California plan would put squeeze on big-screen, flat-panel TVs

By Broadcast Engineering


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The California Energy Commission is considering a proposal to prohibit retailers in the state from selling all but the most energy-efficient televisions.

A draft report prepared by the state agencyÂ’s staff warns that without the action, the demand for electricity throughout the state will continue to grow as consumers purchase larger flat-screen televisions to replace their existing analog sets. Currently, the electricity consumed by Californians to power their televisions, recording devices and other connected peripherals accounts for 10 percent of the stateÂ’s total residential power consumption, the report said.

The proposal would establish a two-tier power consumption standard. The standard would become effective Jan. 1, 2011, and cut energy use for televisions by an average of 33 percent. The second tier of the plan would begin in 2013, and, when added to the first, would reduce power consumption by an average of 49 percent, according to the state commission.

The Consumer Electronics Association objects to the plan, saying it will reduce state sales tax collections by $50 million and reduce California jobs by 4600. The association April 2 released a study, conducted by consulting firm Resolution Economics, analyzing the impact of the plan.

According to the analysis, if the proposal were to be adopted, consumers would go online to find the TV models they desire, sidestepping retailers forced to remove non-compliant televisions from stock as well as reducing state sales tax receipts and retail jobs.

Pointing to the second tier standard, the analysis contends televisions that have proven to be popular among consumers will become unavailable. In particular, LCD TVs ranging from 30 to 34in saw a 70 percent increase in sales last year. However, 83 percent of LCD TVs between 24 and 34in meeting the existing ENERGY STAR specification would be eliminated by the 2013 standard. Furthermore, 80 percent of current 35 to 39in LCD televisions and all current plasma TVs larger than 60in would be eliminated by the 2011 standard, according to the analysis.

However, the California regulator’s Web site claims that the proposal’s energy savings would be significant. Once existing stock of televisions is sold, the 2011 standard would save 3831GWh, and the 2013 standard would save an additional 2684GWh — a total of 6515GWh, enough to power 864,000 single-family homes for a year.

The CEA counters that the voluntary ENERGY STAR program in 2007 produced energy savings from all electronics, including televisions, of more than 23 billion kilowatt hours of electricity — enough to power San Francisco and San Diego counties.

Related News

Alberta gives $40M to help workers transition from coal power jobs

Alberta Coal Transition Support offers EI top-ups, 75% wage replacement, retraining, tuition vouchers, and on-site advice for workers leaving thermal coal mines and coal-fired power plants during the provincial phase-out.

 

Key Points

Alberta Coal Transition Support is a $40M program providing EI top-ups, retraining, and tuition vouchers to coal workers.

✅ 75% EI top-up; province requests federal alignment

✅ Tuition vouchers and retraining for displaced workers

✅ On-site transition services; about 2,000 workers affected

 

Alberta is putting aside $40 million to help workers losing their jobs as the province transitions away from thermal coal mines and coal-fired power plants, a shift connected to the future of work in the electricity sector over the next decade.

Labour Minister Christina Gray says the money will top up benefits to 75 per cent of a worker’s previous earnings during the time they collect employment insurance, amid regional shifts such as how COVID-19 reshaped Saskatchewan in recent months.

Alberta is asking the federal government to not claw back existing benefits as the province tops up those EI benefits, as utilities face pressures like Manitoba Hydro cost-cutting during the pandemic, while also extending EI benefits for retiring coal workers.

Gray says even if the federal government does not step up, the province will provide the funds to match that 75 per cent threshold, a contrast to problems such as Kentucky miners' cold checks seen elsewhere.

There will also be help for workers in the form of tuition vouchers, retraining programs like the Nova Scotia energy training program that connects youth to the sector, and on-site transitioning advice.

The province estimates there are 2,000 workers affected.

 

Related News

View more

Cost of US nuclear generation at ten-year low

US Nuclear Generating Costs 2017 show USD33.50/MWh for nuclear energy, the lowest since 2008, as capital expenditures, fuel costs, and operating costs declined after license renewals and uprates, supporting a reliable, low-carbon grid.

 

Key Points

The 2017 US nuclear average was USD33.50/MWh, lowest since 2008, driven by reduced capital, fuel, and operating costs.

✅ Average cost USD33.50/MWh, lowest since 2008

✅ Capital, fuel, O&M costs fell sharply since 2012 peak

✅ License renewals, uprates, market reforms shape competitiveness

 

Average total generating costs for nuclear energy in 2017 in the USA were at their lowest since 2008, according to a study released by the Nuclear Energy Institute (NEI), amid a continuing nuclear decline debate in other regions.

