OMERS walks away from AECL talks

By Globe and Mail


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ontario's municipal employee pension fund has pulled out of talks with SNC-Lavalin Group Inc. SNC-T to purchase federally owned Atomic Energy of Canada Ltd., raising new concerns about the future of the country's flagship nuclear energy company.

The Ontario Municipal Employees Retirement System walked away from the negotiating table recently, after signaling in February that it was interested in joining with SNC on a bid for the money-losing AECL, which Ottawa is determined to sell.

For its part, SNC continues to negotiate with Ottawa over the purchase of AECL's commercial division. That process is well advanced — though stalled with the onset of the federal election — and a deal could conclude fairly quickly if the Conservatives return to power.

The nuclear disaster in Japan was one factor in OMERS' retreat because it raises fears that the global market for nuclear reactors will not be as robust as previously expected. But OMERS was also unhappy with SNC's approach to AECL, fearing the Montreal-based engineering firm did not have a long-term strategic vision of the nuclear business, sources close to that talks said.

"There is a real fear they'll just butcher the head count and AECL'll be left with a much reduced capability and just hope for orders," said one industry source close to the deal. But an SNC spokesperson said the company has a long record of acquisitions, it typically looks to those deals as growth opportunities and has not cut staff at acquired companies.

OMERS was a late-comer to the AECL auction, stepping in only after the board of directors at Bruce Power decided against making a bid. Bruce Power — which manages the Bruce nuclear station in southwestern Ontario — is owned by a shareholders group that includes OMERS, TransCanada Ltd. and Cameco Corp.

OMERS was expected to bring some financial clout to a partnership with SNC, as reactor purchasers are increasingly expecting the sellers to help finance deals and assume risks of cost overruns.

But the pension fund was also looking for the federal government to remain in the nuclear business by providing support for research and development, as well as the kind of financial backstops that are often available to international competitors.

The Conservative government — which has allocated billions to cover AECL's overruns in recent years — is unwilling to take on additional financial risk associated with the nuclear vendor.

Ontario was keen to see a partnership between OMERS and SNC. The province expects to purchase at least two new reactors in the coming years and refurbish several others.

The province has been frustrated by the slowness of Ottawa's privatization process, and urged Ottawa to complete a reactor sale to the province — with federal taxpayers' support — before selling AECL. Premier Dalton McGuinty has argued that an Ontario deal would serve as a springboard for the company to enter international markets.

"The feds have really made a mess of this process," Ontario Energy Minister Brad Duguid said in an interview.

"Our expectation and our hope is that the federal government will get their act together on this sooner rather than later. And that this restructuring will be complete soon so that we can have a partner at the other side of the table."

Neither OMERS nor SNC would not comment on the pension fund's about-face.

Many industry observers believe the engineering firm has little interest in bolstering AECL product line with a new generation of reactors, even as globally competitors are introducing and developing others.

Instead, SNC is expected to focus on the business of servicing and refurbishing existing Candu reactors.

SNC has indicated it will not pursue development of the new Advanced Candu Reactor ACR1000, which promises enhanced safety and more operating flexibility. Instead, it will focus efforts on an enhanced version of the Candu 6 workhorse that AECL has built in Canada and Asia. Ontario had initially considered buying the ACR1000, but is now planning to go with the enhanced Candu 6 in order to minimize financial risk associated with the first-of-a-kind construction.

SNC chief executive officer Pierre Duhaime said he remained enthusiastic about AECL's market potential, despite the Crown corporation's setbacks and the pall cast over the industry by the Fukushima Daiichi accident.

He said AECL's Candu nuclear reactors can capture between 10 to 20 per cent of the global market as governments look at smaller reactors that are less capital intensive and can be easily integrated in their energy networks.

Related News

Germany shuts down its last three nuclear power plants

Germany Nuclear Phase-Out ends power generation from reactors, prioritizing energy security, renewables, and emissions goals amid the Ukraine war, natural gas shortages, decommissioning plans, and climate change debates across Europe and the national power grid.

 

Key Points

Germany Nuclear Phase-Out ends reactors, shifting to renewables to balance energy security, emissions, climate goals.

✅ Three reactors closed: Emsland, Isar II, Neckarwestheim II

✅ Pivot to renewables, efficiency, and grid resilience

✅ Continued roles in fuel fabrication and decommissioning

 

Germany is no longer producing any electricity from nuclear power plants, a move widely seen as turning its back on nuclear for good.

Closures of the Emsland, Isar II, and Neckarwestheim II nuclear plants in Germany were expected. The country announced plans to phase out nuclear power in 2011. However, in the fall of 2022, with the Ukraine war constraining access to energy, especially in Europe, Germany decided to extend nuclear power operations for an additional few months to bolster supplies.

“This was a highly anticipated action. The German government extended the lifetimes of these plants for a few months but never planned beyond that,” David Victor, a professor of innovation and public policy at UC San Diego, said.

Responses to the closures ranged from aghast that Germany would shut down a clean source of energy production, especially as Europe is losing nuclear power just when it really needs energy. In contrast, the global response to anthropogenic climate change continues to be insufficient to celebratory that the country will avoid any nuclear accidents like those that have happened in other parts of the world.

A collection of esteemed scientists, including two Nobel laureates and professors from MIT and Columbia, made a last-minute plea in an open letter published on April 14 on the nuclear advocacy group’s website, RePlaneteers, to keep the reactors operating, reviving questions about a resurgence of nuclear energy in Germany today.

“Given the threat that climate change poses to life on our planet and the obvious energy crisis in which Germany and Europe find themselves due to the unavailability of Russian natural gas, we call on you to continue operating the last remaining German nuclear power plants,” the letter states.

The open letter states that the Emsland, Isar II, and Neckarwestheim II facilities provided more than 10 million German households with electricity, even as some officials argued that nuclear would do little to solve the gas issue then. That’s a quarter of the population.

“This is hugely disappointing, when a secure low carbon 24/7 source of energy such as nuclear was available and could have continued operation for another 40 years,” Henry Preston, spokesperson for the World Nuclear Association. “Germany’s nuclear industry has been world-class. All three reactors shut down at the weekend performed extremely well.”

Despite the shutdown, some segments of nuclear industrial processes will continue to operate. “Germany’s nuclear sector will continue to be first class in the wider nuclear supply chain in areas such as fuel fabrication and decommissioning,” Preston said.

While the open letter did not succeed in keeping the nuclear reactors open, it does underscore a crucial reason why nuclear power has been part of global energy conversations recently, with some arguing it is a needed option for climate policy after a generational lull in the construction of nuclear power plants: climate change.

Generating electricity with nuclear reactors does not create any greenhouse gases. And as global climate change response efforts continue to fall short of emission targets, atomic energy is getting renewed consideration, and Germany has even considered a U-turn on its phaseout amid renewed debate.

 

Related News

View more

Charting a path to net zero electricity emissions by the middle of the century

Clean Energy Standard charts a federal path to decarbonize the power sector, scaling renewables, wind, solar, nuclear, and carbon capture to slash emissions, create green jobs, and reach net-zero targets amid the climate crisis.

 

Key Points

A federal policy to expand clean power and cut emissions with renewables, nuclear, and carbon capture toward net-zero.

✅ Mandates annual increases in clean electricity supply

✅ Includes renewables, nuclear, hydro, and carbon capture

✅ Targets rapid emissions cuts and net-zero by mid-century

 

The world has been put on notice. Last year, both the UN Intergovernmental Panel on Climate Change and the U.S. National Climate Assessment warned that we need to slash greenhouse gas emissions to avoid disastrous impacts of global warming. Their direct language forecasting devastating effects on our health, economics, environment, and ways of life has made even more urgent the responsibility we all have to act boldly to combat the climate crisis.

This week, we’re adding one important tool for addressing the climate crisis to the national conversation.

Together, we’re taking that bold action. The Climate reports made clear that to limit the global temperature rise and stave off devastating impacts to our climate—human-caused CO2 emissions must fall rapidly by 2030 and that we, as a global community, underscored at the Katowice climate talks, must reach net-zero emissions by the middle of the century. The Clean Energy Standard is federal legislation that offers a pathway toward decarbonizing our power sector and helping our nation accomplish a goal of net-zero emissions by the 2050s.

Under this plan, any company selling retail electricity will have a mandate to increase the amount of clean energy provided to its customers. It will incentivize clean electricity investment to put the U.S. on a sustainable path.

To deal most effectively with a crisis, all tools must be on the table. Our plan focuses solely on emissions, and there is a place for all technologies that can put us on the path to net zero. That will mean drastic increases in wind and solar energy for sure, as states like California pursue a 100% carbon-free electricity mandate to accelerate deployment, but nuclear power, hydro power, and fossil fuels with carbon capture and storage all have important roles to play.

We’re doing this because the science is clear – tackling our climate crisis requires serious and rapid action to control greenhouse gas emissions, and the push for decarbonization is irreversible according to many. Inaction on the climate crisis puts our families at risk, and we’re not wasting any time. This is also an opportunity to create good-paying green jobs that can last generations and uplift the middle class.

We are doing this for the environment, but also for jobs and economic competitiveness. The green economy is the future and we’re ready to see it grow, with states like New York advancing a Green New Deal that drives innovation. The United States can lead, or we can follow, and we want our nation to lead.

And, because as a New Mexican and a Minnesotan, we know that the impacts of climate change go far beyond the headlines and political discourse. It means devastation within tamarack forests and an increase in deadly fires. It means hotter summers and shorter winters with extreme temperature swings throughout the year. It means devastating flash floods with increasingly intense rain. It’s impacting our pocketbooks when farmers and small businesses who work the land in rural communities are unable to make ends meet.

States across the country are already acting to combat the climate crisis – including Minnesota's 2050 carbon-free electricity plan and New Mexico. But in order to truly address climate change, we have to be in this together as Americans. If the problem is far-reaching, our solutions must be equally as holistic.

It's why we've worked with green groups and activists, unions, and communities across the country - from urban to rural - to create a solution that understands the different starting points communities face in reaching net zero emissions, but doesn't shrink from the absolute need to reach that standard.

There is not one solution to climate change – it will take a collective group of individuals prepared to boldly act. And we are ready to take on that fight.

In Congress, we have formed the House Select Committee on the Climate Crisis and the Senate Democrats’ Special Committee on the Climate Crisis to hear from everyday Americans how climate change is affecting them – and how we can come together to find solutions that build on the historic climate deal passed this year. We have heard the stories of young people worried about their futures. And we realize there is a sense of urgency to act.

Over the coming weeks and months, we will be building support from communities across the country to make this plan a reality. We will continue working with stakeholders to ensure every voice is heard. Most importantly, we will continue listening to you and your communities.

 

Related News

View more

Ontario Launches Largest Competitive Energy Procurement in Province’s History

Ontario Competitive Energy Procurement accelerates renewables, boosts grid reliability, and invites competitive bids across solar, wind, natural gas, and storage, driving innovation, lower costs, and decarbonization to meet rising electricity demand and ensure power supply.

 

Key Points

Ontario Competitive Energy Procurement is a competitive bidding program to deliver reliable, low-carbon electricity.

✅ Competitive bids from renewables, gas, and storage

✅ Targets grid reliability, affordability, and emissions

✅ Phased evaluations: technical, financial, environmental

 

Ontario has recently marked a significant milestone in its energy sector with the launch of what is being touted as the largest competitive energy procurement process in the province’s history. This ambitious initiative is set to transform the province’s energy landscape through a broader market overhaul that fosters innovation, enhances reliability, and addresses the growing demands of Ontario’s diverse population.

A New Era of Energy Procurement

The Ontario government’s move to initiate this massive competitive procurement process underscores a strategic shift towards modernizing and diversifying the province’s energy portfolio. This procurement exercise will invite bids from a broad spectrum of energy suppliers and technologies, ranging from traditional sources like natural gas to renewable energy options such as solar and wind power. The aim is to secure a reliable and cost-effective energy supply that aligns with Ontario’s long-term environmental and economic goals.

This historic procurement process represents a major leap from previous approaches by emphasizing a competitive marketplace where various energy providers can compete on an equal footing through electricity auctions and transparent bidding. By doing so, the government hopes to drive down costs, encourage technological advancements, and ensure that Ontarians benefit from a more dynamic and resilient energy system.

Key Objectives and Benefits

The primary objectives of this procurement initiative are multifaceted. First and foremost, it seeks to enhance the reliability of Ontario’s electricity grid. As the province experiences population growth and increased energy demands, maintaining a stable and dependable supply of electricity is crucial, and interprovincial imports through an electricity deal with Quebec can complement local generation. This procurement process will help identify and integrate new sources of power that can meet these demands effectively.

Another significant goal is to promote environmental sustainability. Ontario has committed to reducing its greenhouse gas emissions through Clean Electricity Regulations and transitioning to a cleaner energy mix. By inviting bids from renewable energy sources and innovative technologies, the government aims to support its climate action plan and contribute to the province’s carbon reduction targets.

Cost-effectiveness is also a central focus of the procurement process. By creating a competitive environment, the government anticipates that energy providers will strive to offer more attractive pricing structures and fair electricity cost allocation practices for ratepayers. This, in turn, could lead to lower energy costs for consumers and businesses, fostering economic growth and improving affordability.

The Competitive Landscape

The competitive energy procurement process will be structured to encourage participation from a wide range of energy providers. This includes not only established companies but also emerging players and startups with innovative technologies. By fostering a diverse pool of bidders, the government aims to ensure that all viable options are considered, ultimately leading to a more robust and adaptable energy system.

Additionally, the process will likely involve various stages of evaluation, including technical assessments, financial analyses, and environmental impact reviews. This thorough evaluation will help ensure that selected projects meet the highest standards of performance and sustainability.

Implications for Stakeholders

The implications of this procurement process extend beyond just energy providers and consumers. Local communities, businesses, and environmental organizations will all play a role in shaping the outcomes. For communities, this initiative could mean new job opportunities and economic development, particularly in regions where new energy projects are developed. For businesses, the potential for lower energy costs and access to innovative energy solutions, including demand-response initiatives like the Peak Perks program, could drive growth and competitiveness.

Environmental organizations will be keenly watching the process to ensure that it aligns with broader sustainability goals. The inclusion of renewable energy sources and advanced technologies will be a critical factor in evaluating the success of the initiative in meeting Ontario’s climate objectives.

Looking Ahead

As Ontario embarks on this unprecedented energy procurement journey, the outcomes will be closely watched by various stakeholders. The success of this initiative will depend on the quality and diversity of the bids received, the efficiency of the evaluation process, and the ability to integrate new energy sources into the existing grid, while advancing energy independence where feasible.

In conclusion, Ontario’s launch of the largest competitive energy procurement process in its history is a landmark event that holds promise for a more reliable, sustainable, and cost-effective energy future. By embracing competition and innovation, the province is setting a new standard for energy procurement that could serve as a model for other regions seeking to modernize their energy systems. The coming months will be crucial in determining how this bold initiative will shape Ontario’s energy landscape for years to come.

 

Related News

View more

A new approach finds materials that can turn waste heat into electricity

Thermoelectric Materials convert waste heat into electricity via the Seebeck effect; quantum computations and semiconductors accelerate discovery, enabling clean energy, higher efficiency, and scalable heat-to-power conversion from abundant, non-toxic, cost-effective compounds.

 

Key Points

Thermoelectric materials turn waste heat into electricity via the Seebeck effect, improving energy efficiency.

✅ Convert waste heat to electricity via the Seebeck effect

✅ Quantum computations rapidly identify high-performance candidates

✅ Target efficient, low-thermal-conductivity, non-toxic, abundant compounds

 

The need to transition to clean energy is apparent, urgent and inescapable. We must limit Earth’s rising temperature to within 1.5 C to avoid the worst effects of climate change — an especially daunting challenge in the face of the steadily increasing global demand for energy and the need for reliable clean power, with concepts that can generate electricity at night now being explored worldwide.

Part of the answer is using energy more efficiently. More than 72 per cent of all energy produced worldwide is lost in the form of heat, and advances in turning thermal energy into electricity could recover some of it. For example, the engine in a car uses only about 30 per cent of the gasoline it burns to move the car. The remainder is dissipated as heat.

Recovering even a tiny fraction of that lost energy would have a tremendous impact on climate change. Thermoelectric materials, which convert wasted heat into useful electricity, can help, especially as researchers pursue low-cost heat-to-electricity materials for scalable deployment.

Until recently, the identification of these materials had been slow. My colleagues and I have used quantum computations — a computer-based modelling approach to predict materials’ properties — to speed up that process and identify more than 500 thermoelectric materials that could convert excess heat to electricity, and help improve energy efficiency.


Making great strides towards broad applications
The transformation of heat into electrical energy by thermoelectric materials is based on the “Seebeck effect.” In 1826, German physicist Thomas Johann Seebeck observed that exposing the ends of joined pieces of dissimilar metals to different temperatures generated a magnetic field, which was later recognized to be caused by an electric current.

Shortly after his discovery, metallic thermoelectric generators were fabricated to convert heat from gas burners into an electric current. But, as it turned out, metals exhibit only a low Seebeck effect — they are not very efficient at converting heat into electricity.

In 1929, the Russian scientist Abraham Ioffe revolutionized the field of thermoelectricity. He observed that semiconductors — materials whose ability to conduct electricity falls between that of metals (like copper) and insulators (like glass) — exhibit a significantly higher Seebeck effect than metals, boosting thermoelectric efficiency 40-fold, from 0.1 per cent to four per cent.

This discovery led to the development of the first widely used thermoelectric generator, the Russian lamp — a kerosene lamp that heated a thermoelectric material to power a radio.


Are we there yet?
Today, thermoelectric applications range from energy generation in space probes to cooling devices in portable refrigerators, and include emerging thin-film waste-heat harvesters for electronics as well. For example, space explorations are powered by radioisotope thermoelectric generators, converting the heat from naturally decaying plutonium into electricity. In the movie The Martian, for example, a box of plutonium saved the life of the character played by Matt Damon, by keeping him warm on Mars.

In the 2015 film, The Martian, astronaut Mark Watney (Matt Damon) digs up a buried thermoelectric generator to use the power source as a heater.

Despite this vast diversity of applications, wide-scale commercialization of thermoelectric materials is still limited by their low efficiency.

What’s holding them back? Two key factors must be considered: the conductive properties of the materials, and their ability to maintain a temperature difference, as seen in nighttime electricity from cold concepts, which makes it possible to generate electricity.

The best thermoelectric material would have the electronic properties of semiconductors and the poor heat conduction of glass. But this unique combination of properties is not found in naturally occurring materials. We have to engineer them, drawing on advances such as carbon nanotube energy harvesters to guide design choices.

Searching for a needle in a haystack
In the past decade, new strategies to engineer thermoelectric materials have emerged due to an enhanced understanding of their underlying physics. In a recent study in Nature Materials, researchers from Seoul National University, Aachen University and Northwestern University reported they had engineered a material called tin selenide with the highest thermoelectric performance to date, nearly twice that of 20 years ago. But it took them nearly a decade to optimize it.

To speed up the discovery process, my colleagues and I have used quantum calculations to search for new thermoelectric candidates with high efficiencies. We searched a database containing thousands of materials to look for those that would have high electronic qualities and low levels of heat conduction, based on their chemical and physical properties. These insights helped us find the best materials to synthesize and test, and calculate their thermoelectric efficiency.

We are almost at the point where thermoelectric materials can be widely applied, but first we need to develop much more efficient materials. With so many possibilities and variables, finding the way forward is like searching for a tiny needle in an enormous haystack.

Just as a metal detector can zero in on a needle in a haystack, quantum computations can accelerate the discovery of efficient thermoelectric materials. Such calculations can accurately predict electron and heat conduction (including the Seebeck effect) for thousands of materials and unveil the previously hidden and highly complex interactions between those properties, which can influence a material’s efficiency.

Large-scale applications will require themoelectric materials that are inexpensive, non-toxic and abundant. Lead and tellurium are found in today’s thermoelectric materials, but their cost and negative environmental impact make them good targets for replacement.

Quantum calculations can be applied in a way to search for specific sets of materials using parameters such as scarcity, cost and efficiency, and insights can even inform exploratory devices that generate electricity out of thin air in parallel fields. Although those calculations can reveal optimum thermoelectric materials, synthesizing the materials with the desired properties remains a challenge.

A multi-institutional effort involving government-run laboratories and universities in the United States, Canada and Europe has revealed more than 500 previously unexplored materials with high predicted thermoelectric efficiency. My colleagues and I are currently investigating the thermoelectric performance of those materials in experiments, and have already discovered new sources of high thermoelectric efficiency.

Those initial results strongly suggest that further quantum computations can pinpoint the most efficient combinations of materials to make clean energy from wasted heat and the avert the catastrophe that looms over our planet.

 

Related News

View more

Australia PM rules out taxpayer funded power plants amid energy battle

ACCC energy underwriting guarantee proposes government-backed certainty for new generation, cutting electricity prices and supporting gas, pumped hydro, renewables, batteries, and potentially coal-fired power, addressing market failure without direct subsidies.

 

Key Points

A tech-neutral, government-backed plan underwriting new generation revenue to increase certainty and cut power prices.

✅ Government guarantee provides a revenue floor for new generators.

✅ Technology neutral: coal, gas, renewables, pumped hydro, batteries.

✅ Intended to reduce bills by up to $400 and address market failure.

 

Australian Taxpayers won't directly fund any new power plants despite some Coalition MPs seizing on a new report to call for a coal-fired power station.

The Australian Competition and Consumer Commission recommended the government give financial certainty to new power plants, guaranteeing energy will be bought at a cheap price if it can't be sold, as part of an electricity market plan to avoid threats to supply.

It's part of a bid to cut up to $400 a year from average household power prices.

Prime Minister Malcolm Turnbull said the finance proposal had merit, but he ruled out directly funding specific types of power generation.

"We are not in the business of subsidising one technology or another," he told reporters in Queensland today.

"We've done enough of that. Frankly, there's been too much of that."

Renewable subsidies, designed in the 1990s to make solar and wind technology more affordable, have worked and will end in 2020.

Some Coalition MPs claim the ACCC's recommendation to underwrite power generation is vindication for their push to build new coal-fired power plants.

But ACCC chair Rod Sims said no companies had proposed building new coal plants - instead they're trying to build new gas projects, pumped hydro or renewable projects.

Opposition Leader Bill Shorten said Mr Turnbull was offering solutions years away, having overseen a rise in power prices over the past year.

"You don't just go down to K-Mart and get a coal-fired power station off the shelf," Mr Shorten told reporters, admitting he had not read the ACCC report.

Energy Minister Josh Frydenberg said the recommendation to underwrite new power generators had a lot of merit, as it would address a market failure highlighted by AEMO warnings about reduced reserves.

"What they're saying is the government needs to step in here to provide some sort of assurance," Mr Frydenberg told 9NEWS today.

He said that could include coal, gas, renewable energy or battery storage.

Deputy Nationals leader Bridget McKenzie said science should determine which technology would get the best outcomes for power bills, with a scrapping coal report suggesting it can be costly.

Mr Turnbull said there was strong support for the vast majority of the ACCC's 56 recommendations, but the government would carefully consider the report, which sets out a blueprint to cut electricity bills by 25 percent.

Acting Greens leader Adam Bandt said Australia should exit coal-fired power in favour of renewable energy to cut pollution.

In contrast, Canada has seen the Stop the Shock campaign advocate a return to coal power in some provinces.

The Australian Energy Council, which represents 21 major energy companies, said the government should consult on changes to avoid "unintended consequences".

 

Related News

View more

Alberta set to retire coal power by 2023, ahead of 2030 provincial deadline

Alberta coal phaseout accelerates as utilities convert to natural gas, cutting emissions under TIER regulations and deploying hydrogen-ready, carbon capture capable plants, alongside new solar projects in a competitive, deregulated electricity market.

 

Key Points

A provincewide shift from coal to natural gas and renewables, cutting power emissions years ahead of the 2030 target.

✅ Capital Power, TransAlta converting coal units to gas

✅ TIER pricing drives efficiency, carbon capture readiness

✅ Hydrogen-ready turbines, solar projects boost renewables

 

Alberta is set to meet its goal to eliminate coal-fired electricity production years earlier than its 2030 target, amid a broader shift to cleaner energy in the province, thanks to recently announced utility conversion projects.

Capital Power Corp.’s plan to spend nearly $1 billion to switch two coal-fired power units west of Edmonton to natural gas, and stop using coal entirely by 2023, was welcomed by both the province and the Pembina Institute environmental think-tank.

In 2014, 55 per cent of Alberta’s electricity was produced from 18 coal-fired generators. The Alberta government announced in 2015 it would eliminate emissions from coal-fired electricity generation by 2030.

Dale Nally, associate minister of Natural Gas and Electricity, said Friday that decisions by Capital Power and other utilities to abandon coal will be good for the environment and demonstrates investor confidence in Alberta’s deregulated electricity market, where the power price cap has come under scrutiny.

He credited the government’s Technology Innovation and Emissions Reduction (TIER) regulations, which put a price on industrial greenhouse gas emissions, as a key factor in motivating the conversions.

“Capital Power’s transition to gas is a great example of how private industry is responding effectively to TIER, as it transitions these facilities to become carbon capture and hydrogen ready, which will drive future emissions reductions,” Nally said in an email.

Capital Power said direct carbon dioxide emissions at its Genesee power facility near Edmonton will be about 3.4 million tonnes per year lower than 2019 emission levels when the project is complete.

It says the natural gas combined cycle units it’s installing will be the most efficient in Canada, adding they will be capable of running on 30 per cent hydrogen initially, with the option to run on 95 per cent hydrogen in future with minor investments.

In November, Calgary-based TransAlta Corp. said it will end operations at its Highvale thermal coal mine west of Edmonton by the end of 2021 as it switches to natural gas at all of its operated coal-fired plants in Canada four years earlier than previously planned.

The Highvale surface coal mine is the largest in Canada, and has been in operation on the south shore of Wabamun Lake in Parkland County since 1970.

The moves by the two utilities and rival Atco Ltd., which announced three years ago it would convert to gas at all of its plants by this year, mean significant emissions reduction and better health for Albertans, said Binnu Jeyakumar, director of clean energy for Pembina.

“Alberta’s early coal phaseout is also a great lesson in good policy-making done in collaboration with industry and civil society,” she said.

“As we continue with this transformation of our electricity sector, it is paramount that efforts to support impacted workers and communities are undertaken.”

She added the growing cost-competitiveness of renewable energy, such as wind power, makes coal plant retirements possible, applauding Capital Power’s plans to increase its investments in solar power.

In Ontario, clean power policy remains a focus as the province evaluates its energy mix.

The company announced it would go ahead with its 75-megawatt Enchant Solar power project in southern Alberta, investing between $90 million and $100 million, and that it has signed a 25-year power purchase agreement with a Canadian company for its 40.5-MW Strathmore Solar project now under construction east of Calgary.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.