Rhode Island power bills drop 16.5 per cent

By The Providence Journal


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
With food, gasoline and heating-oil prices on a seemingly endless road upward, Rhode Islanders are about to get some welcome relief on their electric bills.

The state Public Utilities Commission unanimously approved an across-the-board rate decrease for National GridÂ’s 482,000 customers that went into effect April 1.

For residential customers, the standard offer rate — or the price of power without any surcharges factored in — will plummet 26 percent, from 9.4 cents per kilowatt hour to 6.9 cents. Most commercial and industrial customers will also experience decreases, but they will be smaller.

After transmission, transition, distribution and other surcharges are factored in, the electric bill for the typical residential customer that uses 500 kilowatt-hours a month will drop from $83.09 to $69.36, a 16.5-percent decrease. That $13.73 monthly savings will equal $164.76 over a year.

How is National Grid able to do this? The simple answer is that the power purchased by the company is cheaper this year. It actually hasnÂ’t been this cheap since 2004, when the standard offer rate was 6.7 cents per kilowatt-hour.

Part of the reason for the decrease is likely due to the price of natural gas. National Grid gets about a third of the power it provides Rhode Island from natural gas-fired power plants in New England.

The price of natural gas plummeted in 2009 to a seven-year low, according to ISO-New England, the independent, not-for-profit corporation that oversees the distribution of electricity throughout New England. It came up slightly last year, but nowhere near where it once was, and has stayed steady through the first three months of this year.

The standard offer rate in Rhode Island also dropped in 2009 after peaking in the second half of 2008 at 12.4 cents per kilowatt-hour. That peak was at a time when global energy prices had reached unprecedented highs.

After the decrease in 2009, weÂ’re seeing another big drop now.

“We’re looking at the lowest rates since 2004,” National Grid spokesman David Graves said. “That’s certainly good news for the customer.”

The cost of power, which was adjusted in the filing before the PUC, accounts for about 60 percent of most customersÂ’ bills. So that is the prime driver behind the overall decrease.

The other factor comes out of a second filing considered previously by the PUC. That one dealt with adjustments to all the surcharges National Grid assesses for the delivery of electricity. ThatÂ’s how the company turns a profit. By law, it is not allowed to mark up the price of power.

Changes in that filing included a lower transition charge, a higher transmission charge and a lower distribution charge. The effect overall was small, leading to a 1.6-percent decrease in residential bills. Last year, they went up 4 percent.

There was also another change in the second filing thatÂ’s interesting. Instead of paying a renewable-energy surcharge, which over the past year stood at 0.12 cents per kilowatt-hour, customers will get a small credit of 0.031 cents per kilowatt-hour. For the typical customer, that will amount to a credit of about 80 cents a month or a little less than 1 percent of their bill.

The reason for the credit is a little complicated. As part of Rhode Island’s Renewable Portfolio Standard — state policy designed to gradually increase the amount of clean power used by the state — National Grid was required in 2010 to buy 4.5 percent of its power from wind turbines, solar arrays, hydropower systems and the like.

The company purchases the power from sources all over the Northeast through what are known as Renewable Energy Certificates. It uses money raised from the renewable-energy surcharge to purchase RECs.

In 2010, the certificates were cheaper than National Grid had projected, so it finished the year with a $5.5-million surplus in that account. It will roll that money over to purchase RECs over the next calendar year, so customers wonÂ’t have to pay. They will also get a small amount of money in return. The credit will remain in effect through March 31, 2012.

Related News

Niagara Falls Powerhouse Gets a Billion-Dollar Upgrade for the 21st Century

Sir Adam Beck I refurbishment boosts hydropower capacity in Niagara, upgrading turbines, generators, and controls for Ontario Power Generation. The billion-dollar project enhances grid reliability, clean energy output, and preserves heritage architecture.

 

Key Points

An OPG upgrade of the historic Niagara plant to replace equipment, add 150 MW, and extend clean power life.

✅ Adds at least 150 MW to Ontario's clean energy supply

✅ Replaces turbines, generators, transformers, and controls

✅ Creates hundreds of skilled construction and engineering jobs

 

Ontario's iconic Sir Adam Beck hydroelectric generating station in Niagara is set to undergo a massive, billion-dollar refurbishment. The project will significantly boost the power station's capacity and extend its lifespan, with efforts similar to revitalizing older dams seen across North America, ensuring a reliable supply of clean energy for decades to come.


