Climate change adds twist to debate over dams

By New York Times


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The power company that owns four hydroelectric dams on the Klamath River says the dams provide a crucial source of so-called clean energy at a time when carbon emissions have become one of the worldÂ’s foremost environmental concerns.

But the American Indians, fishermen and environmentalists who want the dams removed point to what has happened since the first one was built nearly 90 years ago: endangered salmon have been blocked from migrating, Indian livelihoods have been threatened, and, more recently, the commercial fishing industry off the Oregon and California coasts has been devastated. They say the dams are anything but clean. They say the river is a mess.

“Should we have to sacrifice water quality for air quality?” said Craig Tucker, who is coordinating efforts by the Karuk tribe of Northern California to take down the dams. “Should Indians and family fisherman be the ones who have to sacrifice to address this problem?”

Whether the power company, PacifiCorp, wants to keep the dams because they improve air quality or simply because they are inexpensive to operate is not clear. But emphasizing an environmental argument that touches on climate change has added a new wrinkle to the longstanding debate over dam removal in the Pacific Northwest. In a region where plenty of residents measured their “carbon footprints” long before green became the new black, PacifiCorp is suggesting that righting one environmental wrong could lead to another, one that could affect people more than fish.

The Klamath dams provide enough power to serve about 70,000 homes, a small fraction of PacifiCorpÂ’s 1.6 million customers, which span six Western states. But the company says only coal or natural gas are likely to be reliable enough to replace the river, which hits hydroelectric turbines four times on its way to the sea from east of the snow-capped Cascade Range.

Those who support removing the dams largely dismiss the clean-energy argument, saying the benefits outweigh losing a relatively small source of hydropower. They note that PacifiCorpÂ’s increased interest in the environment comes as recent rulings by judges and federal fisheries agencies have given new momentum for removal. The companyÂ’s federal license to run the dams expired last year, and the government has said PacifiCorp must build fish ladders over the four dams to get a new license, a proposition that could cost $300 million and reduce the power the dams generate, potentially making removal a less costly choice.

Yet whatever is spent to restore salmon, and whether the solution is fish ladders or dam removal, the company has said that its customers will bear the cost, and the carbon.

“It’s a conundrum in many ways,” said Dave Kvamme, a spokesman for PacifiCorp. “Taking away a very useful resource like the Klamath puts more pressure on us to build something else or buy it on the market.”

The Klamath runs more than 250 miles from southwest Oregon to the California coast, connecting two states where power and water supply have long been contentious issues. Gov. Arnold Schwarzenegger of California and Gov. Theodore R. Kulongoski of Oregon are helping lead the push for clean fuel sources. Last year, California passed a law requiring a 25 percent reduction in the stateÂ’s carbon dioxide emissions by 2020. Oregon is also pushing to increase the amount of renewable energy it uses.

Both governors have said removing the Klamath dams should be an option, but they have not taken firm positions. Earlier this year, Mr. Schwarzenegger proposed spending about $4 billion to build two dams on the San Joaquin River for water storage, an idea environmentalists have long opposed.

The Northwest, where more than 80 percent of the power generated comes from hydroelectricity, has long had some of the lowest electricity rates in the nation. It has also been the setting for epic environmental fights that reflect the tension across the regionÂ’s topographic and demographic divides.

“We think of ourselves as ahead of the curve, as eco-topia, when it comes to saving endangered species, like the spotted owl,” said John M. Findlay, a history professor at the University of Washington. “But these things are much more complicated when we try to actually solve them.”

Mr. Findlay said the regionÂ’s identity as an environmental leader was rooted in cities like Portland and Seattle, not in the areas where rivers provide power and water for farms.

“They’re the most sympathetic to taking down the dams,” he said of big-city residents. “But they’re also the people who are kind of taking cheap power for granted. If you’re in a city and you have the power just piped in over wires it’s too easy to not recognize where that comes from, and not to realize that people and economies are all connected to that.”

The Klamath dams are among the most controversial in a much broader dam removal effort led by environmentalists, American Indians and commercial fishermen.

In the next several years, dams on the Elwha and White Salmon Rivers in Washington and the Sandy River in Oregon are scheduled to be removed. But in many ways, they are only steppingstones to larger targets, including the dams on the Klamath and four on the Lower Snake River.

More fish could be saved by removing the bigger dams, but more power would be lost, too.

Supporters of removal say conservation measures and new sources of energy like wind and sun can replace lost hydroelectric power. Some also say the fact that snowpack is decreasing could reduce the amount of electricity dams generate. Dam owners in the region, including private utilities and the federal government, say the new sources of clean energy cannot replace dams. The use of wind power is expanding quickly, but its effectiveness depends in part on having dams or another steady energy source during lulls in the breeze.

In a written statement last month, Bill Fehrman, the president of PacifiCorp, said replacing power from the Klamath would “cost our customers more money, and potentially a lot more money” and “could result in adding combustion emissions to the environment.”

PacifiCorp has said it is not opposed to removal, but it would need approval from regulating commissions in six states before it could pass on costs of dam removal to its customers. Blending the cost and climate change arguments could strengthen its case.

“We have to demonstrate to our commissions that we’ve done what we can to protect their interest,” said Mr. Kvamme, the spokesman.

Salmon and air quality are not all that is at risk. The river and its dams support an elaborate irrigation system started by the federal government more than a century ago. Water from the river provides for about 240,000 acres of cattle pastures, alfalfa fields and other farming. It also flows through a wildlife preserve.

When Edward Bartell and his family moved to southwest Oregon from California to raise beef cattle 30 years ago, land, water and power were inexpensive. Now, the water supply is at the mercy of an ever denser maze of environmental regulations intended to protect fish. And the price of power, delivered wholesale thanks to the Klamath dams, went through the roof when PacifiCorp said it could no longer justify the discounted rate in the current market.

Mr. Bartell shook his head when asked if families who moved here to farm because of the available irrigation knew such a knot could one day develop, that the dams might not last forever.

“It was unthinkable,” Mr. Bartell said. “Obviously, nobody would have come.”

Related News

Americans aren't just blocking our oil pipelines, now they're fighting Hydro-Quebec's clean power lines

Champlain Hudson Power Express connects Hydro-Québec hydropower to the New York grid via a 1.25 GW high voltage transmission line, enabling renewable energy imports, grid decarbonization, storage synergy, and reduced fossil fuel generation.

 

Key Points

A 1.25 GW cross-border transmission project delivering Hydro-Québec hydropower to New York City to displace fossil power.

✅ 1.25 GW buried HV line from Quebec to Astoria, Queens

✅ Supports renewable imports and grid decarbonization in NYC

✅ Enables two-way trade and reservoir storage synergy

 

Last week, Quebec Premier François Legault took to Twitter to celebrate after New York State authorities tentatively approved the first new transmission line in three decades, the Champlain Hudson Power Express, that would connect Quebec’s vast hydroelectric network to the northeastern U.S. grid.

“C’est une immense nouvelle pour l’environnement. De l’énergie fossile sera remplacée par de l’énergie renouvelable,” he tweeted, or translated to English: “This is huge news for the environment. Fossil fuels will be replaced by renewable energy.”

The proposed construction of a 1.25 gigawatt transmission line from southern Quebec to Astoria, Queens, known as the Champlain Hudson Power Express, ties into a longer term strategy by Hydro Québec: in the coming decade, as cities such as New York and Boston look to transition away from fossil fuel-generated electricity and decarbonize their grids, Hydro-Québec sees opportunities to supply them with energy from its vast network of 61 hydroelectric generating stations and other renewable power, as Quebec has closed the door on nuclear power in recent years.

Already, the provincial utility is one of North America’s largest energy producers, generating $2.3 billion in net income in 2020, and planning to increase hydropower capacity over the near term. Hydro-Quebec has said it intends to increase exports and had set a goal of reaching $5.2 billion in net income by 2030, though its forecasts are currently under review.

But just as oil and gas companies have encountered opposition to nearly every new pipeline, Hydro-Québec is finding resistance as it seeks to expand its pathways into major export markets, which are all in the U.S. northeast. Indeed, some fossil fuel companies that would be displaced by Hydro-Québec are fighting to block the construction of its new transmission lines.

“Linear projects — be it a transmission line or a pipeline or highway or whatever — there’s always a certain amount of public opposition,” Gary Sutherland, director of strategic affairs and stakeholder relations for Hydro-Québec, told the Financial Post, “which is a good thing because it makes the project developer ask the right questions.”

While Sutherland said he isn’t expecting opposition to the line into New York, he acknowledged Hydro-Québec also didn’t fully anticipate the opposition encountered with the New England Clean Energy Connect, a 1.2 gigawatt transmission line that would cost an estimated US$950 million and run from Quebec through Maine, eventually connecting to Massachusetts’ grid.

In Maine, natural gas and nuclear energy companies, which stand to lose market share, and also environmentalists, who oppose logging through sensitive habitat, both oppose the project.

In August, Maine’s highest court invalidated a lease for the land where the lines were slated to be built, throwing permits into question. Meanwhile, Calpine Corporation and Vistra Energy Corp., both Texas-based companies that operate natural gas plants in Maine, formed a political action committee called Mainers for Local Power. It has raised nearly US$8 million to fight the transmission line, according to filings with the Maine Ethics Commission.

Neither Calpine nor Vistra could be reached for comment by the time of publication.

“It’s been 30 years since we built a transmission line into the U.S. northeast,” said Sutherland. “In that time we have increased our exports significantly … but we haven’t been able to build out the corresponding transmission to get that energy from point A to point B.”

Indeed, since 2003, Hydro-Québec’s exports outside the province have grown from roughly two terrawatts per year to more than 30 terrawatts, including recent deals with NB Power to move more electricity into New Brunswick. The provincial utility produces around 210 terrawatts annually, but uses less than 178 terrawatts in Quebec.

Linear projects — be it a transmission line or a pipeline or highway or whatever — there’s always a certain amount of public opposition

In Massachusetts, it has signed contracts to supply 9.4 terrawatts annually — an amount roughly equivalent to 8 per cent of the New England region’s total consumption. Meanwhile, in New York, Hydro-Québec is in the final stages of negotiating a 25-year contract to sell 10.4 terawatts — about 20 per cent of New York City’s annual consumption.

In his tweets, Legault described the New York contract as being worth more than $20 billion over 25 years, although Hydro Québec declined to comment on the value because the contract is still under negotiation and needs approval by New York’s Public Services Commission — expected by mid-December.

Both regions are planning to build out solar and wind power to meet their growing clean energy needs and reach ambitious 2030 decarbonization targets. New York has legislated a goal of 70 per cent renewable power by that time, while Massachusetts has called for a 50 per cent reduction in emissions in the same period.

Hydro-Quebec signage is displayed on a manhole cover in Montreal. PHOTO BY BRENT LEWIN/BLOOMBERG FILES
According to a 2020 paper titled “Two Way Trade in Green Electrons,” written by three researchers at the Center for Energy and Environmental Policy Research at the Massachusetts’ Institute for Technology, Quebec’s hydropower, which like fossil fuels can be dispatched, will help cheaply and efficiently decarbonize these grids.

“Today transmission capacity is used to deliver energy south, from Quebec to the northeast,” the researchers wrote, adding, “…in a future low-carbon grid, it is economically optimal to use the transmission to send energy in both directions.”

That is, once new transmission lines and wind and solar power are built, New York and Massachusetts could send excess energy into Quebec where it could be stored in hydroelectric reservoirs until needed.

“This is the future of this northeast region, as New York state and New England are decarbonizing,” said Sutherland. “The only renewable energies they can put on the grid are intermittent, so they’re going to need this backup and right to the north of them, they’ve got Hydro-Québec as backup.”

Hydro-Québec already sells roughly 7 terrawatts of electricity per year into New York on the spot market, but Sutherland says it is constrained by transmission constraints that limit additional deliveries.

And because transmission lines can cost billions of dollars to build, he said Hydro-Québec needs the security of long-term contracts that ensure it will be paid back over time, aligning with its broader $185-billion transition strategy to reduce reliance on fossil fuels.

Sutherland expressed confidence that the Champlain Hudson Power Express project would be constructed by 2025. He noted its partners, Blackstone-backed Transmission Developers, have been working on the project for more than a decade, and have already won support from labour unions, some environmental groups and industry.

The project calls for a barge to move through Lake Champlain and the Hudson River, and dig a trench while unspooling and burying two high voltage cables, each about 10-12 centimetres in diameter. In certain sections of the Hudson River, known to have high concentrations of PCP pollutants, the cable would be buried underground alongside the river.

 

Related News

View more

Ontario to Rely on Battery Storage to Meet Rising Energy Demand

Ontario Battery Energy Storage anchors IESO strategy, easing peak demand and boosting grid reliability. Projects like Oneida BESS (250MW) and nearly 3GW procurements integrate renewables, wind and solar, enabling flexible, decarbonized power.

 

Key Points

Provincewide grid batteries help IESO manage peaks, integrate renewables, and strengthen reliability across Ontario.

✅ IESO forecasts 1,000MW peak growth by 2026

✅ Oneida BESS adds 250MW with 20-year contract

✅ Nearly 3GW storage procured via LT1 and other RFPs

 

Ontario’s electricity grid is facing increasing demand amid a looming supply crunch, prompting the province to invest heavily in battery energy storage systems (BESS) as a key solution. The Ontario Independent Electricity System Operator (IESO) has highlighted that these storage technologies will be crucial for managing peak demand in the coming years.

Ontario's energy demands have been on the rise, driven by factors such as population growth, electric vehicle manufacturing, data center expansions, and heavy industrial activity. The IESO's latest assessment, and its work on enabling storage, covering the period from April 2025 to September 2026, indicates that peak demand will increase by approximately 1,000MW between the summer of 2025 and 2026. This forecasted rise in energy use is attributed to the acceleration of various sectors within the province, underscoring the need for reliable, scalable energy solutions.

A significant portion of this solution will be met by large-scale energy storage projects. Among the most prominent is the Oneida BESS, a flagship project that will contribute 250MW of storage capacity. This project, developed by a consortium including Northland Power and NRStor, will be located on land owned by the Six Nations of the Grand River. Expected to be operational soon, it will play a pivotal role in ensuring grid stability during high-demand periods. The project benefits from a 20-year contract with the IESO, guaranteeing payments that will support its financial viability, alongside additional revenue from participating in the wholesale energy market.

In addition to Oneida, Ontario has committed to acquiring nearly 3GW of energy storage capacity through various procurement programs. The 2023 Expedited Long-Term 1 (LT1) request for proposals (RfP) alone secured 881MW of storage, with additional projects in the pipeline. A notable example is the Hagersville Battery Energy Storage Park, which, upon completion, will be the largest such project in Canada. The success of these procurement efforts highlights the growing importance of BESS in Ontario's energy strategy.

The IESO’s proactive approach to energy storage is not only a response to rising demand but also a step toward decarbonizing the province’s energy system. As Ontario transitions away from traditional fossil fuels, BESS will provide the necessary flexibility to accommodate increasing renewable energy generation, a clean energy solution widely recognized in jurisdictions like New York, particularly from intermittent sources like wind and solar. By storing excess energy during periods of low demand and dispatching it when needed, these systems will help maintain grid stability, and as many utilities see benefits even without mandates, reduce reliance on fossil fuel-based power plants.

Looking ahead, Ontario's energy storage capacity is expected to grow significantly, complemented by initiatives such as the Hydrogen Innovation Fund, with projects from the 2023 LT1 RfP expected to come online by 2027. As more storage resources are integrated into the grid, the province is positioning itself to meet its rising energy needs while also advancing its environmental goals.

Ontario’s increasing reliance on battery energy storage is a clear indication of the province’s commitment to a sustainable and resilient energy future, aligning with perspectives from Sudbury sustainability advocates on the grid's future. With substantial investments in storage technology, Ontario is not only addressing current energy challenges but also paving the way for a cleaner, more reliable energy system in the years to come.

 

Related News

View more

Revenue from Energy Storage for Microgrids to Total More Than $22 Billion in the Next Decade

Energy Storage for Microgrids enables renewables integration via ESS, boosting resilience and reliability while supporting solar PV and wind, innovative financing, and business models, with strong growth forecast across Asia-Pacific and North America.

 

Key Points

Systems that store energy in microgrids to integrate renewables, boost resilience, and optimize distributed power.

✅ Integrates solar PV and wind with stable, dispatchable output

✅ Reduces costs via new financing and service business models

✅ Expands reliable power for remote, grid-constrained regions

 

A new report from Navigant Research examines the global market for energy storage for microgrids (ESMG), providing an analysis of trends and market dynamics in the context of the evolving digital grid landscape, with forecasts for capacity and revenue that extend through 2026.

Interest in energy storage-enabled microgrids is growing alongside an increase in solar PV and wind deployments. Although not required for microgrids to operate, energy storage systems (ESSs) have emerged as an increasingly valuable component of distributed energy networks, including virtual power plants that coordinate distributed assets, because of their ability to effectively integrate renewable generation.

“There are several key drivers resulting in the growth of energy storage-enabled microgrids globally, including the desire to improve the resilience of power supply both for individual customers and the entire grid, the need to expand reliable electricity service to new areas, rising electricity prices, and innovations in business models and financing,” says Alex Eller, research analyst with Navigant Research. “Innovations in business models and financing will likely play a key role in the expansion of the ESMG market during the coming years.”

One example of microgrid deployment for resilience is the SDG&E microgrid in Ramona built to help communities prepare for peak wildfire season.

According to the report, the most successful companies in this industry will be those that can unlock the potential of new business models to reduce the risk and upfront costs to customers. This is particularly true in Asia Pacific and North America, which are projected to be the largest regional markets for new ESMG capacity by far, a trend underscored by California's push for grid-scale batteries to stabilize the grid.

The report, “Market Data: Energy Storage for Microgrids,” outlines the key market drivers and barriers within the global ESMG market. The study provides an analysis of specific trends, including evolving grid edge trends, and market dynamics for each major world region to illustrate how different markets are taking shape. Global ESMG forecasts for capacity and revenue, segmented by region, technology, and market segment, extend through 2026. The report also briefly examines the major technology issues related to ESSs for microgrids.

Google made energy storage news recently when its parent company Alphabet announced it is hoping to revolutionize renewable energy storage using vats of salt and antifreeze. Alphabet’s secretive research lab, simply named “X,” is developing a system for storing renewable energy that would otherwise be wasted. The project, named “Malta,” is hoping its energy storage systems “has the potential to last longer than lithium-ion batteries and compete on price with new hydroelectric plants and other existing clean energy storage methods, according to X executives and researchers,” reports Bloomberg.

 

Related News

View more

BC announces grid development, job creation

BC Hydro Power Pathway accelerates electrification with clean energy investments, new transmission lines, upgraded substations, and renewable projects like wind and solar, strengthening the grid, supporting decarbonization, and creating jobs across British Columbia's growing economy.

 

Key Points

A $36B, 10-year BC Hydro plan to expand clean power infrastructure, accelerate electrification, and support jobs.

✅ $36B for new lines, substations, dam upgrades, and distribution

✅ Supports 10,500-12,500 jobs per year across B.C.

✅ Adds wind and solar, leveraging hydro to balance renewables

 

BC Hydro is gearing up for a decade of extensive construction to enhance British Columbia's electrical system, supporting a burgeoning clean economy and community growth while generating new employment opportunities.

Premier David Eby emphasized the necessity of expanding the electrical system for industrial growth, residential needs, and future advancements. He highlighted the role of clean, affordable energy in reducing pollution, securing well-paying jobs, and fostering economic growth.

At the B.C. Natural Resources Forum in Prince George, Premier Eby unveiled a $36-billion investment plan for infrastructure projects in communities and regions and green energy solutions to provide clean, affordable electricity for future generations.

The Power Pathway: Building BC’s Energy Future, BC Hydro’s revised 10-year capital plan, involves nearly $36 billion in investments across the province from 2024-25 to 2033-34. This marks a 50% increase from the previous plan of $24 billion and includes a substantial rise in electrification and emissions-reduction projects (nearly $10 billion, up from $1 billion).

These upcoming construction projects are expected to support approximately 10,500 to 12,500 jobs annually. The plan is set to bolster and sustain BC Hydro’s capital investments as significant projects like Site C are near completion.

The plan addresses the increasing demand for electricity due to population and housing growth, industrial development, such as a major hydrogen project, and the transition from fossil fuels to clean electricity. Key projects include constructing new high-voltage transmission lines from Prince George to Terrace, building or expanding substations in high-growth areas, and upgrading dams and generating facilities for enhanced safety and efficiency.

Minister of Energy, Mines, and Low Carbon Innovation Josie Osborne stated that this plan aims to build a clean energy future and support EV charging expansion while creating construction jobs. With BC Hydro’s capital plan allocating almost $4 billion annually for the next decade, it will drive economic growth and ensure access to clean, affordable electricity.

BC Hydro aims to add new clean, renewable energy sources like wind and solar, while acknowledging power supply challenges that must be managed as capacity grows. B.C.’s hydroelectric dams, functioning as batteries, enable the integration of intermittent renewables into the grid, providing reliable backup.

Chris O’Riley, president and CEO of BC Hydro, said the grid is one of the world’s cleanest. The new $36 billion capital plan encompasses investments in generation assets, large transmission infrastructure, and local distribution networks.

In partnership with BC Hydro, Premier Eby also announced a new streamlined approval process to expedite electrification for high-demand industries and support job creation, complementing measures like the BC Hydro rebate and B.C. Affordability Credit that help households.

Minister of Environment and Climate Change Strategy George Heyman highlighted the importance of rapid electrification in collaboration with the private sector to achieve CleanBC climate goals by 2030, including corridor charging via the BC's Electric Highway, and maintain the competitiveness of B.C. industries. The new process will streamline approvals for industrial electrification projects, enhancing efficiency and funding certainty.

 

Related News

View more

Zero-emission electricity in Canada by 2035 is practical and profitable

Canada 100% Renewable Power by 2035 envisions a decentralized grid built on wind, solar, energy storage, and efficiency, delivering zero-emission, resilient, low-cost electricity while phasing out nuclear and gas to meet net-zero targets.

 

Key Points

Zero-emission, decentralized grid using wind, solar, and storage, plus efficiency, to retire fossil and nuclear by 2035.

✅ Scale wind and solar 18x with storage for reliability.

✅ Phase out nuclear and gas; no CCS or offsets needed.

✅ Modernize grids and codes; boost efficiency, jobs, and affordability.

 

A powerful derecho that left nearly a million people without power in Ontario and Quebec on May 21 was a reminder of the critical importance of electricity in our daily lives.

Canada’s electrical infrastructure could be more resilient to such events, while being carbon-emission free and provide low-cost electricity with a decentralized grid powered by 100 per cent renewable energy, according to a new study from the David Suzuki Foundation (DSF), a vision of an electric, connected and clean future if the country chooses.

This could be accomplished by 2035 by building a lot more solar and wind, despite indications that demand for solar electricity has lagged in Canada, adding energy storage, while increasing the energy efficiency in buildings, and modernizing provincial energy grids. As this happens, nuclear energy and gas power would be phased out. There would also be no need for carbon capture and storage nor carbon offsets, the modeling study concluded.

“Solar and wind are the cheapest sources of electricity generation in history,” said study co-author Stephen Thomas, a mechanical engineer and climate solutions policy analyst at the DSF.

“There are no technical barriers to reaching 100 per cent zero-emission electricity by 2035 nationwide,” Thomas told The Weather Network (TWN). However, there are considerable institutional and political barriers to be overcome, he said.

Other countries face similar barriers and many have found ways to reduce their emissions; for example, the U.S. grid's slow path to 100% renewables illustrates these challenges. There are enormous benefits including improved air quality and health, up to 75,000 new jobs annually, and lower electricity costs. Carbon emissions would be reduced by 200 million tons a year by 2050, just over one quarter of the reductions needed for Canada to meet its overall net zero target, the study stated.

Building a net-zero carbon electricity system by 2035 is a key part of Canada’s 2030 Emissions Reduction Plan. Currently over 80 per cent of the nation’s electricity comes from non-carbon sources including a 15 per cent contribution from nuclear, with solar capacity nearing a 5 GW milestone nationally. How the final 20 per cent will be emission-free is currently under discussion.

The Shifting Power study envisions an 18-fold increase in wind and solar energy, with the Prairie provinces expected to lead growth, along with a big increase in Canada’s electrical generation capacity to bridge the 20 per cent gap as well as replacing existing nuclear power.

The report does not see a future role for nuclear power due to the high costs of refurbishing existing plants, including the challenges with disposal of radioactive wastes and decommissioning plants at their end of life. As for the oft-proposed small modular nuclear reactors, their costs will likely “be much more costly than renewables,” according to the report.

There are no technical barriers to building a bigger, cleaner, and smarter electricity system, agrees Caroline Lee, co-author of the Canadian Climate Institute’s study on net-zero electricity, “The Big Switch” released in May. However, as Lee previously told TWN, there are substantial institutional and political barriers.

In many respects, the Shifting Power study is similar to Lee’s study except it phases out nuclear power, forecasts a reduction in hydro power generation, and does not require any carbon capture and storage, she told TWN. Those are replaced with a lot more wind generation and more storage capacity.

“There are strengths and weaknesses to both approaches. We can do either but need a wide debate on what kind of electricity system we want,” Lee said.

That debate has to happen immediately because there is an enormous amount of work to do. When it comes to energy infrastructure, nearly everything “we put in the ground has to be wind, solar, or storage” to meet the 2035 deadline, she said.

There is no path to net zero by 2050 without a zero-emissions electricity system well before that date. Here are some of the necessary steps the report provided:

Create a range of skills training programs for renewable energy construction and installation as well as building retrofits.

Prioritize energy efficiency and conservation across all sectors through regulations such as building codes.

Ensure communities and individuals are fully informed and can decide if they wish to benefit from hosting energy generation infrastructure.

Create a national energy poverty strategy to ensure affordable access.

Strong and clear federal and provincial rules for utilities that mandate zero-emission electricity by 2035.

For Indigenous communities, make sure ownership opportunities are available along with decision-making power.

Canada should move as fast as possible to 100 per cent renewable energy to gain the benefits of lower energy costs, less pollution, and reduced carbon emissions, says Stanford University engineer and energy expert Mark Jacobson.

“Canada has so many clean, renewable energy resources that it is one of the easier countries [that can] transition away from fossil fuels,” Jacobson told TWN.

For the past decade, Jacobson has been producing studies and technical reports on 100 per cent renewable energy, including a new one for Canada, even as Canada is often seen as a solar power laggard today. The Stanford report, A Solution to Global Warming, Air Pollution, and Energy Insecurity for Canada, says a 100 per cent transition by 2035 timeline is ideal. Where it differs from DSF’s Shifting Power report is that it envisions offshore wind and rooftop solar panels which the latter did not.

“Our report is very conservative. Much more is possible,” agrees Thomas.

“We’re lagging behind. Canadians really want to get going on building solutions and getting the benefits of a zero emissions electricity system.”

 

Related News

View more

Tube Strikes Disrupt London Economy

London Tube Strikes Economic Impact highlights transport disruption reducing foot traffic, commuter flows, and tourism, squeezing small businesses, hospitality revenue, and citywide growth while business leaders urge negotiations, resolution, and policy responses to stabilize operations.

 

Key Points

Reduced transport options cut foot traffic and sales, straining small businesses and slowing London-wide growth.

✅ Hospitality venues report lower revenue and temporary closures

✅ Commuter and tourism declines reduce daily sales and bookings

✅ Business groups urge swift negotiations to restore services

 

London's economy is facing significant challenges due to ongoing tube strikes, challenges that are compounded by scrutiny of UK energy network profits and broader cost pressures across sectors, with businesses across the city experiencing disruptions that are impacting their operations and bottom lines.

Impact on Small Businesses

Small businesses, particularly those in the hospitality sector, are bearing the brunt of the disruptions caused by the strikes. Many establishments rely on the steady flow of commuters and tourists that the tube system facilitates, while also hoping for measures like temporary electricity bill relief that can ease operating costs during downturns. With reduced transportation options, foot traffic has dwindled, leading to decreased sales and, in some cases, temporary closures.

Economic Consequences

The strikes are not only affecting individual businesses but are also having a ripple effect on the broader economy, a dynamic seen when commercial electricity consumption plummeted in B.C. during the pandemic. The reduced activity in key sectors is contributing to a slowdown in economic growth, echoing periods when BC Hydro demand fell 10% and prompting policy responses such as Ontario electricity rate reductions for businesses, with potential long-term consequences if the disruptions continue.

Calls for Resolution

Business leaders and industry groups are urging for a swift resolution to the strikes. They emphasize the need for dialogue between the involved parties to reach an agreement that minimizes further economic damage and restores normalcy to the city's transportation system.

The ongoing tube strikes in London are causing significant disruptions to the city's economy, particularly affecting small businesses that depend on the efficient movement of people. Immediate action is needed to address the issues, drawing on tools like a subsidized hydro plan used elsewhere to spur recovery, to prevent further economic downturn.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified