when choosing one, and the safety precautions to follow during testing. Insulation resistance testing is a critical component of a comprehensive electrical testing strategy to verify system reliability and safety.

 

Frequently Asked Questions

How does an insulation resistance tester work?

It operates by applying a direct current (DC) voltage across the non-conductive layer and measuring the resulting resistance. During the test, a current flows through the insulation material, and the tester measures how much resistance the insulation provides to the flow of electricity. High resistance values indicate a good non-conductive layer, while low resistance values suggest degradation or the presence of moisture. Additionally, the tester can help detect dielectric absorption, which is the ability of the insulation to absorb and release charge over time.

 

What are the key features to consider?

When selecting a tester, several key features should be evaluated. First, consider the range of test voltages it offers, as different equipment may require varying voltage levels to ensure accurate testing. A wide range of resistance testers can offer voltages from 250V to 5kV or higher, depending on the application. Another important feature is the tester's ability to store and display multiple readings, which is helpful for tracking insulation resistance testing results over time. Additionally, automatic shutoff and overload protection are critical features that enhance both usability and safety.

 

What types of electrical equipment can be tested?

It can be used on a wide variety of electrical equipment. Motors, transformers, cables, switchgear, and circuit breakers are common examples of equipment tested for quality. Essentially, any component or system that relies on electrical insulation to function safely and effectively can benefit from measuring resistance tests. Regular testing of such equipment can help prevent unplanned outages and equipment failures by identifying insulation issues before they lead to larger problems. When testing motors and rotating equipment, it’s helpful to combine resistance readings with Electric Motor Testing methods to ensure comprehensive analysis.

 

How do you interpret the results?

Interpreting test results requires understanding the basic relationship between the measured resistance value and the condition of the insulation. Higher resistance values indicate that the non-conductive layer is in good condition and is providing adequate protection. Lower values may indicate contamination, moisture ingress, or aging of the non-conductive layer. Additionally, repeated tests over time enable trend analysis, allowing for the tracking of gradual changes in insulation performance. The dielectric absorption ratio can also be analyzed to provide a more detailed understanding of how the insulation is performing over extended periods.

 

What safety precautions should be followed?

Safety is paramount when using a tester. Always ensure that the equipment under test is de-energized and properly grounded before commencing the test. Wear the appropriate personal protective equipment (PPE), such as insulated gloves and safety glasses. The tester should also be handled according to the manufacturer’s guidelines to avoid accidents or damage. Lastly, be mindful of the high voltages involved during the test and ensure that no one else is near the equipment being tested.

 

How Do You Choose the Right One?

Choosing the right tester can be challenging, especially when you're unsure about the specific model, features, or test voltage required. There are six key factors to take into account when selecting the best tester for your needs:

  • What equipment will be tested?

  • What are the voltage requirements for the test?

  • Where will the tests be performed?

  • What insights can this device provide?

  • What is the technician's level of experience?

  • How important is safety in choosing the tool?


Insights from an Insulation Resistance Test

Insulation resistance testing provides a qualitative assessment of the condition of the conductor and the internal resistive medium of various electrical equipment. To begin the test, a DC voltage is applied to the conductor or equipment. This causes a current to flow from the test device into the conductor, charging the insulation. Initially, this current is referred to as a capacitive charging current, and it can be observed on the tester's display.

Initially, the meter will display a lower resistance value as the resistive medium begins to store charge. As more current flows, the reading will show a lower megohm value, indicating how much charge the insulation is holding. If the insulation quality is good, the reading will stabilize at a higher megohm value as the insulation becomes fully charged.

The next type of current is absorption, or polarization, current, which depends on factors such as contamination. For instance, if moisture is present, the absorption current will be higher, resulting in a lower resistance reading. This current takes longer to build compared to the capacitive charging current, so short testing periods may not fully reveal the presence of contaminants.

Lastly, leakage current flows through degraded non-conductive material and into nearby metal components. This current is typically the focus of an insulation resistance test, but for thorough maintenance and troubleshooting, absorption or polarization current should also be evaluated. Some advanced testers are capable of running tests that consider all currents to provide a more complete analysis.

An insulation resistance tester is a vital tool for evaluating the condition of electrical systems. By applying controlled voltages and measuring the resulting resistance, these testers help detect potential non-conductive material failures before they lead to serious issues. Understanding how to operate the tester, selecting the appropriate model, and interpreting test results are crucial for maintaining reliable electrical systems. Always follow safety protocols to ensure a successful and safe testing process. As part of any effective maintenance plan, What is Preventive Maintenance explains how regular testing can extend the life of your electrical systems.