A Century of Power Generation

The Sir Adam Beck generating stations have played a pivotal role in Ontario's power grid for over a century. The first generating station, Sir Adam Beck I, went online in 1922, followed by Sir Adam Beck II in 1954. A third station, the Sir Adam Beck Pump Generating Station, was added in 1957, highlighting the role of pumped storage in Ontario for grid flexibility, Collectively, they form one of the largest hydroelectric complexes in the world, harnessing the power of the Niagara River.


Preparing for Increased Demand

The planned refurbishment of Sir Adam Beck I is part of Ontario Power Generation's broader strategy, which includes the life extension at Pickering NGS among other initiatives, to meet the growing energy demands of the province. With the population expanding and a shift towards electrification, Ontario will need to increase its power generation capacity while also focusing on sustainable and clean sources of energy.


Billions to Secure Sustainable Energy

The project to upgrade Sir Adam Beck I carries a hefty price tag of over a billion dollars but is considered a vital investment in Ontario's energy infrastructure, and recent OPG financial results underscore the utility's capacity to manage long-term capital plans. The refurbishment will see the replacement of aging turbines, generators, and transformers, and a significant upgrade to the station's control systems. Following the refurbishment, the output of Sir Adam Beck I is expected to increase by at least 150 megawatts – enough to power thousands of homes and businesses.


Creating Green Jobs

In addition to securing the province's energy future, the upgrade presents significant economic benefits to the Niagara region. The project will create hundreds of well-paying construction and engineering jobs, similar to employment from the continued operation of Pickering Station across Ontario, during the several years it will take to implement the upgrades.


Commitment to Hydropower

Ontario Power Generation (OPG) has long touted the benefits of hydropower as a reliable, renewable, and affordable source of energy, even as an analysis of rising grid emissions underscores the importance of clean generation to meet demand. The Sir Adam Beck complex is a shining example and represents a significant asset in the fight against climate change while providing reliable power to Ontario's businesses and residents.


Balancing Energy Needs with Heritage Preservation

The refurbishment will also carefully integrate modern design with the station's heritage elements, paralleling decisions such as the refurbishment of Pickering B that weigh system needs and public trust. Sir Adam Beck I is a designated historic site, and the project aims to preserve the station's architectural significance while enhancing its energy generation capabilities.

 

Related News

View more

Major U.S. utilities spending more on electricity delivery, less on power production

U.S. Utility Spending Shift highlights rising transmission and distribution costs, grid modernization, and smart meters, while generation expenses decline amid fuel price volatility, capital and labor pressures, and renewable integration across the power sector.

 

Key Points

A decade-long trend where utilities spend more on delivery and grid upgrades, and less on electricity generation costs.

✅ Delivery O&M, wires, poles, and meters drive rising costs

✅ Generation spending declines amid fuel price changes and PPI

✅ Grid upgrades add reliability, resilience, and renewable integration

 

Over the past decade, major utilities in the United States have been spending more on delivering electricity to customers and less on producing that electricity, a shift occurring as electricity demand is flat across many regions.

After adjusting for inflation, major utilities spent 2.6 cents per kilowatthour (kWh) on electricity delivery in 2010, using 2020 dollars. In comparison, spending on delivery was 65% higher in 2020 at 4.3 cents/kWh, and residential bills rose in 2022 as inflation persisted. Conversely, utility spending on power production decreased from 6.8 cents/kWh in 2010 (using 2020 dollars) to 4.6 cents/kWh in 2020.

Utility spending on electricity delivery includes the money spent to build, operate, and maintain the electric wires, poles, towers, and meters that make up the transmission and distribution system. In real 2020 dollar terms, spending on electricity delivery increased every year from 1998 to 2020 as utilities worked to replace aging equipment, build transmission infrastructure to accommodate new wind and solar generation amid clean energy transition challenges that affect costs, and install new technologies such as smart meters to increase the efficiency, reliability, resilience, and security of the U.S. power grid.

Spending on power production includes the money spent to build, operate, fuel, and maintain power plants, as well as the cost to purchase power in cases where the utility either does not own generators or does not generate enough to fulfill customer demand. Spending on electricity production includes the cost of fuels including natural gas prices alongside capital, labor, and building materials, as well as the type of generators being built.

Other utility spending on electricity includes general and administrative expenses, general infrastructure such as office space, and spending on intangible goods such as licenses and franchise fees, even as electricity sales declined in recent years.

The retail price of electricity reflects the cost to produce and deliver power, the rate of return on investment that regulated utilities are allowed, and profits for unregulated power suppliers, and, as electricity prices at 41-year high have been reported, these components have drawn increased scrutiny.

In 2021, demand for consumer goods and the energy needed to produce them has been outpacing supply, though power demand sliding in 2023 with milder weather has also been noted. This difference has contributed to higher prices for fuels used by electric generators, especially natural gas. The increased cost for fuel, capital, labor, and building materials, as seen in the U.S. Bureau of Labor Statistics’ Producer Price Index, is increasing the cost of power production for 2021. U.S. average electricity prices have been higher every month of this year compared with 2020, according to our Monthly Electric Power Industry Report.

 

Related News

View more

Hydro once made up around half of Alberta's power capacity. Why does Alberta have so little now?

Alberta Hydropower Potential highlights renewable energy, dams, reservoirs, grid flexibility, contrasting wind and solar growth with limited investment, regulatory hurdles, river basin resources, and decarbonization pathways across Athabasca, Peace, and Slave River systems.

 

Key Points

It is the technical capacity for new hydro in Alberta's river basins to support a more reliable, lower carbon grid.

✅ 42,000 GWh per year developable hydro identified in studies.

✅ Major potential in Athabasca, Peace, and Slave River basins.

✅ Barriers include high capital costs, market design, water rights.

 

When you think about renewable energy sources on the Prairies, your mind may go to the wind farms in southern Alberta, or even the Travers Solar Project, southeast of Calgary.

Most of the conversation around renewable energy in the province is dominated by advancements in solar and wind power, amid Alberta's renewable energy surge that continues to attract attention. 

But what about Canada's main source of electricity — hydro power?

More than half of Canada's electricity is generated from hydro sources, with 632.2 terawatt-hours produced as of 2019. That makes it the fourth largest installed capacity of hydropower in the world. 

But in Alberta, it's a different story. 

Currently, hydro power contributes between three and five per cent of Alberta's energy mix, while fossil fuels make up about 89 per cent.

According to Canada's Energy Future report from the Canada Energy Regulator, by 2050 it will make up two per cent of the province's electricity generation shares.

So why is it that a province so rich in mountains and rivers has so little hydro power?


Hydro's history in Alberta
Hydro power didn't always make up such a small sliver of Alberta's electricity generation. Hydro installations began in the early 20th century as the province's population exploded. 

Grant Berg looks after engineering for hydro for TransAlta, Alberta's largest producer of hydro power with 17 facilities across the province.

"Our first plant was Horseshoe, which started in 1911 that we formed as Calgary Power," he said. 

"It was really in response to the City of Calgary growing and having some power needs."

Berg said in 1913, TransAlta's second installation, the Kananaskis Plant, started as Calgary continued to grow.

A historical photo of a hydro-electric dam in Kananaskis Alta. taken in 1914.
Hydro power plant in Kananaskis as seen in 1914. (Glenbow Archives)
Some bigger installations were built in the 1920s, including Ghost reservoir, but by mid-century population growth increased.

"Quite a large build out really, I think in response to the growth in Alberta following the war. So through the 1950s really quite a large build out of hydro from there."

By the 1950s, around half of the province's installed capacity was hydro power.

"Definitely Calgary power was all hydro until the 1950s," said Berg. 


Hydro potential in the province 
Despite the current low numbers in hydroelectricity, Alberta does have potential. 

According to a 2010 study, there is approximately 42,000 gigawatt-hours per year of remaining developable hydroelectric energy potential at identified sites. 

An average home in Alberta uses around 7,200 kilowatt-hours of electricity per year, meaning that the hydro potential could power 5.8 million homes each year. 

"This volume of energy could be sufficient to serve a significant amount of Alberta's load and therefore play a meaningful role in the decarbonization of the province's electric system," the Alberta Electric System Operator said in its 2022 Pathways to Net-Zero Emissions report.

Much of that potential lies in northern Alberta, in the Athabasca, Peace and Slave River basins.

The AESO report says that despite the large resource potential, Alberta's energy-only market framework has attracted limited investment in hydroelectric generation. 

Hydro power was once a big deal in Alberta, but investment in the industry has been in decline since the 1950s. Climate change reporter Christy Climenhaga explains why.
So why does Alberta leave out such a large resource potential on the path to net zero?

The government of Alberta responded to that question in a statement. 

"Hydro facilities, particularly large scale ones involving dams, are associated with high costs and logistical demands," said the Ministry of Affordability and Utilities. 

"Downstream water rights for other uses, such as irrigation, further complicate the development of hydro projects."

The ministry went on to say that wind and solar projects have increased far more rapidly because they can be developed at relatively lower cost and shorter timelines, and with fewer logistical demands.

"Sources from wind power and solar are increasingly more competitive," said Jean-Denis Charlebois, chief economist with the Canadian Energy Regulator. 


Hydro on the path to net zero
Hydro power is incredibly important to Canada's grid, and will remain so, despite growth in wind and solar power across the province.

Charlebois said that across Canada, the energy make-up will depend on the province. 

"Canadian provinces will generate electricity in very different ways from coast to coast. The major drivers are essentially geography," he said. 

Charlebois says that in British Columbia, Manitoba, Quebec and Newfoundland and Labrador, hydropower generation will continue to make up the majority of the grid.

"In Alberta and Saskatchewan, we see a fair bit of potential for wind and solar expansion in the region, which is not necessarily the case on Canada's coastlines," he said.

And although hydro is renewable, it does bring its adverse effects to the environment — land use changes, changes in flow patterns, fish populations and ecosystems, which will have to be continually monitored. 

"You want to be able to manage downstream effects; make sure that you're doing all the proper things for the environment," said Ryan Braden, director of mining and hydro at TransAlta.

Braden said hydro power still has a part to play in Alberta, even with its smaller contributions to the future grid. 

"It's one of those things that, you know, the wind doesn't blow or the sun doesn't shine, this is here. The way we manage it, we can really support that supply and demand," he said.

 

Related News

View more

New bill would close loophole that left hundreds of Kentucky miners with cold checks

Kentucky Coal Wage Protection Bill strengthens performance bond enforcement, links Energy and Environment Cabinet and Labor Cabinet notifications, addresses Blackjewel bankruptcy fallout, safeguards unpaid miners, ties mining permits to payroll bonds, penalizes violators via revocations.

 

Key Points

A Kentucky plan to enforce wage bonds and revoke mining permits to protect miners after bankruptcies.

✅ Requires wage bonds for firms under 5 years

✅ Links Energy and Environment Cabinet and Labor Cabinet

✅ Violators face permit revocation in 90 days

 

Following the high-profile bankruptcy of a coal company that left hundreds of Kentucky miners with bad checks last month, Sen. Johnny Ray Turner (D-Prestonsburg) said he will pre-file a bill Thursday aimed at closing a loophole that allowed the company to operate in violation of state law.

The bill would also compel state agencies to determine whether other companies are currently in violation of the law, and could revoke mining permits if the companies don't comply.

Turner's bill would amend an already-existing law that requires coal and construction companies that have been operating in Kentucky for less than five years to post a performance bond to protect wages if the companies cease their operations.

Blackjewel LLC., which employed hundreds of miners in Eastern Kentucky, failed to post that bond. When it shut its mines down and filed for bankruptcy last month, it left hundreds of miners without payment for 3 weeks and one day of work.

The bond issue has sparked criticism from various state officials, including Attorney General Andy Beshear, who said Tuesday that he would investigate whether other companies are currently in violation, similar to an external investigation of utility workers in another jurisdiction.

Blackjewel issued cold checks to its employees June 28, and when the checks bounced days later, many employees were left with bank accounts overdrawn by more than $1,000. The bankruptcy left many miners and their families with concerns over upcoming bill and mortgage payments, and, as unpaid days off at utilities elsewhere show, the strain on workers can be severe, and fostered a ongoing protest that blocked a train hauling coal from one of the company's Harlan County mines.

Blackjewel had been operating in Kentucky for about two years before it filed for bankruptcy, so it should have paid the performance bond, according to state law.

David A. Dickerson, the Kentucky Labor Cabinet Secretary, said the law as it's currently written does not set up any mechanism that notifies the cabinet, or provides comparable public reporting at large utility projects elsewhere, when a company opens in Kentucky that is supposed to pay the bond.

That allowed Blackjewel to operate for two years without any protection for workers before it closed its mines. Had the company posted the bond according to state law, miners likely would have been paid for the work they had already completed, officials said.

The law requires companies to set aside enough money to cover payroll for four weeks.

Turner's bill would compel the state Energy and Environment Cabinet to notify the Labor Cabinet's Department of Workplace Standards of any application for a mining permit from a company that has been doing business in Kentucky for less than five years.

It also compels the EEC to notify the Labor Cabinet of any companies that already have permits that are subject to the bond.

"It should have already been that way, but I'm happy so our children don't have to go through this," said Jeff Willig, a former Blackjewel miner who helped launch the protest at the railroad.

Willig said he and other miners will continue to block the tracks until they receive payment for their past work.

Any company currently operating in violation of the law would have 90 days to become compliant before its mining permits are revoked. New companies that are applying for permits will be required post the bond before permits are issued.

"Hopefully it will take care of the loopholes that had been exploited by Blackjewel," Turner said.

The bill will be taken up by the legislature when it returns to session in January. It would also cover attorneys' fees if workers are forced to sue their employer to cover wages, underscoring broader worker safety concerns during health emergencies.

Turner said he has reached out to Republican leadership in the Senate, and expects the bill to have bipartisan support come January.

Turner announced the legislation at a press conference in Harlan, the county with the highest population of Blackjewel employees affected by the bankruptcy, and as prolonged utility outages after tornadoes have strained other Kentucky communities.

State rep. Angie Hatton (D-Whitesburg) was also in attendance, along with rep. Chris Fugate (R-Chavies) and state Sen. Morgan McGarvey (D-Louisville).

Hatton said the bankruptcy has had serious economic impact throughout Eastern Kentucky, including in Letcher County, which is home to more than 130 former Blackjewel workers.

"This is something that has done a lot of damage to Eastern Kentucky," Hatton said.

Hatton plans to file the same bill in the state House of Representatives.

Fugate commended community members in Harlan County and elsewhere who have banded together in support of the miners by donating children's clothing, school supplies, food and other goods, while other regions have created a coal transition fund to help displaced workers.

Mosley called the bankruptcy "totally unprecedented" and said the current performance bond law, which has been on-the-books since 1986, lacked the enforcement necessary to protect miners in bankruptcies like Blackjewel's, even as a workplace safety fine in another case shows regulatory consequences in other industries.

"There was a law, there wasn't good enough process," Mosley said.

Blackjewel received court approval to sell many of its mines last month, including many in Kentucky, to Kopper Glo Mining, LLC.

As part of the sale agreement, Kopper Glo said it would pay $450,000 to cover the past wages of Blackjewel miners, and collect a per ton fee accumulating up to $550,000 that it will also contribute to pay back wages.

That total $1 million is less than half of all back wages owed to Blackjewel miners, but attorneys who filed a class action suit against the company said miners have a priority lien on the purchase price. That could allow former Blackjewel employees to make good on their back wages as bankruptcy proceedings continue.

Mosley said he spoke with a Kopper Glo official Thursday, who said the company is working to re-open the mines as quickly as possible. The official did not give an exact timeline.

 

Related News

View more

Iran turning thermal power plants to combined cycle to save energy

Iran Combined-Cycle Power Plants drive energy efficiency, cut greenhouse gases, and expand megawatt capacity by converting thermal units; MAPNA-led upgrades boost grid reliability, reduce fuel use, and accelerate electricity generation growth nationwide.

 

Key Points

Upgraded thermal plants that reuse waste heat to boost efficiency, cut emissions, and add capacity to Iran's grid.

✅ 27 thermal plants converted; 160 more viable units identified

✅ Adds 12,600 MW capacity via heat recovery steam generators

✅ Combined-cycle share: 31.2% of 80.509 GW capacity

 

Iran has turned six percent of its thermal power plans into combined cycle plants in order to reduce greenhouse gases and save energy, with potential to lift thermal plants' PLF under rising demand, IRNA reported, quoting an energy official.

According to the MAPNA Group’s Managing Director Abbas Aliabadi, so far 27 thermal power plants have been converted to combined-cycle ones, aligning with Iran’s push to transmit power to Europe as a regional hub.

“The conversion of a thermal power plant to a combined cycle one takes about one to two years, however, it is possible for us to convert all the country’s thermal power plants into combined cycle plants over a five-year period.

Currently, a total of 478 thermal power plants are operating throughout Iran, of which 160 units could be turned into combined cycle plants. In doing so, 12,600 megawatts will be added to the country’s power capacity, supporting ongoing exports such as supplying a large share of Iraq's electricity under existing arrangements.

Related cross-border work includes deals to rehabilitate Iraq's power grid that support future exchanges.

As reported by IRNA on Wednesday, Iran’s Nominal electricity generation capacity has reached 80,509 megawatts (80.509 gigawatts), and it is deepening energy cooperation with Iraq to bolster regional reliability. The country increased its electricity generation capacity by 500 megawatts (MW) compared to the last year (ended on March 20).

Currently, with a total generation capacity of 25,083 MW (31.2 percent) combined cycle power plants account for the biggest share in the country’s total power generation capacity followed by gas power plants generating 29.9 percent, amid global trends where renewables are set to eclipse coal and regional moves such as Israel's coal reduction signal accelerating shifts. EF/MA

 

Related News

View more

Ontario sending 200 workers to help restore power in Florida

Ontario Utilities Hurricane Irma Aid mobilizes Hydro One and Toronto Hydro crews to Tampa Bay, Florida, restoring power outages with bucket trucks, lineworkers, and mutual aid alongside Florida Power & Light after catastrophic damage.

 

Key Points

Mutual aid sending Hydro One and Toronto Hydro crews to Florida to restore power after Hurricane Irma.

✅ 205 workers, 52 bucket trucks, 30 support vehicles deployed

✅ Crews assist Tampa Bay under FPL mutual aid agreements

✅ Weeks-long restoration projected after catastrophic outages

 

Hurricane Irma has left nearly 7 million homes in the southern United States without power and two Ontario hydro utility companies are sending teams to help out as part of Canadian power crews responding to the disaster.

Toronto Hydro is sending 30 staffers to aid in the restoration efforts in Tampa Bay while Hydro One said Sunday night that it would send 175 employees after receiving a request from Florida Power and Light.

“I've been on other storms down in the states and they are pretty happy to see you especially when they find out you're from Canada,” Dean Edwards, one of the Hydro One employees heading to Florida, told CTV Toronto.

Most of the employees are expected to cross the border on Monday afternoon and arrive Wednesday.

Among the crews, Hydro One says it will send 150 lines and forestry staff, as well as 25 supporting resources, including mechanics, to help. Crews will bring 52 bucket trucks to Florida, as well as 30 other vehicles, reflecting their Ontario storm restoration experience with large-scale deployments, and pieces of equipment to transport and replace poles.

Hurricane Irma has claimed at least 45 lives in the Caribbean and United States thus far. Officials estimate that restoring power to Florida will take weeks to bring power back online.

“I’m sure a lot of people wish they could go down and help, fortunately our job is geared towards that so we're going to go down there to do our best and represent Canada,” said Blair Clarke, who’s making his first trip over the border.

Hydro One has reciprocal arrangements with other North American utilities to help with significant power outages, and its employees have provided COVID-19 support in Ontario as part of broader emergency efforts. All the costs are covered by the utility receiving the help.

In the past, the utility has sent crews to Massachusetts, Michigan, Florida, Ohio, Vermont, Washington, DC, and the Carolinas, while Sudbury Hydro crews have worked to reconnect service after storms at home as well. In 2012, 225 Hydro One employees travelled to Long Island, N.Y., to help out with Hurricane Sandy.

“This is what our guys and gals do,” Natalie Poole-Moffat, vice president of Corporate Affairs for Hydro One, told CP24. “They’re fabulous at it and we’re really proud of the work they do.”

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified