Appliance power drain not wellknown: survey

By CBC News


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The majority of Ontarians are in the dark about just how much electricity consumption their home electronic appliances are responsible for, a new survey suggests.

According to the Ontario Power Authority, devices such as computers, printers and VCRs can account for 15 per cent of a homes annual electricity usage. But a poll conducted for the agency by HarrisDecima suggests that three in four Ontario residents arent aware of the drain household electronic appliances can have, even when theyre shut off.

The Ontario Power Authority says a household consuming 1,000 kilowatt hours a month could be paying up to $100 a year for what amounts to phantom power.

However, the poll suggests that people in Ontario are willing to take action to curb their electricity usage. Threequarters of those surveyed say they are open to the idea of plugging appliances into power bars with automatic shutoff.

To help promote power conservation, the Ontario Power Authority is launching a fivemonth campaign in Ontario called the Power Pledge, which aims to reduce electricity usage, save money and help protect the environment.

It will remind consumers of initiatives such as buying Energy Star appliances, taking a home energy audit and getting rid of old refrigerators and freezers that can reduce their power draw.

We calculate that a family taking just a few of these actions could save approximately $300 a year, said Colin Andersen, Ontario Power Authority CEO, in a release.

The HarrisDecima poll surveyed 656 Ontario residents between March 18 and 28. It has a margin of error of plus or minus 3.8 percentage points, 19 times out of 20.

Related News

How Bitcoin's vast energy use could burst its bubble

Bitcoin Energy Consumption drives debate on blockchain mining, proof-of-work, carbon footprint, and emissions, with CCAF estimates in terawatt hours highlighting electricity demand, fossil fuel reliance, and sustainability concerns for data centers and cryptocurrency networks.

 

Key Points

Electricity used by Bitcoin proof-of-work mining, often fossil-fueled, estimated by CCAF in terawatt hours.

✅ CCAF: 40-445 TWh, central estimate ~130 TWh

✅ ~66% of mining electricity sourced from fossil fuels

✅ Proof-of-work increases hash rate, energy, and emissions

 

The University of Cambridge Centre for Alternative Finance (CCAF) studies the burgeoning business of cryptocurrencies.

It calculates that Bitcoin's total energy consumption is somewhere between 40 and 445 annualised terawatt hours (TWh), with a central estimate of about 130 terawatt hours.

The UK's electricity consumption is a little over 300 TWh a year, while Argentina uses around the same amount of power as the CCAF's best guess for Bitcoin, as countries like New Zealand's electricity future are debated to balance demand.

And the electricity the Bitcoin miners use overwhelmingly comes from polluting sources, with the U.S. grid not 100% renewable underscoring broader energy mix challenges worldwide.

The CCAF team surveys the people who manage the Bitcoin network around the world on their energy use and found that about two-thirds of it is from fossil fuels, and some regions are weighing curbs like Russia's proposed mining ban amid electricity deficits.

Huge computing power - and therefore energy use - is built into the way the blockchain technology that underpins the cryptocurrency has been designed.

It relies on a vast decentralised network of computers.

These are the so-called Bitcoin "miners" who enable new Bitcoins to be created, but also independently verify and record every transaction made in the currency.

In fact, the Bitcoins are the reward miners get for maintaining this record accurately.

It works like a lottery that runs every 10 minutes, explains Gina Pieters, an economics professor at the University of Chicago and a research fellow with the CCAF team.

Data processing centres around the world, including hotspots such as Iceland's mining strain, race to compile and submit this record of transactions in a way that is acceptable to the system.

They also have to guess a random number.

The first to submit the record and the correct number wins the prize - this becomes the next block in the blockchain.

Estimates for bitcoin's electricity consumption
At the moment, they are rewarded with six-and-a-quarter Bitcoins, valued at about $50,000 each.

As soon as one lottery is over, a new number is generated, and the whole process starts again.

The higher the price, says Prof Pieters, the more miners want to get into the game, and utilities like BC Hydro suspending new crypto connections highlight grid pressures.

"They want to get that revenue," she tells me, "and that's what's going to encourage them to introduce more and more powerful machines in order to guess this random number, and therefore you will see an increase in energy consumption," she says.

And there is another factor that drives Bitcoin's increasing energy consumption.

The software ensures it always takes 10 minutes for the puzzle to be solved, so if the number of miners is increasing, the puzzle gets harder and the more computing power needs to be thrown at it.

Bitcoin is therefore actually designed to encourage increased computing effort.

The idea is that the more computers that compete to maintain the blockchain, the safer it becomes, because anyone who might want to try and undermine the currency must control and operate at least as much computing power as the rest of the miners put together.

What this means is that, as Bitcoin gets more valuable, the computing effort expended on creating and maintaining it - and therefore the energy consumed - inevitably increases.

We can track how much effort miners are making to create the currency.

They are currently reckoned to be making 160 quintillion calculations every second - that's 160,000,000,000,000,000,000, in case you were wondering.

And this vast computational effort is the cryptocurrency's Achilles heel, says Alex de Vries, the founder of the Digiconomist website and an expert on Bitcoin.

All the millions of trillions of calculations it takes to keep the system running aren't really doing any useful work.

"They're computations that serve no other purpose," says de Vries, "they're just immediately discarded again. Right now we're using a whole lot of energy to produce those calculations, but also the majority of that is sourced from fossil energy, and clean energy's 'dirty secret' complicates substitution."

The vast effort it requires also makes Bitcoin inherently difficult to scale, he argues.

"If Bitcoin were to be adopted as a global reserve currency," he speculates, "the Bitcoin price will probably be in the millions, and those miners will have more money than the entire [US] Federal budget to spend on electricity."

"We'd have to double our global energy production," he says with a laugh, even as some argue cheap abundant electricity is getting closer to reality today. "For Bitcoin."

He says it also limits the number of transactions the system can process to about five per second.

This doesn't make for a useful currency, he argues.

Rising price of bitcoin graphic
And that view is echoed by many eminent figures in finance and economics.

The two essential features of a successful currency are that it is an effective form of exchange and a stable store of value, says Ken Rogoff, a professor of economics at Harvard University in Cambridge, Massachusetts, and a former chief economist at the International Monetary Fund (IMF).

He says Bitcoin is neither.

"The fact is, it's not really used much in the legal economy now. Yes, one rich person sells it to another, but that's not a final use. And without that it really doesn't have a long-term future."

What he is saying is that Bitcoin exists almost exclusively as a vehicle for speculation.

So, I want to know: is the bubble about to burst?

"That's my guess," says Prof Rogoff and pauses.

"But I really couldn't tell you when."

 

Related News

View more

Updated Germany hydrogen strategy sees heavy reliance on imported fuel

Germany Hydrogen Import Strategy outlines reliance on green hydrogen imports, expanded electrolysis capacity, IPCEI-funded pipelines, and industrial decarbonization for steel and chemicals to reach climate-neutral goals by 2045, meeting 2030 demand of 95-130 TWh.

 

Key Points

A plan to import 50-70% of hydrogen by 2030, backing green hydrogen, electrolysis, pipelines, and decarbonization.

✅ Imports cover 50-70% of 2030 hydrogen demand

✅ 10 GW electrolysis target with state aid and IPCEI

✅ 1,800 km H2 pipelines to link hubs by 2030

 

Germany will have to import up to 70% of its hydrogen demand in the future as Europe's largest economy aims to become climate-neutral by 2045, an updated government strategy published on Wednesday showed.

The German cabinet approved a new hydrogen strategy, setting guidelines for hydrogen production, transport infrastructure and market plans.

Germany is seeking to expand reliance on hydrogen as a future energy source to bolster energy resilience and cut greenhouse emissions for highly polluting industrial sectors that cannot be electrified such as steel and chemicals and cut dependency on imported fossil fuel.

Produced using solar and wind power, green hydrogen is a pillar of Berlin's plan to build a sustainable electric planet and transition away from fossil fuels.

But even with doubling the country's domestic electrolysis capacity target for 2030 to at least 10 gigawatts (GW), Germany will need to import around 50% to 70% of its hydrogen demand, forecast at 95 to 130 TWh in 2030, the strategy showed.

"A domestic supply that fully covers demand does not make economic sense or serve the transformation processes resulting from the energy transition and the broader global energy transition overall," the document said.

The strategy underscores the importance of diversifying future hydrogen sources, including potential partners such as Canada's clean hydrogen sector, but the government is working on a separate strategy for hydrogen imports whose exact date is not clear, a spokesperson for the economy ministry said.

"Instead of relying on domestic potential for the production of green hydrogen, the federal government's strategy is primarily aimed at imports by ship," Simone Peter, the head of Germany's renewable energy association, said.

Under the strategy, state aid is expected to be approved for around 2.5 GW of electrolysis projects in Germany this year and the government will earmark 700 million euros ($775 million) for hydrogen research to optimise production methods, research minister Bettina Stark-Watzinger said.

But Germany's limited renewable energy space will make it heavily dependent on imported hydrogen from emerging export hubs such as Abu Dhabi hydrogen exports gaining scale, experts say.

"Germany is a densely populated country. We simply need space for wind and photovoltaic to be able to produce the hydrogen," Philipp Heilmaier, an energy transition researcher at Germany energy agency, told Reuters.

The strategy allows the usage of hydrogen produced through fossil energy sources preferably if the carbon is split off, but said direct government subsidies would be limited to green hydrogen.

Funds for launching a hydrogen network with more than 1,800 km of pipelines in Germany are expected to flow by 2027/2028 through the bloc's Important Projects of Common European Interest (IPCEI) financing scheme, as the EU plans to double electricity use by 2050 could raise future demand, with the goal of connecting all major generation, import and storage centres to customers by 2030.

Transport Minister Volker Wissing said his ministry was working on plans for a network of hydrogen filling stations and for renewable fuel subsidies.

Environmental groups said the strategy lacked binding sustainability criteria and restriction on using hydrogen for sectors that cannot be electrified instead of using it for private heating or in cars, calling for a plan to eventually phase-out blue hydrogen which is produced from natural gas.

Germany has already signed several hydrogen cooperation agreements with countries such as clean energy partnership with Canada and Norway, United Arab Emirates and Australia.

 

Related News

View more

Rio Tinto Completes Largest Off-Grid Solar Plant in Canada's Northwest Territories

Rio Tinto Off-Grid Solar Power Plant showcases renewable energy at the Diavik Diamond Mine in Canada's Northwest Territories, cutting diesel use, lowering carbon emissions, and boosting remote mining resilience with advanced photovoltaic technology.

 

Key Points

A remote solar PV plant at Diavik mine supplying clean power while cutting diesel use, carbon emissions, and costs.

✅ Largest off-grid solar in Northwest Territories

✅ Replaces diesel generators during peak solar hours

✅ Enhances sustainability and lowers operating costs

 

In a significant step towards sustainable mining practices, Rio Tinto has completed the largest off-grid solar power plant in Canada’s Northwest Territories. This groundbreaking achievement not only highlights the company's commitment to renewable energy, as Canada nears 5 GW of solar capacity nationwide, but also sets a new standard for the mining industry in remote and off-grid locations.

Located in the remote Diavik Diamond Mine, approximately 220 kilometers south of the Arctic Circle, Rio Tinto's off-grid solar power plant represents a technological feat in harnessing renewable energy in challenging environments. The plant is designed to reduce reliance on diesel fuel, traditionally used to power the mine's operations, and mitigate carbon emissions associated with mining activities.

The decision to build the solar power plant aligns with Rio Tinto's broader sustainability goals and commitment to reducing its environmental footprint. By integrating renewable energy sources like solar power, a strategy that renewable developers say leads to better, more resilient projects, the company aims to enhance energy efficiency, lower operational costs, and contribute to global efforts to combat climate change.

The Diavik Diamond Mine, jointly owned by Rio Tinto and Dominion Diamond Mines, operates in a remote region where access to traditional energy infrastructure is limited, and where, despite lagging solar demand in Canada, off-grid solutions are increasingly vital for reliability. Historically, diesel generators have been the primary source of power for the mine's operations, posing logistical challenges and environmental impacts due to fuel transportation and combustion.

Rio Tinto's investment in the off-grid solar power plant addresses these challenges by leveraging abundant sunlight in the Northwest Territories to generate clean electricity directly at the mine site. The solar array, equipped with advanced photovoltaic technology, which mirrors deployments such as Arvato's first solar plant in other sectors, is capable of producing a significant portion of the mine's electricity needs during peak solar hours, reducing reliance on diesel generators and lowering overall carbon emissions.

Moreover, the completion of the largest off-grid solar power plant in Canada's Northwest Territories underscores the feasibility and scalability of renewable energy solutions, from rooftop arrays like Edmonton's largest rooftop solar to off-grid systems in remote and resource-intensive industries like mining. The success of this project serves as a model for other mining companies seeking to enhance sustainability practices and operational resilience in challenging geographical locations.

Beyond environmental benefits, Rio Tinto's initiative is expected to have positive economic and social impacts on the local community. By reducing diesel consumption, the company mitigates air pollution and noise levels associated with mining operations, improving environmental quality and contributing to the well-being of nearby residents and wildlife.

Looking ahead, Rio Tinto's investment in renewable energy at the Diavik Diamond Mine sets a precedent for responsible resource development and sustainable mining practices in Canada, where solar growth in Alberta is accelerating, and globally. As the mining industry continues to evolve, integrating renewable energy solutions like off-grid solar power plants will play a crucial role in achieving long-term environmental sustainability and operational efficiency.

In conclusion, Rio Tinto's completion of the largest off-grid solar power plant in Canada's Northwest Territories marks a significant milestone in the mining industry's transition towards renewable energy. By harnessing solar power to reduce reliance on diesel generators, the company not only improves operational efficiency and environmental stewardship but also adds to momentum from corporate power purchase agreements like RBC's Alberta solar deal, setting a positive example for sustainable development in remote regions. As global demand for responsible mining practices grows, initiatives like Rio Tinto's off-grid solar project demonstrate the potential of renewable energy to drive positive change in resource-intensive industries.

 

Related News

View more

Sycamore Energy taking Manitoba Hydro to court, alleging it 'badly mismanaged' Solar Energy Program

Sycamore Energy Manitoba Hydro Lawsuit centers on alleged mismanagement of the solar rebate incentive program, project delays, inspection backlogs, and alleged customer interference, impacting renewable energy installations, contractors, and clean power investment across Manitoba.

 

Key Points

Claim alleging mismanagement of Manitoba's solar rebate, delays, and inducing customers to switch installers.

✅ Lawsuit alleges mismanaged solar rebate incentive program

✅ Delays in inspections left hundreds of projects incomplete

✅ Claims Hydro urged customers to switch installers for rebates

 

Sycamore Energy filed a statement of claim Monday in Manitoba Court of Queens Bench against Manitoba Hydro saying it badly mismanaged its Solar Energy Program, a dispute that comes as Canada's solar progress faces criticism nationwide.

The claim also noted the crown corporation caused significant financial and reputational damage to Sycamore Energy, echoing disputes like Ontario wind cancellation costs seen elsewhere.

The statement of claim says Manitoba Hydro was telling customers to find other companies to complete solar panel installations, even as Nova Scotia's solar charge debate has unfolded.

'I'm still waiting': dozens of Manitoba solar system installations in the queue under expired incentive program
This all comes after a pilot project was launched in the province in April 2016, which would allow people to apply for a rebate under the incentive program, while Saskatchewan adjusted solar credits in parallel, and the project would cover about 25 per cent of the installation costs.

The project ended in April 2018, but hundreds of approved projects had yet to be finished.

According to Manitoba Hydro, in November there were 252 approved projects awaiting completion by more than one contractor, and Sycamore Energy said it had about 100 of those projects, a dynamic seen as New England's solar growth strains grid upgrades in other regions.

At the time Sycamore Energy COO, Alex Stuart, blamed Manitoba Hydro for the delays, stating it took too long to get inspections after solar systems were installed.

Scott Powell, Manitoba Hydro’s director of corporate communications, said in November he disagreed with Sycamore Energy’s comments, even as Ontario moves to reintroduce renewables elsewhere.

In a news release, the company said it sold more installations under Manitoba Hydro’s Solar Energy Program compared to other companies and it was instrumental in helping set up standards for the program.

“Manitoba Hydro mismanaged the solar rebate program from the beginning. In the end, they targeted our company unfairly and unlawfully by inducing our customers to break their contracts with us. Manitoba Hydro told our customers they could get an extension to their rebate but only if they switched to different installers,” said Justin Phillips, CEO of Sycamore Energy in a news release.

“We would much rather be installing clean, effective solar power projects for our customers right now. The last thing we want to do is to be suing Manitoba Hydro, but we feel we have no choice. Their actions have cost us millions in lost business. They’ve also cost the province jobs, millions in private investment and a positive way forward to help combat climate change.”

Manitoba Hydro now has 20 days to respond to the action, and a recent Cornwall wind-farm ruling underscores the stakes.

When asked for a response from CTV News, a spokesperson for the Crown corporation said it hadn’t yet been made aware of the suit.

“If a statement of claim is filed and served, we’ll file a statement of defence in due course. As this matter is now apparently before the courts, we have no further comment,” the spokesperson said.

None of these allegations have been proven in court.

 

Related News

View more

Gulf Power to Provide One-Time Bill Decrease of 40%

Gulf Power 40% One-Time Bill Decrease approved by the Florida Public Service Commission delivers a May fuel credit and COVID-19 relief, cutting residential and business costs across rate classes while supporting budgeting and energy savings.

 

Key Points

PSC-approved fuel credit cutting May electric bills about 40% for homes and 40-55% for businesses as COVID-19 relief.

✅ One-time May fuel credit on customer bills

✅ Residential cut ~40%; business savings 40-55% by rate class

✅ Online tools show daily usage and projected bill

 

Gulf Power announced that the Florida Public Service Commission unanimously approved its request to issue a one-time decrease of approximately 40% for the typical residential customer bill beginning May 1, similar to recent Georgia Power bill reductions seen elsewhere. Business customers will also see a significant one-time decrease of approximately 40-55% in May, depending on usage and rate class.

"We are pleased that the Florida Public Service Commission has approved our request to deliver this savings to our customers when they need it most. We felt that this was the right thing to do, especially during times like these," said Gulf Power President Marlene Santos. "Our customers and communities now more than ever count on the reliable and affordable energy we deliver, and we are pleased that May bills will reflect this additional, significant savings for our customers."

In Florida, fuel savings are typically refunded to customers over the remainder of the year to provide level, predictable bills. However, given the emergent and significant financial challenges facing many customers due to COVID-19, Gulf Power instead sought approval to give customers the total annual savings in their May bill, similar to a lump-sum electricity credit approach, which will be reflected as a line-item fuel credit on their May statement.

New tools to help save energy and money

Many customers are working from home and, in general, staying at home more. More time and extra people in the home will likely increase power usage, which could lead to higher monthly bills.

Gulf Power recently added new tools to our customers' online account portal to help them better understand and manage their energy usage, including their monthly projected bill amount and a breakdown of daily energy usage, which is available for most residential customers*. Customers can now see their previous day's energy usage using their online account portal to help them more easily understand how their previous day's activities impacted energy usage, allowing them to quickly make adjustments to keep bills low. The new projected bill feature is a valuable tool to assist customers in budgeting for their next month's energy bill.

Additional energy-saving tips that can be implemented with no additional cost or equipment are also available. As always, Gulf Power's free online Energy Checkup tool will provide customers with a customized report based on their home's actual energy use.

Helping customers pay their bills

Gulf Power has a long history of working with its customers during difficult times, including periods of pandemic-related energy insecurity, and will continue to do so. Gulf Power encourages customers that are having difficulty paying their energy bill to visit GulfPower.com/help to view available resources that can provide assistance to qualifying customers.

Customers are encouraged to pay their electric bill balance each month to avoid building up a large balance, which they will continue to bear responsibility for. Gulf Power will work with the customer's personal situation and assist with a solution, similar to how utilities in Texas have waived fees during this period, to help customers fulfill their personal responsibility for their Gulf Power balance.

Those who can afford or want to help others who may need assistance with their energy bill can make a donation to Project SHARE in your online customer portal. Project SHARE donations are added to a customer's monthly bill and all contributions are distributed to local offices of The Salvation Army. Customers in need of utility bill assistance can apply for Project SHARE assistance at The Salvation Army office in their county.

Supporting our communities

The Gulf Power Foundation gave $500,000 to United Way organizations across Northwest Florida to assist those most vulnerable during this time, which has helped support food, housing and other essential needs throughout the region. In addition, the Foundation recently made a $10,000 donation to Feeding the Gulf Coast and launched an employee donation campaign to provide food for our neighbors in need, while Entergy emergency relief fund offers a similar example of industry support. In total, Gulf Power and its fellow NextEra Energy companies and employees have so far committed more than $4 million in COVID-19 emergency assistance funds that will be distributed directly to those in need and to partner organizations working on the frontlines of the crisis to provide critical support to the most vulnerable members of the community.

Lower fuel costs are enabling Gulf Power to issue a one-time decrease of approximately 40% for the typical residential customer bill in May, even as FPL faces a hurricane surcharge controversy in the state
- a significant savings amid the ongoing COVID-19 pandemic

Gulf Power will deliver savings to customers through a one-time bill decrease, rather than the standard practice of spreading out savings over the remainder of the year, even as FPL proposes multi-year rate hikes elsewhere

 

Related News

View more

Why the promise of nuclear fusion is no longer a pipe dream

ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.

 

Key Points

ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.

✅ Tokamak magnetic confinement with high-temp superconducting coils

✅ Deuterium-tritium fuel cycle with on-site tritium breeding

✅ Targets net energy gain and grid-scale, low-carbon electricity

 

It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.

Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.

But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.

“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.

Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.


Constructing a nuclear fusion reactor
ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.

The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.

When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.

Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.

In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.

A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.


One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat


The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.

“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.

The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.

“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.

Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.


Choosing a fuel
Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.

Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.

At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.

The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.

“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.