 

Related Articles

 

View more

Quickly Locate Partial Discharge (Pd) With Acoustic Imaging

Flir PD Accoustic Imaging enables ultrasonic detection of partial discharge, corona, and arcing in HV switchgear, transformers, and busbars, supporting non-contact diagnostics, condition monitoring, and predictive maintenance for electrical engineers and asset managers.

 

What Is FLIR PD Accoustic Imaging?

Ultrasonic imaging that locates partial discharge, corona, and arcing on HV assets for safe, non-contact diagnostics.

✅ Pinpoints PD sources in switchgear, transformers, and bus ducts.

✅ Ultrasonic beamforming maps corona and arcing with high SNR.

✅ Enables condition-based maintenance and reduces outage risk.

 

The Customer's Challenge
For many years utility companies have been performing partial discharge (PD) measurements on high-voltage electric equipment. PD is an indicator of insulation deterioration that can lead to equipment failures or even worse a catastrophic incident. With traditional ultrasonic solutions, the systems can be large and cumbersome and the inspection reports usually need to be analyzed by an acoustic engineer. Given this, inspections can become less frequent, leaving equipment like motors, generators, switchgear and transformers vulnerable to PD related issues.

To strengthen reliability programs, routine electrical testing provides baseline data that complements PD surveys.

 

Highlighted Solution
Acoustic imaging, or the ability to see ultrasonic sound, has emerged as an effective method utility organizations use to locate the existence of  partial discharge (PD). It enables professionals to conduct more frequent predictive maintenance routines, helping provide a crucial first warning of impending electrical failure that could lead to downtime of critical systems. The FLIR Si124 industrial acoustic imaging camera senses, displays and records sound waves producing a precise acoustic image. The acoustic image is overlaid, in real time, onto a digital camera image all with an easy-to-use, ergonomic, one-handed camera solution weighing a little more than 2 pounds (980 grams).

When anomalies are detected, an insulation resistance tester can verify insulation integrity and guide next steps.

 

The Results
With the FLIR Si124, professionals can safely detect problems from up to 100 meters away and analyze discharge patterns. The camera classifies three partial discharge types, including surface discharge, floating discharge, and discharge into air. Knowing the type and severity of the discharge allows users to prioritize repairs. Image captures are quickly uploaded over Wi-Fi to the FLIR Acoustic Camera Viewer cloud service for the user to perform further in-depth analysis of the system generated PD patterns. Users can then create reports and easily share them with colleagues. This accelerates electrical troubleshooting by pinpointing fault locations more quickly.

Findings can be corroborated through an electrical insulation resistance test to confirm deterioration trends.

The Si124 enables customers to perform more frequent inspections, helping utilities keep the power flowing.

Between imaging sessions, routinely checking insulation resistance helps verify the effectiveness of repairs and maintenance.

For more information about the FLIR Si124 or to schedule a product demonstration visit: www.FLIR.ca/si124

Deploying the Si124 within broader industrial electrical maintenance workflows ensures consistent documentation and decision making.

Download the Flir Accoustic Imaging White Paper Here

For teams newer to PD diagnostics, learning what a megohmmeter measures can improve interpretation of follow-up test results.

 

Related Articles

View more

Analog Multimeters

An analog multimeter is a manual electrical measuring tool that uses a needle display to test voltage, current, and resistance. It’s ideal for detecting gradual changes in readings and is commonly used for troubleshooting, continuity checks, and battery testing.

 

What is an Analog Multimeter?

An analog multimeter is a traditional electrical test instrument that displays readings with a needle on a dial.

✅ Measures voltage, current, and resistance accurately

✅ Useful for observing slow or fluctuating signals

✅ Preferred for simple field diagnostics and continuity checks

Analog multimeters use a needle to indicate a reading along a scale. Switched-range analog multimeters are very affordable but can be difficult for beginners to read accurately, especially on resistance scales. Each type of meter has its advantages. An analog multimeter is often used to measure voltage levels in circuits where rapid fluctuations are visible on the needle display.

Power Quality Analysis Training

Power Factor Training

Request a Free Power Quality Training Quotation

Used as a voltmeter, a digital meter is usually preferable because its resistance is significantly higher, typically 1 M or 10 M, compared to 200 Ω for an analog multimeter on a similar range. On the other hand, it is easier to follow a slowly changing voltage by watching the needle on an analog display. Used as an ammeter, analog multimeters have a very low resistance and are very sensitive. More expensive digital multimeters can equal or better this performance. Most modern multimeters are digital, and traditional analog multimeters are becoming obsolete. When troubleshooting voltage drop in long circuits, analog meters can help identify subtle shifts more effectively than digital ones.

The basic functionality of an analog multimeter includes measuring electrical potential in volts, resistance in ohms, and current in amps. Analog multimeters can be used to find electronic and electrical short circuit problems. Advanced analog multimeters come with additional features, such as capacitor, diode, and IC testing modes. Specific measurements made by analog multimeters include DC voltage, AC voltage, DC current, AC current, frequency range for AC currents, and decibel measurement. Analog multimeters that measure current may have a current clamp built in or configured as a probe. A current clamp is a sensor that clamps around the wire. When searching for analog multimeters, it is crucial to consider the measurement range that corresponds to the specific value being measured. An analog multimeter displays these values via a dial, typically a moving pointer or needle. Analog multimeters are generally bench-top or handheld. Benchtop models can also be portable, equipped with handles and wheels. Hand-held multimeters are specifically designed to be used while holding, i.e, can be operated with one hand. Understanding watts law is essential for interpreting analog multimeter readings related to power and current flow.

Analog multimeters have multiple scales on the dial, a moving needle and many manual settings on the function switch. It’s tricky to spot the correct scale to read on the dial, and you sometimes have to multiply the reading by 10 or 100 to get your final value. Depending on the features (which should include continuity testing capabilities), prices start at approximately $15.

For appliance and electronic repairs, it may be better to purchase a digital multimeter rather than an analog one. This type is much simpler to read, and you can change the functions on it more easily. Digital multimeters have LCD readouts, do continuity testing, and cost from $35 on up. Some digital multimeters also feature auto-ranging, overload protection, and other advantages that analog multimeters lack. For easier, hands-free viewing, choose an analog multimeter with a stand that allows it to be propped up or hung on a wall. If an analog multimeter doesn’t come equipped with either jumper wires or alligator clips (both of which cost around $4 each), purchase them. Alligator clips are often used to firmly grip wiring or contacts for hands-free, safe, and accurate readings. Both types of multimeters and these accessories can be purchased at electronics stores, home centers and hardware stores. While a voltmeter measures voltage directly, an analog multimeter offers additional capabilities, such as resistance and current testing, in one device. For current measurement, it's important to know what ammeters measure to properly configure an analog multimeter’s settings.

Common features of analog multimeters include battery power, overload protection, temperature compensation, a mirrored scale, a range switch, a diode test, and a battery test. Devices with battery power can be operated without a plug-in power. Multimeters with overload protection feature a fuse or other protection mechanism to safeguard the meter. Temperature-compensated devices have programming or electrical devices designed to counteract known errors caused by temperature changes. A mirrored scale makes it easier to read the instrument to a given accuracy by enabling the operator to avoid parallax errors. A range switch is used to select the appropriate range of units to be measured. A device with a diode test has methods for testing diode operation. A device with a battery test has methods for testing battery operation. An important environmental parameter to consider when searching for analog multimeters is the operating temperature. To understand how analog multimeters compare with modern tools, see our overview of what is a multimeter and the differences between analog and digital models.

 

Related Articles

 

View more

The Role of AI and Machine Learning in Electrical Maintenance Diagnostics

AI and machine learning in electrical maintenance diagnostics utilize analytics and condition monitoring to detect insulation faults, vibration issues, and thermal anomalies, enabling predictive maintenance and enhancing equipment reliability.

 

Why Use AI and Machine Learning in Electrical Maintenance?

  • Applies machine learning to sensor data and operational logs for early fault prediction.

  • Integrates condition monitoring, vibration analysis, thermal imaging and analytics to detect anomalies.

  • Enhances asset reliability, equipment lifespan and maintenance efficiency with intelligent diagnostics.

 

Condition Monitoring and Predictive Maintenance

The integration of artificial intelligence (AI) and machine learning (ML) into electrical maintenance is transforming how engineers assess and sustain critical equipment. Traditional maintenance strategies, such as scheduled inspections or reactive repairs, are giving way to condition-based and predictive maintenance models, powered by continuous data analysis. AI-based diagnostics depend heavily on accurate data from modern electrical test equipment, which provides the baseline measurements that machine learning models analyze to detect developing faults.

Modern electrical systems generate vast amounts of data from sensors that measure temperature, vibration, current, voltage, and insulation resistance. AI models process this information in real time, identifying subtle changes that precede equipment deterioration. For instance, an increase in winding temperature combined with minor harmonic distortion may indicate early insulation stress. By recognizing such correlations, AI-driven condition monitoring helps organizations intervene before failures occur.

Predictive maintenance models not only detect abnormalities but also forecast when a fault is likely to happen. Using regression and time-series models, AI estimates degradation rates and remaining service life, enabling maintenance scheduling based on actual condition rather than time intervals. The result is a reduction in unplanned downtime, improved reliability, and lower lifecycle costs. Essential diagnostic tools such as analog multimeters and digital meters remain critical for verifying the accuracy of sensor readings and validating AI-generated insights.

 

Related Articles

 

Fault Detection and Anomaly Diagnosis

At the heart of AI-driven diagnostics lies pattern recognition. Machine learning algorithms—particularly supervised learning and deep neural networks—are trained on historical data sets containing both normal and faulty operating conditions. Once deployed, these systems can detect deviations from learned patterns with high accuracy. Many predictive maintenance systems now integrate with data loggers, allowing continuous recording of temperature, vibration, and current data to feed real-time machine learning models.

Electrical assets such as switchgear, transformers, and motors exhibit fault signatures long before failure. Examples include partial discharge activity in insulation, mechanical imbalance in rotating equipment, or harmonic distortion in power converters. AI automatically identifies these early indicators, classifies the fault type, and assesses its severity. Some advanced systems go further, calculating the remaining useful life (RUL) of a component. RUL estimation provides quantitative insight into how long a piece of equipment can safely operate before maintenance or replacement is required. Comprehensive electrical testing protocols are still the foundation of effective condition monitoring, ensuring that AI algorithms are trained on reliable, standardized input data.

To differentiate your technical content, you could demonstrate how RUL estimation integrates into reliability-centred maintenance workflows, using examples such as busbar degradation or contact wear in circuit breakers. Practical illustrations make complex theory tangible for engineers managing real-world systems.

 

Data Integration, Preprocessing, and Model Selection

Accurate AI diagnostics depend on high-quality, well-integrated data. Electrical equipment generates information from various subsystems, including sensors, SCADA networks, maintenance logs, and testing instruments. These data streams are often heterogeneous, noisy, or incomplete. Successful implementation, therefore, begins with proper preprocessing, which involves filtering, normalization, and synchronization of data from multiple sources.

Feature extraction is another critical step. Engineers must determine which parameters best describe the health of equipment—for example, root mean square current, temperature gradients, or vibration spectral features. Once extracted, these inputs feed ML algorithms such as support vector machines, decision trees, random forests, or deep learning architectures. In rotating machinery, electric motor testing techniques combined with AI-based vibration and thermal analysis can identify bearing wear and misalignment long before traditional inspections detect them.

Choosing the right model depends on the diagnostic goal. Supervised learning is ideal for classifying known fault types, while unsupervised learning uncovers hidden patterns in unlabeled data. Deep learning excels when processing complex, high-dimensional signals such as acoustic emissions or thermal images. An article that explains these distinctions and presents a decision framework for model selection will surpass many generic overviews currently online.

 

Implementation Challenges and Scalability

While AI’s potential is widely acknowledged, operationalizing it within electrical maintenance environments presents several challenges. Data quality remains the foremost obstacle—sensors may drift, signals can be corrupted by noise, and legacy systems may lack standardized communication protocols. Establishing a consistent data pipeline that adheres to IEC 61850 and IEEE standards is fundamental for long-term scalability. Compliance with standards such as NFPA 70B 2023 and participation in preventive maintenance training help ensure maintenance personnel understand how to apply AI-based diagnostics safely and effectively.

Model interpretability is another critical issue. Engineers often hesitate to trust opaque “black-box” algorithms. Explainable AI (XAI) techniques address this by highlighting which variables most influenced a diagnostic decision. Incorporating XAI into maintenance workflows not only improves confidence but also aids root-cause analysis.

Cybersecurity must also be considered as equipment becomes network-connected. Unauthorized access or data tampering could lead to incorrect maintenance decisions or system disruptions. Discussing cybersecurity measures—such as encryption, firewalls, access control, and redundancy—adds practical depth and distinguishes your article from purely theoretical treatments.

Finally, economic feasibility matters. A strong article should touch on cost-benefit analysis and return on investment, demonstrating how AI systems pay for themselves through reduced outages, extended equipment lifespan, and optimized manpower utilization.

 

Digital Twins, Edge Computing, and Explainable AI

The next evolution of electrical maintenance will merge AI diagnostics with digital twin technology—virtual replicas of physical assets that simulate behavior under varying conditions. Digital twins, continuously updated with sensor data, allow engineers to test “what-if” scenarios, anticipate faults, and validate maintenance strategies without interrupting service.

Edge computing will also play a central role. By processing data locally on smart sensors or controllers, edge AI reduces latency and dependency on cloud infrastructure. This real-time responsiveness is crucial for mission-critical systems such as substations or manufacturing plants, where milliseconds matter.

Explainable AI will become the standard rather than the exception, ensuring transparency in decision-making. As trust in AI grows, maintenance systems will evolve toward autonomy—capable of diagnosing faults, recommending interventions, and even executing minor corrective actions automatically.

The convergence of AI, IoT, digital twins, and edge analytics marks a shift from diagnostic maintenance to self-healing electrical infrastructure. Engineers who understand this trajectory can lead the industry into a future where reliability is not just maintained but intelligently optimized.

 

 

View more

All Test Equipment Articles


Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified