Latest Test Equipment Articles
Electrical Testing Prevents Electrical Hazards
Electrical testing verifies safety, compliance, and performance through inspection, diagnostics, and calibration, including insulation resistance, continuity, earth testing, PAT checks, and power quality analysis for commissioning, preventive maintenance, and certification.
What Is Electrical Testing?
A systematic evaluation ensuring electrical safety, compliance, performance, and reliability.
✅ Validates safety, code compliance, and asset reliability
✅ Measures insulation resistance, continuity, and grounding
✅ Supports commissioning, troubleshooting, and maintenance
Electrical testing is a crucial aspect of maintaining safe and reliable power systems. It examines and evaluates equipment and installations to ensure they are functioning correctly, efficiently, and safely. This procedure is essential for various reasons, including protecting lives, property, and the environment and adhering to industry standards and guidelines.
One of the critical components is assessing insulation resistance. This test measures the resistance of electrical insulation to prevent current leakage, ensuring the safety of the equipment and the people operating it. In addition, insulation resistance tests help identify potential issues with insulation materials, such as aging, deterioration, or damage caused by excessive heat, moisture, or mechanical stress. Regular testing is crucial to detect these problems early and prevent hazards. For a concise overview of methods and acceptance values, see this insulation resistance test guide to align field practice with standards.
Another essential aspect is checking for circuit continuity. This test ensures that connections within a circuit are complete and that no breaks or faults could compromise the system's performance. For example, a break in a circuit can lead to a lack of power, inefficient energy usage, or even fires. By performing continuity tests, professionals can identify and fix any issues before they escalate. When continuity issues persist, structured workflows in electrical troubleshooting help isolate root causes efficiently.
Voltage testing is another vital part of the process. It helps determine if the voltage levels in a system are within the acceptable range for the equipment being used. In addition, voltage testing can help identify issues such as overvoltage or undervoltage, which can lead to equipment damage, inefficiency, or unsafe working conditions. This is especially important on drives and motors, where electric motor testing correlates supply conditions with winding health and performance.
Earth resistance testing is critical for ensuring the effectiveness of grounding systems. A properly grounded system can safely dissipate fault currents and reduce the risk of shock. Earth resistance testing measures the resistance between the grounding electrode and the earth, helping professionals identify issues that may compromise the grounding system's safety and effectiveness.
Maintaining electrical safety is the primary goal. By performing regular tests, professionals can identify potential hazards, such as damaged equipment or faulty installations, before they lead to accidents or failures. Electrical safety testing encompasses various procedures, including insulation resistance, circuit continuity, and earth resistance tests, to evaluate a system's safety comprehensively. Routine programs should include checking insulation resistance alongside visual inspections and torque checks.
Various test equipment is used to conduct electrical tests, including multimeters, insulation resistance testers, voltage testers, earth resistance testers, and power quality analyzers. These tools help professionals quickly and accurately diagnose issues and evaluate the overall performance of systems. For insulation assessments, an insulation resistance tester provides test voltages and readings suited to cable, motor, and switchgear assets.
When performing tasks, it is crucial to follow safety precautions. These may include wearing personal protective equipment, such as insulated gloves and safety goggles, and adhering to lockout/tagout procedures to prevent accidental energization of systems during testing. Moreover, using the appropriate test equipment and following the manufacturer's instructions for accurate and safe testing is essential.
Insulation resistance testing typically involves applying a high voltage across the insulation material and measuring the resulting current leakage. By comparing the measured insulation resistance to acceptable values, professionals can determine the insulation's condition and make necessary repairs or replacements. Technicians often select a megohmmeter to apply appropriate test voltages and interpret polarization index trends.
Industry standards and guidelines dictate the requirements, such as those set forth by the Institute of Electrical and Electronics Engineers (IEEE) and the International Electrotechnical Commission (IEC). These organizations establish best practices, testing frequency, and minimum performance criteria to ensure systems are safe, reliable, and efficient. These frameworks support effective industrial electrical maintenance programs that balance reliability, safety, and cost.
Electrical testing is essential for maintaining safe and reliable systems. Following industry standards and guidelines, regular testing can help prevent hazards, ensure equipment longevity, and promote energy efficiency. In addition, by incorporating comprehensive testing procedures, such as insulation resistance, circuit continuity, voltage testing, and earth resistance, professionals can ensure that systems remain safe and compliant for years to come.
Related Articles
Sign Up for Electricity Forum’s Test Equipment Newsletter
Stay informed with our FREE Test Equipment Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.
Electrical Troubleshooting: Step-by-Step
Electrical troubleshooting is the process of diagnosing and fixing problems in power systems, circuits, or components. It involves testing, identifying faults, and restoring safe, reliable operation in residential, commercial, or industrial settings using specialized tools and expertise.
What is Electrical Troubleshooting?
Electrical troubleshooting is the methodical approach to detecting and resolving faults in power systems.
✅ Identifies and fixes wiring, circuit, and equipment issues
✅ Restores system safety and operational reliability
✅ Applies diagnostic tools for fast fault detection
Visit Our Electrical Troubleshooting Training Course
It is a crucial skill for diagnosing and resolving energy issues in various systems. Whether it involves a tripped circuit breaker, faulty wiring, or malfunctioning equipment, this process saves time, enhances safety, and prevents further damage to power systems. Workers must be proficient in identifying and solving power faults, which is key to maintaining operational efficiency and ensuring workplace safety. Learn how to perform accurate fault detection with our guide on How to Use a Digital Multimeter, a key tool in power system maintenance.
Common Causes of Power Problems
Problems often arise from a range of sources, including tripped circuit breakers, short circuits, and defective components. Circuit breakers are designed to protect power circuits from overloads by automatically cutting off the flow of electricity when a fault is detected. When a breaker trips, it is one of the most common causes of power issues, leading to interruptions in the power circuit. Workers must thoroughly inspect the breaker and surrounding wiring to identify potential faults and restore functionality.
Short circuits are another frequent cause of many problems. A short circuit occurs when electricity flows along an unintended path, bypassing the proper load. This not only damages components but can also pose serious safety risks. Workers must use a combination of tools and experience to trace the source of the short circuit and repair the system. Our Electrical Testing section explains how testing methods support maintenance and ensure system integrity.
Troubleshooting for Specific Systems
Electrical troubleshooting methods can vary significantly depending on the type of system involved. Each system presents unique components, failure modes, and safety considerations. Below are examples of how troubleshooting is applied in different environments.
Motors
Motors are central to industrial operations and require careful analysis of both power and control circuits. Technicians typically:
-
Check for three-phase voltage balance and continuity
-
Inspect motor windings with insulation resistance testers
-
Test start/stop circuits and contactors
-
Monitor for overheating, vibration, or noise
Troubleshooting motors often involves verifying overload protection settings and ensuring that all three power legs are properly energized.
Lighting Circuits
Lighting failures can stem from simple issues like burned-out bulbs or more complex wiring problems. Common steps include:
-
Testing wall switches and dimmers
-
Inspecting for loose connections at fixtures and junction boxes
-
Using voltage testers to verify live conductors
-
Checking for flickering caused by shared neutrals or poor grounding
Lighting systems also demand attention to load ratings and proper ballast operation in fluorescent or HID fixtures.
HVAC Systems
HVAC troubleshooting integrates both electrical and mechanical diagnostics. Since these systems rely on thermostats, relays, and compressors, electricians often:
-
Test control voltages and low-voltage transformer outputs
-
Inspect contactors, capacitors, and motor windings
-
Confirm power supply to blower motors and compressors
-
Use clamp meters to monitor current draw and identify overload conditions
HVAC systems require a comprehensive understanding of control logic and safety interlocks, especially in rooftop units or complex building automation systems.
Real-World Electrical Fault Examples and Diagnostic Steps
Electrical faults can occur in many forms, from equipment malfunction to circuit failure. Below are three common scenarios with step-by-step troubleshooting approaches to help isolate and resolve issues effectively.
Dead Wall Outlet in an Office
Problem: A computer workstation suddenly shuts off, and the outlet no longer provides power.
Troubleshooting Steps:
-
Check if other outlets on the same circuit are also dead.
-
Inspect the electrical panel for a tripped circuit breaker and reset it if needed.
-
Use a multimeter to test for voltage at the outlet.
-
If voltage is absent, remove the cover and check for loose wires or burned terminals.
-
Trace wiring back to the previous live outlet or junction box to identify breaks in continuity.
Resolution: A loose neutral wire in a junction box upstream was found and secured, restoring power to the outlet.
Three-Phase Motor Won’t Start in a Manufacturing Line
Problem: A production motor fails to start when engaged from the control panel.
Troubleshooting Steps:
-
Verify that control signals from the start button and contactor are functioning.
-
Use a multimeter or clamp meter to check incoming voltage on all three phases.
-
Inspect motor leads for continuity and signs of insulation breakdown.
-
Confirm overload relay settings and test fuses in the motor starter.
-
Measure resistance across motor windings to rule out internal faults.
Resolution: One phase was found to have an open fuse, causing a single-phasing condition. Replacing the fuse restored proper operation.
Intermittent Lighting Failure in Commercial Building
Problem: Overhead lights flicker randomly throughout the day in one section of a building.
Troubleshooting Steps:
-
Observe when and where flickering occurs to determine a pattern.
-
Test voltage at the lighting panel and branch circuits during operation.
-
Use a data logger or power quality analyzer to check for voltage drops or spikes.
-
Inspect wiring and connections at affected fixtures and switches.
-
Check neutral connections and grounding integrity.
Resolution: A corroded neutral connection in a junction box was causing unstable voltage. Cleaning and tightening the connection eliminated the flickering.
Using a Multimeter for Troubleshooting
A multimeter is an essential tool in testing and inspecting. It measures voltage, current, and resistance, helping workers diagnose faults in power circuits. By testing different points in a circuit, a multimeter can detect irregularities in power flow that may indicate a wiring problem or a faulty component. This systematic approach allows workers to identify the problem area and implement the appropriate repairs accurately. Whether it’s a short circuit or an issue with a specific device, a multimeter helps save time and prevent guesswork during the diagnosing process.
Safety Precautions
Safety is paramount in diagnosis, as even minor mistakes can lead to serious injuries. Before beginning any diagnostic work, it is vital to turn off the power supply to the affected area. Workers should always wear proper personal protective equipment (PPE), such as insulated gloves and safety goggles, to minimize the risk of arc flash and shock. Additionally, using insulated tools and following established safety guidelines can prevent accidents while testing and inspecting power systems. Explore our Preventive Maintenance Training resources to reduce equipment failure and improve reliability.
Identifying Faulty Components
Faulty components, such as damaged wiring, defective light bulbs, or worn-out parts, can cause a variety of power problems. When diagnosing potential problems, workers should conduct both a visual inspection and multimeter testing to detect issues. Signs of wear, discoloration, or physical damage often point to the need for replacement. Once the faulty component is identified, replacing it promptly can prevent further damage and restore the proper functioning of the system.
Best Practices
To ensure accuracy and efficiency, following best practices is essential during the testing and diagnosing process. Workers should start by using schematic diagrams to understand the layout of the power circuit, helping them trace the connections and identify potential faults. Systematic testing, starting with simpler checks and progressing to more complex procedures, can also help eliminate possible causes one by one.
Documenting the findings at each step is crucial, as it allows workers to track patterns and recognize recurring issues. This not only assists in the immediate repair but can also provide valuable insight for preventive maintenance.
Preventing Power System Interruption and Failure
Regular preventive maintenance is key to avoiding frequent problems and prolonging the life of power systems. Scheduling routine inspections, replacing worn-out components, and addressing minor issues before they escalate can minimize the need for frequent testing. By adopting a proactive approach, workers can ensure the reliability and safety of systems while preventing costly downtime.
Related Articles
Analog Multimeters
An analog multimeter is a manual electrical measuring tool that uses a needle display to test voltage, current, and resistance. It’s ideal for detecting gradual changes in readings and is commonly used for troubleshooting, continuity checks, and battery testing.
What is an Analog Multimeter?
An analog multimeter is a traditional electrical test instrument that displays readings with a needle on a dial.
✅ Measures voltage, current, and resistance accurately
✅ Useful for observing slow or fluctuating signals
✅ Preferred for simple field diagnostics and continuity checks
Analog multimeters use a needle to indicate a reading along a scale. Switched-range analog multimeters are very affordable but can be difficult for beginners to read accurately, especially on resistance scales. Each type of meter has its advantages. An analog multimeter is often used to measure voltage levels in circuits where rapid fluctuations are visible on the needle display.
Power Quality Analysis Training
Request a Free Power Quality Training Quotation
Used as a voltmeter, a digital meter is usually preferable because its resistance is significantly higher, typically 1 M or 10 M, compared to 200 Ω for an analog multimeter on a similar range. On the other hand, it is easier to follow a slowly changing voltage by watching the needle on an analog display. Used as an ammeter, analog multimeters have a very low resistance and are very sensitive. More expensive digital multimeters can equal or better this performance. Most modern multimeters are digital, and traditional analog multimeters are becoming obsolete. When troubleshooting voltage drop in long circuits, analog meters can help identify subtle shifts more effectively than digital ones.
The basic functionality of an analog multimeter includes measuring electrical potential in volts, resistance in ohms, and current in amps. Analog multimeters can be used to find electronic and electrical short circuit problems. Advanced analog multimeters come with additional features, such as capacitor, diode, and IC testing modes. Specific measurements made by analog multimeters include DC voltage, AC voltage, DC current, AC current, frequency range for AC currents, and decibel measurement. Analog multimeters that measure current may have a current clamp built in or configured as a probe. A current clamp is a sensor that clamps around the wire. When searching for analog multimeters, it is crucial to consider the measurement range that corresponds to the specific value being measured. An analog multimeter displays these values via a dial, typically a moving pointer or needle. Analog multimeters are generally bench-top or handheld. Benchtop models can also be portable, equipped with handles and wheels. Hand-held multimeters are specifically designed to be used while holding, i.e, can be operated with one hand. Understanding watts law is essential for interpreting analog multimeter readings related to power and current flow.
Analog multimeters have multiple scales on the dial, a moving needle and many manual settings on the function switch. It’s tricky to spot the correct scale to read on the dial, and you sometimes have to multiply the reading by 10 or 100 to get your final value. Depending on the features (which should include continuity testing capabilities), prices start at approximately $15.
For appliance and electronic repairs, it may be better to purchase a digital multimeter rather than an analog one. This type is much simpler to read, and you can change the functions on it more easily. Digital multimeters have LCD readouts, do continuity testing, and cost from $35 on up. Some digital multimeters also feature auto-ranging, overload protection, and other advantages that analog multimeters lack. For easier, hands-free viewing, choose an analog multimeter with a stand that allows it to be propped up or hung on a wall. If an analog multimeter doesn’t come equipped with either jumper wires or alligator clips (both of which cost around $4 each), purchase them. Alligator clips are often used to firmly grip wiring or contacts for hands-free, safe, and accurate readings. Both types of multimeters and these accessories can be purchased at electronics stores, home centers and hardware stores. While a voltmeter measures voltage directly, an analog multimeter offers additional capabilities, such as resistance and current testing, in one device. For current measurement, it's important to know what ammeters measure to properly configure an analog multimeter’s settings.
Common features of analog multimeters include battery power, overload protection, temperature compensation, a mirrored scale, a range switch, a diode test, and a battery test. Devices with battery power can be operated without a plug-in power. Multimeters with overload protection feature a fuse or other protection mechanism to safeguard the meter. Temperature-compensated devices have programming or electrical devices designed to counteract known errors caused by temperature changes. A mirrored scale makes it easier to read the instrument to a given accuracy by enabling the operator to avoid parallax errors. A range switch is used to select the appropriate range of units to be measured. A device with a diode test has methods for testing diode operation. A device with a battery test has methods for testing battery operation. An important environmental parameter to consider when searching for analog multimeters is the operating temperature. To understand how analog multimeters compare with modern tools, see our overview of what is a multimeter and the differences between analog and digital models.
Related Articles
Data Logger Explained
Data logger for electrical engineering applications, enabling data acquisition from sensors, high-resolution measurement, time-series recording, telemetry, calibration, and IoT monitoring for power quality, energy metering, equipment diagnostics, and load profiling.
What Is a Data Logger?
A data logger is a device that acquires, timestamps, and stores electrical sensor data for monitoring and analysis.
✅ Logs voltage, current, frequency, and power quality metrics
✅ Interfaces via RS-485, Modbus, CAN, Ethernet, or wireless IoT
✅ Supports timestamping, calibration, alarms, and long-term storage
A data logger (or sometimes called a "datalogger") is a specialized electronic device that measures and records specific data over a certain period of time or in relation to its location either with a built-in instrument or sensor or via external instruments and sensors.
Datalogging is a term used to describe using a device to collect data through a sensor. That way, the data can be analyzed and saved and then the results can be output and the data collection and analysis performed. For teams integrating loggers into power systems work, a grounding in electrical testing concepts ensures proper sensor selection and safety.
A Data logger is commonly used in experiments and in data monitoring systems when there is a desire to harvest information faster than a human being can possibly collect the information, especially when the accuracy of the data is important. When verifying signals during setup, pairing a logger with a handheld DMM and reviewing how to use a digital multimeter can improve measurement accuracy and troubleshooting efficiency.
A Data logger varies between most general-purpose types of equipment for use in a range of measurement situations, to a very specific use in measuring one specific environment. It is most commonly used for general purpose applications. However, data loggers may remain as static devices with only a limited number of changeable parameters. In many data logging situations , electronic type dataloggers have mostly replaced chart recorders. In facilities where legacy panels are common, an analog multimeter can provide immediate spot-checks that complement long-duration logger trends.
A Data logger collects detailed information from an electronic sensing instrument over an exact period of time, usually performed at predetermined intervals.
There are various examples of the kind of information a data logger can collect, including: temperature, sound frequency, vibration, time, light intensity, electrical current, pressure. When capturing electrical parameters, confirming conductor integrity with a megohmmeter helps ensure safe and reliable measurements.
Data logger applications include: specific conditions like a warehouse, a production room, a refrigerator, a freezer, or a sterilizer. For troubleshooting compressed air leaks or partial discharge near monitored equipment, correlating events with acoustic imaging can pinpoint sources more quickly.
A Data logger may be used as a stand-alone configuration or it can be connected to a computer. Before integrating a logger with energized circuits, pre-commissioning with an insulation resistance tester reduces the risk of nuisance faults during runs.
A Data logger can record temperature, which is usually recorded by a thermocouple, a thermistor, or a resistance temperature detector (RTD)
A Data logger may be configured to include: wiring, multiple channels, or by self-contained instruments
For multi-channel deployments on motors or switchgear, checking insulation resistance of connected assets is a prudent preventive step.
A Data logger can be calibrated to an appropriate tolerance. However, the calibration should be National Institute of Standards and Technology (NIST) traceable.
A Data logger can be used to qualify environmental chambers, steam sterilizers, warehouses, and other controlled environments
Remember, when using a data logger, proper probe placement is an essential aspect of data collection.
Related Articles
Industrial Electrical Maintenance Explained
Industrial electrical maintenance ensures the reliability of plant and factory power systems through regular inspections, testing, and repairs. It minimizes downtime, extends equipment life, improves safety, and prevents costly failures in critical industrial operations.
What is Industrial Electrical Maintenance?
Industrial electrical maintenance (IEM) encompasses the routine upkeep, troubleshooting, and repair of electrical systems in manufacturing and industrial settings.
✅ Enhances equipment reliability through preventive maintenance
✅ Reduces unplanned downtime and costly repairs
✅ Ensures electrical safety and compliance with regulations
NFPA 70B Industrial Electrical Maintenance Training
Electrical Testing and Troubleshooting Training
Request a Free Training Quotation
Industrial electrical maintenance plays a crucial role in ensuring the safety, efficiency, and reliability of industrial facilities. By understanding the key components of a testing and repair program, including preventive maintenance, troubleshooting, equipment maintenance, and the role of automation equipment, companies can develop a robust plan that supports the overall performance and longevity of their systems. Furthermore, investing in the skills and knowledge of technicians, as well as adapting to technological advancements, are crucial for achieving long-term success in industrial electrical maintenance (IEM). Discover how advanced electrical test equipment enables teams to identify issues early and enhance safety across industrial systems.
At the core of an industrial electrical testing and maintenance program are various key components that contribute to a facility's overall success and efficiency. These include preventive maintenance, troubleshooting, and equipment repair. Preventive maintenance involves regular inspections and servicing of systems to identify and address potential issues before they escalate into significant problems. Troubleshooting involves identifying and fixing power-related issues that may arise during regular operations. Ultimately, equipment repair focuses on maintaining the integrity of components and machinery to ensure optimal performance and minimize downtime. For accurate voltage and current measurements, technicians often rely on tools like analog multimeters during regular testing routines.
Industrial facilities rely on various types of equipment, including transformers, motors, generators, and power circuit breakers. Each of these components plays a vital role in the facility's operations. For example, transformers help regulate voltage levels to ensure a stable power supply, while motors and generators convert energy into mechanical motion and vice versa. In addition, power circuit breakers protect circuits from overloads and short circuits. Therefore, regular inspection and service of these components are essential for the smooth operation of an industrial facility.
Another critical aspect is the use of automation equipment, such as variable frequency drives (VFDs) and programmable logic controllers (PLCs). Variable Frequency Drives (VFDs) control the speed of electric motors to optimize energy consumption and reduce wear on mechanical components. At the same time, PLCs serve as the "brain" of automated systems, controlling and monitoring various processes. Therefore, properly maintaining these devices is crucial to ensuring the efficient functioning of automated processes in an industrial setting. See our guide on electrical testing to understand the methods used to verify the condition of high-voltage equipment.
Predictive Maintenance Tools and Techniques
Predictive maintenance is a proactive strategy that uses data and condition-based analysis to prevent failures. Top-performing facilities now include:
Key Predictive Tools:
-
Thermal Imaging (Infrared Thermography): Detects overheating components in panels, breakers, and motors before failure.
-
Vibration Analysis: Identifies wear or imbalance in rotating equipment, such as motors and generators.
-
Ultrasonic Testing: Used to detect arcing, corona discharge, and loose connections in high-voltage systems.
-
Current and Voltage Harmonic Analysis: Reveals abnormalities in power quality affecting VFDs, PLCs, and other sensitive electronics.
-
IIoT-Enabled Sensors and Remote Monitoring: Provides real-time insights into temperature, vibration, and power consumption trends across multiple assets.
Predictive maintenance reduces unplanned downtime, extends equipment life, and improves return on investment (ROI) over time compared to reactive or calendar-based methods. Troubleshooting faults is a critical skill—explore our electrical troubleshooting page for techniques and tools used in industrial settings.
The frequency of equipment inspection and service in industrial settings depends on several factors, including the type of equipment, operating conditions, and the manufacturer's recommendations. Generally, more frequent inspections are required for high-voltage or high-power equipment, while lower-voltage devices may need less frequent checks. Regular industrial electrical maintenance schedules can help detect potential problems early on and prevent costly breakdowns and downtime.
Common problems in industrial facilities include loose connections, overheating, and wear and tear. By addressing these issues through preventive testing and servicing, facilities can improve efficiency and safety. Regular inspection can also help prevent fires, equipment damage, and accidents caused by power system failures.
An IEM technician should understand principles, industrial equipment, and safety regulations. Additionally, they should be skilled in troubleshooting issues and able to work effectively with various tools and equipment. Many technicians also undergo specialized training programs to enhance their knowledge and skills in specific areas, such as PLC programming or VFD service.
Testing and troubleshooting play a crucial role in IEM. They help identify issues, assess the condition of equipment, and determine the necessary corrective actions. This process involves using specialized tools and instruments to measure parameters such as voltage, current, and resistance and analyzing the results to detect potential issues or confirm that the equipment is functioning correctly.
Lockout/Tagout (LOTO) Best Practices
LOTO is a legally mandated safety protocol (e.g., OSHA 29 CFR 1910.147) to protect workers from hazardous energy during service. Your article should include:
Best Practices for Lockout/Tagout:
-
Perform a hazard assessment before work begins to identify all energy sources.
-
Use authorized lockout/tagout devices that physically prevent the activation of energy.
-
Communicate clearly: All affected employees must be informed of LOTO procedures.
-
Follow a written energy control procedure (ECP) tailored to each piece of equipment.
-
Verify zero energy state using voltage testers before beginning any service.
-
Each worker applies their personal lock; group lock boxes can be used for teams.
-
Train employees annually on LOTO steps, responsibilities, and hazard awareness.
-
Conduct regular audits of your LOTO program to ensure compliance.
Industrial electrical maintenance planning is a crucial aspect of optimizing the performance and lifespan of equipment in industrial environments. It involves developing and implementing a structured service plan outlining equipment upkeep tasks, frequencies, and responsibilities. By adhering to a well-defined service plan, facilities can minimize unexpected equipment failures, reduce downtime, and extend the life of their components. For accurate voltage and current measurements, technicians often rely on tools like analog multimeters during regular testing routines.
To maintain a smooth-running operation, it is crucial to invest in regular training programs for technicians. This allows them to stay up-to-date with technological advancements and safety standards. Moreover, continuous learning can help them enhance their skills and better serve the needs of the industrial facility.
It's essential to remember that IEM is an ongoing process that requires constant attention and effort. Additionally, new equipment and practices must be adopted as technology advances to remain competitive. Therefore, it's vital for companies to periodically review and update their testing and service strategies and plans to accommodate advancements in technology and industry best practices.
North American Industrial Electrical Maintenance Standards
In North America, standards are developed and enforced to ensure the safe and efficient operation of systems and equipment. These standards provide guidelines for inspection, testing, and procedures, outlining best practices and safety requirements for various industrial components. By adhering to these standards, facilities can minimize hazards, reduce downtime, and enhance the overall performance of their power systems. Assessing the condition of rotating machines requires specialized procedures, such as electric motor testing, to detect imbalances and insulation failures.
Two key organizations involved in developing standards in North America are the National Fire Protection Association (NFPA) and the Institute of Electrical and Electronics Engineers (IEEE). The NFPA publishes NFPA 70E, a standard for safety in the workplace, and also publishes NFPA 70B, Recommended Practice for Equipment Maintenance. IEEE also provides numerous standards related to equipment service.
NFPA 70E - Standard for Safety in the Workplace
The NFPA 70E is a widely recognized standard that addresses safety requirements for employees working on or around equipment. This standard covers safe work practices, personal protective equipment (PPE), hazard assessment, and the development of a safety program. Additionally, it provides guidelines for minimizing risks associated with hazards such as arc flash and electric shock. Adherence to the NFPA 70E is crucial for ensuring the safety of electricians and other personnel working with industrial systems.

NFPA 70B - Recommended Practice for Industrial Electrial Maintenance
NFPA 70B is a critical standard that complements NFPA 70E by providing comprehensive guidelines for maintaining equipment in industrial, commercial, and institutional settings. This standard aims to minimize the risk of hazards, equipment failures, and unexpected downtime by outlining best practices for the proper industrial electrical maintenance of systems and components. Our NFPA 70B 2023 page outlines the updated standards for preventive maintenance of industrial power systems.
The NFPA 70B covers various aspects of equipment maintenance, including:
-
Maintenance Organization and Planning: This section emphasizes the importance of having a structured maintenance program and outlines guidelines for developing and implementing a service plan that addresses a facility's specific needs and requirements.
-
Inspection and Testing: NFPA 70B provides guidelines for inspecting and testing various types of equipment, including transformers, circuit breakers, motors, and generators. It outlines recommended test methods, frequencies, and safety precautions during these activities.
-
Preventive and Predictive Maintenance: The standard emphasizes the importance of preventive and predictive inspection and testing in extending equipment life and minimizing the likelihood of failures. It offers recommendations for implementing these service strategies effectively.
-
Equipment-Specific Maintenance: NFPA 70B provides detailed guidelines for maintaining various types of equipment, including switchgear, batteries, grounding systems, and cables. It addresses the specific service requirements, procedures, and safety precautions associated with each type of equipment.
-
Maintenance Documentation and Recordkeeping: The standard emphasizes the importance of maintaining accurate records of equipment service activities, test results, and other relevant information. These records can help identify trends, assess equipment performance, and support decision-making on service activities and equipment replacement.
-
Training and Personnel Safety: NFPA 70B emphasizes the importance of providing proper training to maintenance personnel in safety procedures, equipment operation, and service techniques. It also emphasizes the importance of adhering to safety requirements, including lockout/tagout procedures and the use of personal protective equipment (PPE).
By adhering to the guidelines outlined in the NFPA 70B, organizations can establish a robust inspection and repair program that minimizes the risk of hazards and promotes equipment reliability and efficiency. Additionally, incorporating these best practices into a facility's service strategy can reduce downtime, prolong equipment life, and enhance overall operational performance.
Related Pages
Preventive Maintenance Training: Improving Reliability
Preventive maintenance training equips electrical engineers with CMMS workflows, NFPA 70B procedures, condition monitoring, infrared thermography, power quality analysis, and arc-flash mitigation to improve reliability, reduce downtime, and extend asset life for switchgear and transformers.
What Is Preventive Maintenance Training?
Structured instruction on electrical PM methods, standards, and tools to ensure safe, reliable assets and minimal downtime.
✅ NFPA 70B, IEC 60364, IEEE 3007 compliance best practices
✅ CMMS-driven schedules, SOPs, and optimized work orders
✅ Testing: IR thermography, insulation resistance, power quality
Preventive maintenance training is essential for ensuring the longevity and efficiency of equipment in various industries. This specialized training equips technicians with the knowledge and skills needed to implement effective maintenance strategies, preventing equipment failures and enhancing operational efficiency. In this article, we will explore the importance, topics covered, qualifications, career benefits, and key steps associated with PM training. For foundational definitions and benefits, consult an overview of preventive maintenance to align terminology and scope.
Why is it Important?
PM training focuses on teaching technicians how to perform regular, scheduled maintenance on equipment to prevent unexpected failures and costly repairs. This type of training is crucial because it helps organizations maintain high levels of productivity, reduces downtime, and extends the lifespan of machinery. By implementing a preventive maintenance program, companies can identify and address potential issues before they escalate into major problems. In industrial environments, these practices mirror the rigor of industrial electrical maintenance where uptime and safety are paramount.
Visit our High Voltage Electrical Maintenance Course Page
Visit our NFPA 70B Electrical Maintenance Course Page
Standards such as NFPA 70B 2023 provide structured guidance that informs curriculum design and maintenance policies.
What Topics are Typically Covered in a Training Program?
A comprehensive PM training program covers a wide range of topics, including:
- Maintenance Strategies: Various approaches to maintenance, including preventive and predictive maintenance.
- Equipment Inspection: Techniques for inspecting equipment to detect signs of wear and potential failure.
- Troubleshooting Techniques: Methods for diagnosing and resolving equipment issues.
- Maintenance Scheduling: Developing and adhering to maintenance schedules to ensure regular upkeep.
- Safety Procedures: Ensuring all maintenance activities are performed safely to protect technicians and equipment.
- Use of Maintenance Tools: Proper use of tools and equipment required for maintenance tasks.
Foundational skills with electrical testing help technicians validate asset condition during inspections and after service.
How Does PM Training Improve Equipment Reliability and Efficiency?
PM training improves equipment reliability and efficiency by equipping technicians with the skills to perform regular maintenance tasks effectively. Well-trained technicians can identify early signs of wear and tear, allowing for timely interventions that prevent equipment failures. This proactive approach reduces downtime, enhances the efficiency of operations, and increases the overall reliability of the machinery. Implementing a preventive maintenance program also ensures that equipment operates at optimal performance levels, reducing energy consumption and operational costs. When faults do occur, disciplined electrical troubleshooting shortens mean time to repair and preserves performance gains.
What Qualifications or Prerequisites are Needed to Enroll in Preventive Maintenance Training?
To enroll in PM training, candidates typically need a high school diploma or equivalent. Some programs may require prior experience in maintenance or a related field. Basic understanding of mechanical and electrical systems is beneficial. Additionally, strong problem-solving skills and attention to detail are important qualities for individuals seeking to pursue this training.
What Are the Career Benefits of Completing Preventive Maintenance Training?
Completing PM training offers several career benefits, including:
- Career Advancement: Trained technicians are more likely to be considered for promotions and advanced positions within their organizations.
- Job Security: Skilled maintenance technicians are in high demand, providing greater job stability.
- Increased Job Opportunities: Certification in preventive maintenance can open doors to various job opportunities in different industries.
- Potential Salary Increases: Technicians with specialized training often command higher salaries due to their expertise.
What Are the 5 Steps of Corrective Maintenance?
Corrective maintenance involves the following five steps:
- Identification: Recognizing that an equipment issue exists.
- Diagnosis: Determining the root cause of the problem.
- Planning: Developing a plan to address the issue, including necessary resources and tools.
- Execution: Performing the required repairs or replacements to fix the problem.
- Verification: Testing the equipment to ensure the issue has been resolved and the equipment is functioning correctly.
For rotating assets, incorporating electric motor testing during diagnosis and verification strengthens root-cause accuracy.
What Questions Should I Ask a Maintenance Technician?
When interviewing or working with a maintenance technician, consider asking the following questions:
- What experience do you have with preventive maintenance programs?
- Can you describe a time when you identified a potential issue before it became a major problem?
- What strategies do you use to ensure maintenance tasks are completed on schedule?
- How do you stay updated with the latest maintenance techniques and technologies?
- What safety procedures do you follow when performing maintenance tasks?
What Are the Three Important Steps in Performing Preventive Maintenance?
The three important steps in performing preventive maintenance are:
- Inspection: Regularly inspecting equipment to identify signs of wear or potential failure.
- Servicing: Performing routine maintenance tasks such as lubrication, cleaning, and adjustments to keep equipment running smoothly.
- Documentation: Keeping detailed records of all maintenance activities, including inspections and repairs, to track equipment performance and identify trends.
Routine insulation resistance testing is often embedded in inspection schedules to track degradation trends.
What Are the Three Principles of Preventive Maintenance?
The three principles of preventive maintenance are:
- Regularity: Conducting maintenance activities at scheduled intervals to prevent unexpected failures.
- Proactivity: Identifying and addressing potential issues before they escalate into major problems.
- Comprehensiveness: Ensuring all components of the equipment are maintained, including those that are not immediately visible or accessible.
PM training is a valuable investment for both technicians and organizations. It ensures that maintenance strategies are effectively implemented, improving the reliability and efficiency of equipment. By covering essential topics and adhering to key principles, PM training equips technicians with the skills needed to maintain high operational standards and advance their careers.
Related Articles
How to Use a Digital Multimeter
How to use a digital multimeter? Learn to measure AC/DC voltage, current, and resistance, test continuity and diodes, select ranges or autoranging, place probes safely, and troubleshoot circuits with accurate readings and safety best practices.
How to Use a Digital Multimeter?
Measure V, A, and resistance; run continuity and diode tests safely.
✅ Set range or use autoranging before contacting probes
✅ Insert black to COM, red to V/ohm/mA; select AC or DC
✅ Verify continuity, diode drop, and resistance; note polarity
How to Use a Digital Multimeter?
Digital multimeters are used to solve most electrical problems - at the hands of a qualified electrical test profession. In fact, With a good wiring diagram and a good meter, a trained electrical professional can find the cause of almost any problem.
There are two basic types of multimeters, digital and analog. Analog multimeters have a needle and DMs have an LCD or a LED display. WIth today's demand for accuracy in testing electrical systems, it makes more sense to have a digital multimeter but an analog multimeter still has its uses.
This article focuses on DMs. A Digital multimeter will have many functions built into it. As with any tool or piece of equipment, it is necessary to make certain you read and follow digital multimeter instructions and cautions. This will protect you and your electrical equipment. If you still work with legacy needle gauges, a quick refresher on analog multimeters can help you understand when their response characteristics are advantageous in specific tests.
They will test for voltage, current and resistance. These are the three functions needed when trying to diagnose a problem. When you purchase a digital multimeter, one of the most important things to look at is the meter's impedance, which is the meter's operating resistance. Most digital multimeters have very high impedance. Since the meter is part of the circuit being tested, its resistance will affect the current flow through that circuit.
Typical Amperage Test
Digital multimeters can have very high impedance or resistance and they will cause a slight increase in the circuit's current. This becomes a concern when you test electronic systems because the increased current draw can damage the components being tested or, at the very least, alter the readings or change a sensor signal. It's best to get a meter that has an impedance of at least 10 megaohms. That way the current draw is so low it becomes invisible. Almost all meters have an "auto-range" features that will automatically select the proper range. Some meters will let you override this feature and let you manually select the range you want. Some DMMs do not have this option and must be set manually. Check the documentation that came with your digital multimeter and make sure you know and understand its different ranges.
Most meters that have an auto-range will have the setting either before or after the reading. Ohms are measured in multiples of ten and given the designation 'K' or 'M' with 'K' standing for 1,000 ohms and 'M' standing for 100,000,000 ohms. Amps would be displayed as mA, milliamps or 1/1000 of an amp or A for full amps. Volts will also be displayed as mV or volts. When you take a reading with a Digital multimeter that has auto-range, be sure you note at what range the meter is on. You could mistake 10 mA as 10 amps. Evaluating meter burden and circuit behavior is part of sound electrical testing practice to prevent misleading readings and component stress.
When readings seem inconsistent across ranges, structured electrical troubleshooting steps can isolate whether the issue is technique, setup, or a faulty component.
Typical Voltage Test
Most Digital multimeters that have auto-range will show the reading with a decimal point. A reading of 1.2 amps will be 12 amps if you ignore the decimal point.
Digital Multimeters do have a limit on how much current they can test. Usually this limit is printed at the point where the red lead plugs into the meter. If it says, "10 Amps Max" then there is a 10-amp fuse inside the meter that will blow if the current is above 10 amps. If you take out the 10-amp fuse and put in a 20-amp fuse, you will burn out the meter beyond repair. I would suggest buying a DMM that will handle at least 20 amps for automotive testing.
Typical Resistance Test
Another useful function of the Digital multimeters is the ohmmeter. An ohmmeter measures the electrical resistance of a circuit. If you have no resistance in a circuit, the ohmmeter will read 0. If you have an open in a circuit, it will read infinite.
An ohmmeter uses its own battery to conduct a resistance test. Therefore there must be no power in the circuit being tested or the ohmmeter will become damaged.
When a component is tested, the red lead is placed on the positive side and the black lead on the negative side. Current from the battery will flow through the component and the meter will determine the resistance by how much the voltage drops. If the component has an open the meter will flash "1.000" or "OL" to show an open or infinite resistance. A reading of 0 ohms indicates that there is no resistance in the component and it is shorted. If a component is supposed to have 1,000 ohms of resistance and a test shows it has 100 ohms of resistance, which indicates a short. If it reads infinite, then it is open. For very high resistance values, a dedicated megohmmeter provides test voltages and sensitivity beyond a standard DMM for insulation assessments.
For insulation checks on cables and windings, an insulation resistance tester supplies controlled DC test voltage to reveal leakage paths reliably.
Comparing results over time using an electrical insulation resistance test procedure helps detect gradual moisture ingress or degradation before failure.
Before condemning a part as open or shorted, follow best practices for checking insulation resistance so that lead placement, temperature, and stabilization time are accounted for.