The report, Nuclear Costs in Context, found that in 2017 the average total generating cost - which includes capital, fuel and operating costs - for nuclear energy was USD33.50 per megawatt-hour (MWh), even as interest in next-generation nuclear designs grows among stakeholders. This is 3.3% lower than in 2016 and more than 19% below 2012's peak. The reduction in costs since 2012 is due to a 40.8% reduction in capital expenditures, a 17.2% reduction in fuel costs and an 8.7% reduction in operating costs, the organisation said.

The year-on-year decline in capital costs over the past five years reflects the completion by most plants of efforts to prepare for operation beyond their initial 40-year licence. A few major items - a series of vessel head replacements; steam generator replacements and other upgrades as companies prepared for continued operation, and power uprates to increase output from existing plants - caused capital investment to increase to a peak in 2012. "As a result of these investments, 86 of the [USA's] 99 operating reactors in 2017 have received 20-year licence renewals and 92 of the operating reactors have been approved for uprates that have added over 7900 megawatts of electricity capacity. Capital spending on uprates and items necessary for operation beyond 40 years has moderated as most plants are completing these efforts," it says.

Since 2013, seven US nuclear reactors have shut down permanently, with the Three Mile Island debate highlighting wider policy questions, and another 12 have announced their permanent shutdown. The early closure for economic reasons of reliable nuclear plants with high capacity factors and relatively low generating costs will have long-term economic consequences, the report warns: replacement generating capacity, when needed, will produce more costly electricity, fewer jobs that will pay less, and, for net-zero emissions objectives, more pollution, it says.

NEI Vice President of Policy Development and Public Affairs John Kotek said the "hardworking men and women of the nuclear industry" had done an "amazing job" reducing costs through the institute's Delivering the Nuclear Promise campaign and other initiatives, in line with IAEA low-carbon lessons from the pandemic. "As we continue to face economic headwinds in markets which do not properly compensate nuclear plants, the industry has been doing its part to reduce costs to remain competitive," he said.

"Some things are in urgent need of change if we are to keep the nation's nuclear plants running and enjoy their contribution to a reliable, resilient and low-carbon grid. Namely, we need to put in place market reforms that fairly compensate nuclear similar to those already in place in New York, Illinois and other states," Kotek added.

Cost information in the study was collected by the Electric Utility Cost Group with prior years converted to 2017 dollars for accurate historical comparison.

 

Related News

View more

More young Canadians would work in electricity… if they knew about it

Generation Impact Report reveals how Canada's electricity sector can recruit Millennials and Gen Z, highlighting workforce gaps, career pathways, innovative projects, secure pay, and renewable energy opportunities to attract young talent nationwide.

 

Key Points

An EHRC survey on youth views of electricity careers and recruitment strategies to build a skilled workforce.

✅ Surveyed 1,500 Canadians aged 18-36 nationwide

✅ Highlights barriers: low awareness of sector roles

✅ Emphasizes fulfilling work, secure pay, innovation

 

Young Canadians make up far less of the electricity workforce than other sectors, says Electricity Human Resources Canada, as noted in an EHRC investment announcement that highlights sector priorities, and its latest report aims to answer the question “Why?”.

The report, “Generation Impact: Future Workforce Perspectives”, was based on a survey of 1500 respondents across Canada between the ages of 18 and 36. This cohort’s perspectives on the electricity sector were mostly Positive or Neutral, and that Millennial and Gen Z Canadians are largely open to considering careers in electricity, especially as initiatives such as a Nova Scotia energy training program expand access.

The biggest barrier is a knowledge gap in electrical safety that limits awareness of the opportunities available.

To an industry looking to develop a pipeline of young talent, “Generation Impact” reveals opportunities for recruitment; key factors that Millennial and Gen Z Canadians seek in their ideal careers include fulfilling work, secure pay and the chance to be involved in innovative projects, including specialized arc flash training in Vancouver opportunities that build expertise.

“The electricity sector is already home to the kinds of fulfilling and innovative careers that many in the Millennial and Gen Z cohorts are looking for,” said Michelle Branigan, CEO of EHRC. “Now it’s just a matter of communicating effectively about the opportunities and benefits, including leadership in worker safety initiatives, our sector can offer.”

“Engaging young workers in Canada’s electricity sector is critical for developing the resiliency and innovation needed to support the transformation of Canada’s energy future, especially as working from home drives up electricity bills and reshapes demand,” said Seamus O’Regan, Canada’s Minister of Natural Resources. “The insights of this report will help to position the sector competitively to leverage the talent and skills of young Canadians.”

“Generation Impact” was funded in part by the Government of Canada’s Student Work Placement Program and Natural Resources Canada’s Emerging Renewable Power Program, in a context of rising residential electricity use that underscores workforce needs.

 

Related News

View more

A new material made from carbon nanotubes can generate electricity by scavenging energy from its environment

Carbon Nanotube Solvent Electricity enables wire-free electrochemistry as organic solvents like acetonitrile pull electrons, powering alcohol oxidation and packed bed reactors, energy harvesting, and micro- and nanoscale robots via redox-driven current.

 

Key Points

Solvent-driven electron extraction from carbon nanotube particles generates current for electrochemistry.

✅ 0.7 V per particle via solvent-induced electron flow

✅ Packed bed reactors drive alcohol oxidation without wires

✅ Scalable for micro- and nanoscale robots; energy harvesting

 

MIT engineers have discovered a new way of generating electricity, alongside advances in renewable power at night that broaden what's possible, using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an organic solvent, draws electrons out of the particles, generating a current, unlike devices based on a cheap thermoelectric material that rely on heat, that could be used to drive chemical reactions or to power micro- or nanoscale robots, the researchers say.

"This mechanism is new, and this way of generating energy is completely new," says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. "This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires."

In a new study describing this phenomenon, the researchers showed that they could use this electric current to drive a reaction known as alcohol oxidation—an organic chemical reaction that is important in the chemical industry.

Strano is the senior author of the paper, which appears today in Nature Communications. The lead authors of the study are MIT graduate student Albert Tianxiang Liu and former MIT researcher Yuichiro Kunai. Other authors include former graduate student Anton Cottrill, postdocs Amir Kaplan and Hyunah Kim, graduate student Ge Zhang, and recent MIT graduates Rafid Mollah and Yannick Eatmon.

Unique properties
The new discovery grew out of Strano's research on carbon nanotubes—hollow tubes made of a lattice of carbon atoms, which have unique electrical properties. In 2010, Strano demonstrated, for the first time, that carbon nanotubes can generate "thermopower waves." When a carbon nanotube is coated with layer of fuel, moving pulses of heat, or thermopower waves, travel along the tube, creating an electrical current that exemplifies turning thermal energy into electricity in nanoscale systems.

That work led Strano and his students to uncover a related feature of carbon nanotubes. They found that when part of a nanotube is coated with a Teflon-like polymer, it creates an asymmetry, distinct from conventional thermoelectric materials approaches, that makes it possible for electrons to flow from the coated to the uncoated part of the tube, generating an electrical current. Those electrons can be drawn out by submerging the particles in a solvent that is hungry for electrons.

To harness this special capability, the researchers created electricity-generating particles by grinding up carbon nanotubes and forming them into a sheet of paper-like material. One side of each sheet was coated with a Teflon-like polymer, and the researchers then cut out small particles, which can be any shape or size. For this study, they made particles that were 250 microns by 250 microns.

When these particles are submerged in an organic solvent such as acetonitrile, the solvent adheres to the uncoated surface of the particles and begins pulling electrons out of them.

"The solvent takes electrons away, and the system tries to equilibrate by moving electrons," Strano says. "There's no sophisticated battery chemistry inside. It's just a particle and you put it into solvent and it starts generating an electric field."

Particle power
The current version of the particles can generate about 0.7 volts of electricity per particle. In this study, the researchers also showed that they can form arrays of hundreds of particles in a small test tube. This "packed bed" reactor, unlike thin-film waste-heat harvesters for electronics, generates enough energy to power a chemical reaction called an alcohol oxidation, in which an alcohol is converted to an aldehyde or a ketone. Usually, this reaction is not performed using electrochemistry because it would require too much external current.

"Because the packed bed reactor is compact, it has more flexibility in terms of applications than a large electrochemical reactor," Zhang says. "The particles can be made very small, and they don't require any external wires in order to drive the electrochemical reaction."

In future work, Strano hopes to use this kind of energy generation to build polymers using only carbon dioxide as a starting material. In a related project, he has already created polymers that can regenerate themselves using carbon dioxide as a building material, in a process powered by solar energy and informed by devices that generate electricity at night as a complement. This work is inspired by carbon fixation, the set of chemical reactions that plants use to build sugars from carbon dioxide, using energy from the sun.

In the longer term, this approach could also be used to power micro- or nanoscale robots. Strano's lab has already begun building robots at that scale, which could one day be used as diagnostic or environmental sensors. The idea of being able to scavenge energy from the environment, including approaches that produce electricity 'out of thin air' in ambient conditions, to power these kinds of robots is appealing, he says.

"It means you don't have to put the energy storage on board," he says. "What we like about this mechanism is that you can take the energy, at least in part, from the environment."

 

Related News

View more

France hopes to keep Brussels sweet with new electricity pricing scheme

France Electricity Pricing Mechanism aligns with EU rules, leveraging nuclear energy and EDF profits, avoiding Contracts for Difference, redistributing windfalls to industry and households, targeting €70/MWh amid electricity market reform and Brussels oversight.

 

Key Points

A framework to keep power near €70/MWh by reclaiming EDF windfalls and redistributing them under EU market rules.

✅ Targets average price near €70/MWh from 2026

✅ Skims EDF profits above €78-80 and €110/MWh thresholds

✅ Aligns with EU rules; avoids nuclear CfDs and state aid clashes

 

France has unveiled a new electricity pricing mechanism, hoping to defuse months of tension over energy subsidies with Brussels and its neighbors.

The strain has included a Franco-German fight over EU electricity reform with Germany accusing France of wanting to subsidize its industry via artificially low energy prices, while Paris maintained it should have the right to make the most of its relatively cheap nuclear energy. That fight has now been settled.

On Tuesday, the French government presented a new mechanism — complex, and still-to-be-detailed — to bring the average price of electricity closer to €70 per megawatt hour (MWh) as of 2026, amid Europe's electricity market revamp efforts.

"The agreement has been defined to comply with European rules and avoid difficulties with the European Commission," said France's Economy and Finance Minister Bruno Le Maire, noting that France had ruled out other "simpler" options that would have caused tension with Brussels.

For example, France has not yet envisaged the use of state-backed investment schemes called Contracts for Difference (CfD), which were the main source of discord in talks with Germany on the electricity market reform and the EU push for more fixed-price contracts in generation. The compromise agreed by EU ministers last month gives the Commission the power to monitor CfDs in the nuclear sector.

"France wanted to limit as much as possible the European Commission's nuisance power," said Phuc-Vinh Nguyen, an energy expert at the Jacques Delors Institute think tank in Paris.

The announcement came weeks after French President Emmanuel Macron promised that France would "take back control" of its electricity prices to allow its industry to make the most of the country's relatively cheap nuclear energy.

Germany, by contrast, has moved to support energy-intensive industries with an industrial electricity subsidy, underscoring the policy divergence.

“The price of electricity has always been a major competitive advantage for the French nation, and it must remain so,” Le Maire said.

Under the new mechanism, part of a broader deal on electricity prices between the state and EDF, the government will seize EDF profits above certain thresholds and redistribute them directly to industry and households to bring prices closer to the desired level. Specifically, the government will redistribute 50 percent of EDF’s additional profits if prices rise above €78-€80 per MWh, and 90 percent of extra profits if prices rise above €110 per MWh.

The move also marks a new step in the government's power grab at EDF, after the company was fully nationalized earlier this year.

For years, France has been discussing an EDF reform with the Commission in order to address concerns by Brussels regarding disguised state aid to the company. In particular, the Commission wanted assurances that any state aid given to nuclear would be kept separate from those parts of the business subject to competition, such as renewable energy development.

An economy ministry official close to Le Maire argued that the new pricing mechanism would settle matters with Brussels on that front. A Commission spokesperson said Brussels was in contact with France on the file, but declined further comment.

The mechanism will replace the existing EU-mandated energy pricing mechanism, dubbed ARENH, which was set to expire at the end of 2025, and which has forced EDF to sell some of its electricity to competitors at a fixed low price since 2010, and comes amid contested electricity market reforms at EU level.

The new system could benefit EDF because it won't be bound to sell energy at a lower price, but instead will be allowed to auction off its energy to competitors. On the other hand, the redistribution system would deprive the company of some profits when electricity prices are higher. No wonder, then, that negotiations between the government and EDF have been "difficult," as Le Maire put it.

 

Related News

View more

IEC reaches settlement on Palestinian electricity debt

IEC-PETL Electricity Agreement streamlines grid management, debt settlement, and bank guarantees, shifting power supply, transmission, and distribution to PETL via IEC-built sub-stations, bolstering energy cooperation, utility billing, and payment assurance in PA areas.

 

Key Points

A 15-year deal transferring PA grid operations to PETL, settling legacy debt, and securing payments with bank guarantees.

✅ NIS 915 million repaid in 48 installments.

✅ PETL assumes distribution, O&M, and sub-station ownership.

✅ 15-year, NIS 2.8b per year supply and services contract.

 

The Palestinian Authority will pay Israel Electric NIS 915 million and take over management of its grid through Palestinian electricity supplier PETL.

The Israel Electric Corporation (IEC) (TASE: ELEC.B22) and Palestinian electricity supplier PETL have signed a draft commercial agreement under which the Palestinian Authority's (PA) debt of almost NIS 1 billion will be repaid. The agreement also transfers actual management of the supply of electricity to Palestinian customers from IEC to the Palestinian electricity authority, enabling consideration of distributed solutions such as a virtual power plant program in future planning.

Up until now, the IEC was unable to actually collect debts for electricity from Palestinian customers, because the connection with them was through the PA. Responsibility for collection will now be exclusively in Palestinian hands, with the PA providing hundreds of millions of shekels in bank guarantees for future debts. The agreement, which is valid for 15 years, amounts to an estimated NIS 2.8 billion a year, as of now.

IEC will sell electricity and related services to PETL through four high-tension sub-stations built by IEC for PETL and through high and low-tension connection points, similar to large interconnector projects like the Lake Erie Connector, for the purpose of distribution and supply of the electricity by PETL or an entity on its behalf to consumers in PA territory. PETL will have sole operational and maintenance responsibility for distribution and supply and ownership of the four sub-stations.

 

NIS 915 million in 48 payments

According to the IEC announcement, the settlement was reached following negotiations following the signing of an agreement in principle in September 2016 by the minister of finance, the government coordinator of activities in the territories, and the Palestinian minister for civilian affairs. The parties reached commercial understandings yesterday that made possible today's signing of the first commercial document of its kind regulating commercial relations - the sales of electricity - between the parties. The agreement will go into effect after it is approved by the IEC board of directors, the Public Utilities Authority (electricity), reflecting regulatory oversight akin to Ontario industrial electricity pricing consultations, and the IDF Chief Electrical Staff Officer. Representatives of IEC, the Ministry of Finance, the Public Utilities Authority (electricity), the government coordinator of activities in the territories, the civilian authority, the PA government, and PETL took part in the negotiations.

The agreement also settles the PA's historical debt to IEC. The PA will begin payment of NIS 915 million in debt for consumption of electricity before September 2016 to IEC Jerusalem District Ltd. in 48 equal installments after the final signing, as stipulated in the agreement in principle signed by the Israeli government and the PA on September 13, 2016.

The PA's debt for electricity amounted to almost NIS 2 billion in 2016. The initial spadework for the current debt settlement was accomplished in that year, after the parties reached understandings on writing off NIS 500 million of the Palestinian debt. The PA paid NIS 600 million in October 2016, and the remainder will be paid now.

It was also reported that an arrangement of securities and guarantees to ensure payment to IEC under the agreement had been settled, including the past debt. IEC will obtain a bank guarantee and a PA guarantee, in addition to the existing collection mechanisms at the company's disposal.

Minister of Finance Moshe Kahlon said, "Signing the commercial agreement is a historic step completing the agreement signed by the governments in September 2016. Strengthening economic cooperation between Israel and the PA is above all an Israeli security interest. The agreement will ensure future payments to the IEC and reinforce its financial position. I congratulate the negotiating teams for the completion of their task."

Minister of National Infrastructure, Energy, and Water Resources Dr. Yuval Steinitz said, "In my meeting last year with Palestinian Prime Minister Rami Hamdallah in Jenin, we agreed that it was necessary to settle the debt and formalize relations between IEC and the PA. The settlement signed today is a breakthrough, both in the measures for payment of the Palestinian debt to IEC and Israel and in arranging future relations to prevent more debts from emerging in the future. With the signing of the agreement, we will be able to make progress with the Palestinians in developing a modern electrical grid, aligning with regional initiatives like the Cyprus electricity highway, according to the model of the sub-station we inaugurated in Jenin."

IEC chairperson Yiftah Ron Tal said, "This is a historic event. In this agreement, IEC is correcting for the first time a historical distortion of accumulated debt without guarantees, ability to collect it, or control over the amount of debt. This anchor agreement not only constitutes an unprecedented financial achievement; it also constitutes an important milestone in regulating electricity commercial relations between the Israeli and Palestinian electric companies, comparable to cross-border efforts such as the Ireland-France interconnector in Europe."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified