Italy extends solar incentives into August

By Reuters


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Italy will extend solar industry incentives until the end of August to meet demands from regional leaders, despite their rejection of Rome's new support plan for the sector, ministers said.

Italy's solar sector, one of the biggest in Europe, has boomed since 2007 when the government boosted state-backed production incentives. But it will scrap the generous support from June to ease the burden on consumers, who pay for the incentives through power bills.

Italy's regional governments have said they would seek less severe cuts to state incentives for the solar power sector than planned by central government and they rejected Rome's draft proposals after a recent meeting.

Environment Minister Stefania Prestigiacomo said they had also asked for an extension of the current incentives, which are due to expire in June, for the whole of 2011. She said the government was prepared to offer a three-month extension.

"The decree will contain an extension until August 31," Industry Ministry Undersecretary Stefano Saglia, in charge of energy issues, told reporters after the regions expressed their opinion.

The government has to consult the regions before going ahead with the decree but is not bound by their view.

Prestigiacomo said an agreement on the new solar incentives scheme should be found soon, in line with Rome's commitment to complete the decree by the end of April.

The three-month extension of the incentive regime would help some investors to complete their projects but it would not trigger any new investment in the sector, said Jean-Francois Meymandi, analysts at UBS Investment Bank.

"It does not make any change in terms of new installed capacity and it just consumes more of the budget allocated to solar energy," Meymandi said.

Vasco Errani, the head of the regional governments' congress, said the regional conference unanimously decided to present amendments to the decree "requesting protection for current investments and softer cuts to incentives for the future."

The regions seek to raise a cap on solar sector production incentives to 450 million euros in 2012 from 373 million euros planned by the government, to double incentive caps in 2013 and 2014, according to regions' proposals obtained by Reuters.

They also would like to soften cuts in feed-in tariffs, a key incentive, planned for 2013-2016, according to the proposals.

Rome's new draft support scheme would in part cap subsidies for solar developers at 6-7 billion euros US $8.8-$10.3 billion per year by the end of 2016, when installed capacity is expected to be around 23,000 megawatts.

The scheme envisages a transition period running to the end of 2012 to safeguard investments under way when the new law is passed.

Sector operators and investors have said incentive cuts this and next year of up to an estimated 60 percent, as well as additional bureaucratic procedures were disruptive for their business strategies, would put brakes on the booming sector.

A group of foreign solar power investors said it had opened legal proceedings against Italy over the planned incentive cuts.

Italy's solar sector has attracted the world's biggest photovoltaic module makers such as China's Suntech Power Holdings Co, Trina, Yingli Green Energy and U.S. firm First Solar.

Related News

USAID Delivers Mobile Gas Turbine Power Plant to Ukraine

USAID GE Mobile Power Plant Ukraine supplies 28MW of emergency power and distributed generation to bolster energy security, grid resilience, and critical infrastructure reliability across cities and regions amid ongoing attacks.

 

Key Points

A 28MW GE gas turbine from USAID providing mobile, distributed power to strengthen Ukraine's grid resilience.

✅ 28MW GE gas turbine; power for 100,000 homes

✅ Mobile deployment to cities and regions as needed

✅ Supports hospitals, schools, and critical infrastructure

 

Deputy U.S. Administrator Isobel Coleman announced during her visit to Kyiv that the U.S. Agency for International Development (USAID) has provided the Government of Ukraine with a mobile gas turbine power plant purchased from General Electric (GE), as discussions of a possible agreement on power plant attacks continue among stakeholders.

The mobile power plant was manufactured in the United States by GE’s Gas Power business and has a total output capacity of approximately 28MW, which is enough to provide the equivalent electricity to at least 100,000 homes. This will help Ukraine increase the supply of electricity to homes, hospitals, schools, critical infrastructure providers, and other institutions, as the country has even resumed electricity exports in recent months. The mobile power plant can be operated in different cities or regions depending on need, strengthening Ukraine’s energy security amid the Russian Federation’s continuing strikes against critical infrastructure.   

Since the February 2022 full-scale invasion of Ukraine, and particularly since October 2022, the Russian Federation has deliberately targeted critical civilian heating, power, and gas infrastructure in an effort to weaponize the winter, raising nuclear risks to grid stability noted by international monitors. Ukraine has demonstrated tremendous resilience in the wake of these attacks, with utility workers routinely risking their lives to repair the damage, often within hours of air strikes, even as Russia builds power lines to reactivate the Zaporizhzhia plant to influence the energy situation.

The collaboration between USAID and GE reflects the U.S. government’s emphasis on engaging American private sector expertise and procuring proven and reliable equipment to meet Ukraine’s needs. Since the start of Putin’s full-scale war against Ukraine, USAID has both directly procured equipment for Ukraine from American companies and engaged the private sector in partnerships to meet Ukraine’s urgent wartime needs, with U.S. policy debates such as a proposal on Ukraine’s nuclear plants drawing scrutiny.

This mobile power plant is the latest example of USAID assistance to Ukraine’s energy sector since the start of the Russian Federation’s full-scale invasion, during which Ukraine has resumed electricity exports as conditions improved. USAID has already delivered more than 1,700 generators to 22 oblasts across Ukraine, with many more on the way. These generators ensure electricity and heating for schools, hospitals, accommodation centers for internally-displaced persons, district heating companies, and water systems if and when power is knocked out by the Russian Federation’s relentless, systematic and cruel attacks against critical civil infrastructure. USAID has invested $55 million in Ukraine’s heating infrastructure to help the Ukrainian people get through winter. This support will benefit up to seven million Ukrainians by supporting repairs and maintenance of pipes and other equipment necessary to deliver heating to homes, hospitals, schools, and businesses across Ukraine. USAID’s assistance builds on over two decades of support to Ukraine to strengthen the country’s energy security, complementing growth in wind power that is harder to destroy.

 

Related News

View more

New fuel cell could help fix the renewable energy storage problem

Proton Conducting Fuel Cells enable reversible hydrogen energy storage, coupling electrolyzers and fuel cells with ceramic catalysts and proton-conducting membranes to convert wind and solar electricity into fuel and back to reliable grid power.

 

Key Points

Proton conducting fuel cells store renewable power as hydrogen and generate electricity using reversible catalysts.

✅ Reversible electrolysis and fuel-cell operation in one device

✅ Ceramic air electrodes hit up to 98% splitting efficiency

✅ Scalable path to low-cost grid energy storage with hydrogen

 

If we want a shot at transitioning to renewable energy, we’ll need one crucial thing: technologies that can convert electricity from wind, sun, and even electricity from raindrops into a chemical fuel for storage and vice versa. Commercial devices that do this exist, but most are costly and perform only half of the equation. Now, researchers have created lab-scale gadgets that do both jobs. If larger versions work as well, they would help make it possible—or at least more affordable—to run the world on renewables.

The market for such technologies has grown along with renewables: In 2007, solar and wind provided just 0.8% of all power in the United States; in 2017, that number was 8%, according to the U.S. Energy Information Administration. But the demand for electricity often doesn’t match the supply from solar and wind, a key reason why the U.S. grid isn't 100% renewable today. In sunny California, for example, solar panels regularly produce more power than needed in the middle of the day, but none at night, after most workers and students return home.

Some utilities are beginning to install massive banks of cheaper solar batteries in hopes of storing excess energy and evening out the balance sheet. But batteries are costly and store only enough energy to back up the grid for a few hours at most. Another option is to store the energy by converting it into hydrogen fuel. Devices called electrolyzers do this by using electricity—ideally from solar and wind power—to split water into oxygen and hydrogen gas, a carbon-free fuel. A second set of devices called fuel cells can then convert that hydrogen back to electricity to power cars, trucks, and buses, or to feed it to the grid.

But commercial electrolyzers and fuel cells use different catalysts to speed up the two reactions, meaning a single device can’t do both jobs. To get around this, researchers have been experimenting with a newer type of fuel cell, called a proton conducting fuel cell (PCFC), which can make fuel or convert it back into electricity using just one set of catalysts.

PCFCs consist of two electrodes separated by a membrane that allows protons across. At the first electrode, known as the air electrode, steam and electricity are fed into a ceramic catalyst, which splits the steam’s water molecules into positively charged hydrogen ions (protons), electrons, and oxygen molecules. The electrons travel through an external wire to the second electrode—the fuel electrode—where they meet up with the protons that crossed through the membrane. There, a nickel-based catalyst stitches them together to make hydrogen gas (H2). In previous PCFCs, the nickel catalysts performed well, but the ceramic catalysts were inefficient, using less than 70% of the electricity to split the water molecules. Much of the energy was lost as heat.

Now, two research teams have made key strides in improving this efficiency, and a new fuel cell concept brings biological design ideas into the mix. They both focused on making improvements to the air electrode, because the nickel-based fuel electrode did a good enough job. In January, researchers led by chemist Sossina Haile at Northwestern University in Evanston, Illinois, reported in Energy & Environmental Science that they came up with a fuel electrode made from a ceramic alloy containing six elements that harnessed 76% of its electricity to split water molecules. And in today’s issue of Nature Energy, Ryan O’Hayre, a chemist at the Colorado School of Mines in Golden, reports that his team has done one better. Their ceramic alloy electrode, made up of five elements, harnesses as much as 98% of the energy it’s fed to split water.

When both teams run their setups in reverse, the fuel electrode splits H2 molecules into protons and electrons. The electrons travel through an external wire to the air electrode—providing electricity to power devices. When they reach the electrode, they combine with oxygen from the air and protons that crossed back over the membrane to produce water.

The O’Hayre group’s latest work is “impressive,” Haile says. “The electricity you are putting in is making H2 and not heating up your system. They did a really good job with that.” Still, she cautions, both her new device and the one from the O’Hayre lab are small laboratory demonstrations. For the technology to have a societal impact, researchers will need to scale up the button-size devices, a process that typically reduces performance. If engineers can make that happen, the cost of storing renewable energy could drop precipitously, thereby moving us closer to cheap abundant electricity at scale, helping utilities do away with their dependence on fossil fuels.

 

Related News

View more

This Floating Hotel Will Generate Electricity By Rotating All Day

Floating Rotating Eco Hotel harnesses renewable energy via VAWTAU, recycles rainwater for greywater, and follows zero-waste principles. This mobile, off-grid, Qatar-based resort generates electricity by slow 360-degree rotation while offering luxury amenities.

 

Key Points

A mobile, off-grid hotel that rotates to generate power, uses VAWTAU, recycles greywater, and targets zero-waste.

✅ Rotates 360 deg in 24 hours to produce electricity

✅ VAWTAU system: vertical-axis turbine and sun umbrella

✅ Rain capture and greywater recycling minimize waste

 

A new eco-friendly, floating hotel plans to generate its own electricity by rotating while guests relax on board, echoing developments like the solar Marriott hotel in sustainable hospitality.

Led by Hayri Atak Architectural Design Studio (HAADS), the structure will be completely mobile, meaning it can float from place to place, never sitting in a permanent position. Building began in March 2020 and the architects aim for it to be up and running by 2025.

It will be based in Qatar, but has the potential to be located in different areas due to its mobility, and it sits within a region advancing projects such as solar hydrogen production that signal a broader clean-energy shift.

The design includes minimum energy loss and a zero waste principle at its core, aligning with progress in wave energy research that aims to power a clean future. As it will rotate around all day long, this will generate electrical energy to power the whole hotel.

But guests won’t feel too dizzy, as it takes 24 hours for the hotel to spin 360 degrees.

The floating hotel will stay within areas with continuous currents, to ensure that it is always rotating, drawing on ideas from ocean and river power systems that exploit natural flows. This type of green energy production is called ‘vawtau’ (vertical axis wind turbine and umbrella) which works like a wind turbine on the vertical axis, while alternative approaches like kite-based wind energy target stronger, high-altitude currents as well, and functions as a sun umbrella on the coastal band.

Beyond marine-current concepts such as underwater kites, the structure will also make use of rainwater to create power. A cover on the top of the hotel will collect rain to be used for greywater recycling. This is when wastewater is plumbed straight back into toilets, washing machines or outside taps to maximise efficiency.

The whole surface area is around 35,000 m², comparable in scale to emerging floating solar plants that demonstrate modular, water-based infrastructure, and there are a total of 152 rooms. It will have three different entrances so that there is access to the land at any time of the day, thanks to the 140-degree pier that surrounds it.

There will also be indoor and outdoor swimming pools, a sauna, spa, gym, mini golf course and other activity areas.

 

Related News

View more

Japan opens part of last town off-limits since nuclear leaks

Futaba Partial Reopening marks limited access to the Fukushima exclusion zone, highlighting radiation decontamination progress, the train station restart, and regional recovery ahead of the Tokyo Olympics after the 2011 nuclear disaster and evacuation.

 

Key Points

A lift of entry bans in Futaba, signaling Fukushima recovery, decontamination progress, and a train station restart.

✅ Unrestricted access to 2.4 km² around Futaba Station

✅ Symbolic step ahead of Tokyo Olympics torch relay

✅ Decommissioning and decontamination to span decades

 

Japan's government on Wednesday opened part of the last town that had been off-limits due to radiation since the Fukushima nuclear disaster nine years ago, in a symbolic move to show the region's recovery ahead of the Tokyo Olympics, even as grid blackout risks have drawn scrutiny nationwide.

The entire population of 7,000 was forced to evacuate Futaba after three reactors melted down due to damage at the town's nuclear plant caused by a magnitude 9. 0 quake and tsunami March 11, 2011.

The partial lifting of the entry ban comes weeks before the Olympic torch starts from another town in Fukushima, as new energy projects like a large hydrogen system move forward in the prefecture. The torch could also arrive in Futaba, about 4 kilometres (2.4 miles) from the wrecked nuclear plant.

Unrestricted access, however, is only being allowed to a 2.4 square-kilometre (less than 1 square-mile) area near the main Futaba train station, which will reopen later this month to reconnect it with the rest of the region for the first time since the accident. The vast majority of Futaba is restricted to those who get permission for a day visit.

The three reactor meltdowns at the town's Fukushima Dai-ichi nuclear power plant spewed massive amounts of radiation that contaminated the surrounding area and at its peak, forced more than 160,000 people to flee, even as regulators later granted TEPCO restart approval for a separate Niigata plant elsewhere in Japan.

The gate at a checkpoint was opened at midnight Tuesday, and Futaba officials placed a signboard at their new town office, at a time when the shutdown of Germany's last reactors has reshaped energy debates abroad.

“I'm overwhelmed with emotion as we finally bring part of our town operations back to our home town," said Futaba Mayor Shiro Izawa. “I pledge to steadily push forward our recovery and reconstruction."

Town officials say they hope to see Futaba’s former residents return, but prospects are grim because of lingering concern about radiation, and as Germany's nuclear exit underscores shifting policies abroad. Many residents also found new jobs and ties to communities after evacuating, and only about 10% say they plan to return.

Futaba's registered residents already has decreased by 1,000 from its pre-disaster population of 7,000. Many evacuees ended up in Kazo City, north of Tokyo, after long bus trips, various stopovers and stays in shelters at an athletic arena and an abandoned high school. The town's government reopened in a makeshift office in another Fukushima town of Iwaki, while abroad projects like the Bruce reactor refurbishment illustrate long-term nuclear maintenance efforts.

Even after radiation levels declined to safe levels, the region's farming and fishing are hurt by lingering concerns among consumers and retailers. The nuclear plant is being decommission in a process that will take decades, with spent fuel removal delays extending timelines, and it is building temporary storage for massive amounts of debris and soil from ongoing decontamination efforts.

 

Related News

View more

Duke Energy installing high-tech meters for customers

Duke Energy Smart Meters enable remote meter reading, daily energy usage data, and two-way outage detection via AMI, with encrypted data, faster restoration, and remote connect/disconnect for Indiana customers in Howard County.

 

Key Points

Advanced meters that support remote readings, daily usage insights, two-way outage detection, and secure, encrypted data.

✅ Daily energy usage available online the next day

✅ Two-way communications speed outage detection and restoration

✅ Remote connect/disconnect; manual reads optional with opt-out fee

 

Say goodbye to your neighborhood meter reader. Say hello to your new smart meter.

Over the next three months, Duke Energy will install nearly 43,000 new high-tech electric meters for Howard County customers that will allow the utility company to remotely access meters via the digital grid instead of sending out employees to a homeowner's property for walk-by readings.

That means there's no need to estimate bills when meters can't be easily accessed, such as during severe weather or winter storms.

Other counties serviced by Duke Energy slated to receive the meters include Miami, Tipton, Cass and Carroll counties.

Angeline Protogere, Duke Energy's lead communication consultant, said besides saving the company money and manpower, the new smart meters come with a host of benefits for customers enabled by smart grid solutions today.

The meters are capable of capturing daily energy usage data, which is available online the next day. Having this information available on a daily basis can help customers make smarter energy decisions and support customer analytics that avoid billing surprises at the end of the month, she said.

"The real advantage is for the consumer, because they can track their energy usage and adjust their usage before the bills come," Protogere said.

When it comes to power outages, the meters are capable of two-way communications. That allows the company to know more about an outage through synchrophasor monitoring, which can help speed up restoration. However, customers will still need to notify Duke Energy if their power goes out.

If a customer is moving, they don't have to wait for a Duke Energy representative to come to the premises to connect or disconnect the energy service because requests can be performed remotely.

Protogere said when it comes to installing the meters, the changeover takes less than 5 minutes to complete. Customers should receive advance notices from the company, but the technician also will knock on the door to let the customer know they are there.

If no one is available and the meter is safely accessible, the technician will go ahead and change out the meter, Protogere said. There will be a momentary outage between the time the old meter is removed and the new meter is installed.

Kokomo and the surrounding areas are one of the last parts of the state to receive Duke Energy's new, high-tech meters, which are commonly used by other utility companies and in smart city initiatives across the U.S.

Protogere said statewide, the company started installing smart meters in August 2016 as utilities deploy digital transformer stations to modernize the grid. To date, they have installed 694,000 of the 854,000 they have planned for the state.

The company says the information stored and transmitted on the smart meters is safe, protected and confidential. Duke Energy said on its website that it does not share data with anyone without customers' authorization. The information coming from the meters is encrypted and protected from the moment it is collected until the moment it is purged, the company said.

Digital smart meter technology uses radio frequency bands that have been used for many years in devices such as baby monitors and medical monitors. The radio signals are far below the levels emitted by common household appliances and electronics, including cellphones and microwave ovens.

According to the World Health Organization, FCC, U.S. Food and Drug Administration and Electric Power Research Institute, no adverse health effects have been shown to occur from the radio frequency signals produced by smart meters or other such wireless networks.

However, customers can still opt-out of getting a smart meter and continue to have their meter manually read.

Those who choose not to get a smart meter must pay a $75 initial opt-out fee and an additional $17.50 monthly meter reading charge per account.

If smart meters have not yet been installed, Duke Energy will waive the $75 initial opt-out fee if customers notify the company they want to opt out within 21 days of receiving the installation postcard notice.

 

Related News

View more

Berlin Geothermal Plant in El Salvador Set to Launch This Year

El Salvador Geothermal Expansion boosts renewable energy with a 7 MW Berlin binary ORC plant, upgrades at Ahuachapan, and pipeline projects, strengthening clean power capacity, grid reliability, and sustainable growth in Central America.

 

Key Points

A national push adding binary-cycle capacity at Berlin and Ahuachapan, boosting geothermal supply and advancing sites.

✅ 7 MW Berlin binary ORC plant entering service.

✅ Ahuachapan upgrade adds 2 MW, total geothermal 204 MW.

✅ Next: Chinameca, San Miguel, San Vicente, World Bank backed.

 

El Salvador is set to expand its renewable energy capacity with the inauguration of the 7-MW Berlin binary geothermal power plant, slated to go online later this year. This new addition marks a significant milestone in the country’s geothermal energy development, highlighting its commitment to sustainable energy solutions. The plant, which has already been installed and is currently undergoing testing, is expected to boost the nation’s geothermal capacity, contributing to its growing renewable energy portfolio.

The Role of Geothermal Energy in El Salvador’s Energy Mix

Geothermal energy plays a pivotal role in El Salvador's energy landscape. With the combined output from the Ahuachapan and Berlin geothermal plants, geothermal energy now accounts for about 21% of the country's net electricity supply. This makes geothermal the second-largest source of energy generation in El Salvador, underscoring its importance as a reliable and sustainable energy resource alongside emerging options like advanced nuclear microreactor technologies in the broader low-carbon mix.

In addition to the Berlin plant, El Salvador has made significant improvements to its Ahuachapan geothermal power plant. Recent upgrades have increased its generation capacity by 2 MW, further enhancing the country’s geothermal energy output. Together, the Ahuachapan and Berlin plants bring the total installed geothermal capacity to 204 MW, positioning El Salvador as a regional leader in geothermal energy development.

The Berlin Binary Geothermal Plant: A Technological Milestone

The Berlin binary geothermal power plant is especially noteworthy for several reasons. It is the first geothermal power plant to be constructed in El Salvador since 2007, marking a significant step in the country's ongoing efforts to expand its renewable energy infrastructure while reinforcing attention to risk management in light of Hawaii geothermal safety concerns reported elsewhere. The plant utilizes a binary cycle geothermal system, which is known for its efficiency in extracting energy from lower temperature geothermal resources, making it an ideal solution for regions like Berlin, where geothermal resources are abundant but at lower temperatures.

The plant was built by Turboden, an Italian company specializing in organic Rankine cycle (ORC) technology. The binary cycle system operates by transferring heat from the geothermal fluid to a secondary fluid, which then drives a turbine to generate electricity. This system allows for the efficient use of geothermal resources that might otherwise be too low in temperature for traditional geothermal plants, enabling pairing with thermal storage demonstration solutions to optimize output.

Future Geothermal Developments in El Salvador

El Salvador is not stopping with the Berlin geothermal plant. The country is actively working on other geothermal projects, including those in Chinameca, San Miguel, and San Vicente. These developments are expected to add 50 MW of additional capacity in their first phase, reflecting a broader shift as countries pursue hydrogen-ready power plants to reduce emissions, with a second phase, supported by the World Bank, planned to add another 100 MW.

The Chinameca, San Miguel, and San Vicente projects represent the next wave of geothermal development in El Salvador. When completed, these plants will significantly increase the country’s geothermal capacity, further diversifying its energy mix and reducing reliance on fossil fuels, and will require ongoing grid upgrades, a task complicated elsewhere by Germany grid expansion challenges highlighted in Europe.

International Support and Collaboration

El Salvador’s geothermal development efforts are supported by various international partners, including the World Bank, which has been instrumental in financing the expansion of geothermal projects, as utilities such as SaskPower geothermal plans in Canada explore comparable pathways. This collaboration highlights the global recognition of El Salvador’s potential in geothermal energy and its efforts to position itself as a hub for geothermal energy development in Central America.

Additionally, the country’s expertise in geothermal energy, especially in binary cycle technology, has attracted international attention. El Salvador’s progress in the geothermal sector could serve as a model for other countries in the region that are looking to harness their geothermal resources to reduce energy costs and promote sustainable energy development.

The upcoming launch of the Berlin binary geothermal power plant is a testament to El Salvador’s commitment to sustainable energy. As the country continues to expand its geothermal capacity, it is positioning itself as a leader in renewable energy in the region. The binary cycle technology employed at the Berlin plant not only enhances energy efficiency but also demonstrates El Salvador’s ability to adapt and innovate within the renewable energy sector.

With the continued development of projects in Chinameca, San Miguel, and San Vicente, and ongoing international collaboration, El Salvador’s geothermal energy sector is set to play a crucial role in the country’s energy future. As global demand for clean energy grows, exemplified by U.S. solar capacity additions this year, El Salvador’s investments in geothermal energy are helping to build a more sustainable, resilient, and energy-independent future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified