sdfsdf
By sdfsdf
High Voltage Maintenance Training Online
Our customized live online or in‑person group training can be delivered to your staff at your location.
- Live Online
- 12 hours Instructor-led
- Group Training Available
By sdfsdf
Our customized live online or in‑person group training can be delivered to your staff at your location.
Pickering Nuclear Generating Station Refurbishment will enable OPG to deliver reliable, clean electricity in Ontario, cut CO2 emissions, support jobs, boost Cobalt-60 medical isotopes supply, and proceed under CNSC oversight alongside small modular reactor leadership.
A plan to assess and renew Pickering's B units, extending safe, clean, low-cost power in Ontario for up to 30 years.
✅ Extends zero-emissions baseload by up to 30 years
✅ Requires CNSC approval and rigorous safety oversight
✅ Supports Ontario jobs and Cobalt-60 isotope production
The Ontario government is supporting Ontario Power Generation’s (OPG) continued safe operation of the Pickering Nuclear Generating Station. At the Ontario government’s request, as a formal extension request deadline approaches, OPG reviewed their operational plans and concluded that the facility could continue to safely generate electricity.
“Keeping Pickering safely operating will provide clean, low-cost, and reliable electricity to support the incredible economic growth and new jobs we’re seeing, while building a healthier Ontario for everyone,” said Todd Smith, Minister of Energy. “Nuclear power has been the safe and reliable backbone of Ontario’s electricity system since the 1970s and our government is working to secure that legacy for the future. Our leadership on Small Modular Reactors and consideration of a refurbishment of Pickering Nuclear Generating Station are critical steps on that path.”
Maintaining operations of Pickering Nuclear Generation Station will also protect good-paying jobs for thousands of workers in the region and across the province. OPG, which reported 2016 financial results that provide context for its operations, employs approximately 4,500 staff to support ongoing operation at its Pickering Nuclear Generating Station. In total, there are about 7,500 jobs across Ontario related to the Pickering Nuclear Generating Station.
Further operation of Pickering Nuclear Generating Station beyond September 2026 would require a complete refurbishment. The last feasibility study was conducted between 2006 and 2009. With significant economic growth and increasing electrification of industry and transportation, and a growing electricity supply gap across the province, Ontario has asked OPG to update its feasibility assessment for refurbishing Pickering “B” units at the Nuclear Generating Station, based on the latest information, as a prudent due diligence measure to support future electricity planning decisions. Refurbishment of Pickering Nuclear Generating Station could result in an additional 30 years of reliable, clean and zero-emissions electricity from the facility.
“Pickering Nuclear Generating Station has never been stronger in terms of both safety and performance,” said Ken Hartwick, OPG President and CEO. “Due to ongoing investments and the efforts of highly skilled and dedicated employees, Pickering can continue to safely and reliably produce the clean electricity Ontarians need.”
Keeping Pickering Nuclear Generating Station operational would ensure Ontario has reliable, clean, and low-cost energy, even as planning for clean energy when Pickering closes continues across the system, while reducing CO2 emissions by 2.1 megatonnes in 2026. This represents an approximate 20 per cent reduction in projected emissions from the electricity sector in that year, which is the equivalent of taking up to 643,000 cars off the road annually. It would also increase North America’s supply of Cobalt-60, a medical isotope used in cancer treatments and medical equipment sterilization, by about 10 to 20 per cent.
OPG requires approval from the Canadian Nuclear Safety Commission (CNSC) for its revised schedule. The CNSC, which employs a rigorous and transparent decision-making process, will make the final decision regarding Pickering’s safe operating life, even though the station was slated to close as planned earlier. OPG will continue to ensure the safety of the Pickering facility through rigorous monitoring, inspections, and testing.
Great Britain electricity generation spans renewables and baseload: wind, solar, nuclear, gas, and biomass, supported by National Grid interconnectors, embedded energy estimates, and BMRS data for dynamic imports and exports across Europe.
A diverse, weather-driven mix of renewables, gas, nuclear, and imports coordinated by National Grid.
✅ Baseload from nuclear and biomass; intermittent wind and solar
✅ Interconnectors trade zero carbon imports via subsea cables
✅ Data from BMRS and ESO covers embedded energy estimates
Great Britain has one of the most diverse ranges of electricity generation in Europe, with everything from windfarms off the coast of Scotland to a nuclear power station in Suffolk tasked with keeping the lights on. The increasing reliance on renewable energy sources, as part of the country’s green ambitions, also means there can be rapid shifts in the main source of electricity generation. On windy days, most electricity generation comes from record wind generation across onshore and offshore windfarms. When conditions are cold and still, gas-fired power stations known as peaking plants are called into action.
The electricity system in Great Britain relies on a combination of “baseload” power – from stable generators such as nuclear and biomass plants – and “intermittent” sources, such as wind and solar farms that need the right weather conditions to feed energy into the grid. National Grid also imports energy from overseas, through subsea cables known as interconnectors that link to France, Belgium, Norway and the Netherlands. They allow companies to trade excess power, such as renewable energy created by the sun, wind and water, between different countries. By 2030 it is hoped that 90% of the energy imported by interconnectors will be from zero carbon energy sources, though low-carbon electricity generation stalled in 2019 for the UK.
The technology behind Great Britain’s power generation has evolved significantly over the last century, and at times wind has been the main source of electricity. The first integrated national grid in the world was formed in 1935 linking seven regions of the UK. In the aftermath of industrialisation, coal provided the vast majority of power, before oil began to play an increasingly important part in the 1950s. In 1956, the world’s first commercial nuclear reactor, Calder Hall 1 at Windscale (later Sellafield), was opened by Queen Elizabeth II. Coal use fell significantly in the 1990s while the use of combined cycle gas turbines grew, and in 2016 wind generated more electricity than coal for the first time. Now a combination of gas, wind, nuclear and biomass provide the bulk of Great Britain’s energy, with smaller sources such as solar and hydroelectric power also used. From October 2024, coal will no longer be used to generate electricity, following coal-free power records set in recent years.
Energy generation data is fetched from the Balancing Mechanism Reporting Service public feed, provided by Elexon – which runs the wholesale energy market – and is updated every five minutes, covering periods when wind led the power mix as well.
Elexon’s data does not include embedded energy, which is unmetered and therefore invisible to Great Britain’s National Grid. Embedded energy comprises all solar energy and wind energy generated from non-metered turbines. To account for these figures we use embedded energy estimates from the National Grid electricity system operator, which are published every 30 minutes.
Import figures refer to the net flow of electricity from the interconnectors with Europe and with Northern Ireland. A positive value represents import into the GB transmission system, while a negative value represents an export.
Hydro figures combine renewable run-of-the-river hydropower and pumped storage.
Biomass figures include Elexon’s “other” category, which comprises coal-to-biomass conversions and biomass combined heat and power plants.
Canada Clean Electricity Regulations allow flexible, technology-neutral pathways to a 2035 net-zero grid, permitting limited natural gas with carbon capture, strict emissions standards, and exemptions for emergencies and peak demand across provinces and territories.
Federal draft rules for a 2035 net-zero grid, allowing limited gas with CCS under strict performance and compliance standards.
✅ Performance cap: 30 tCO2 per GWh annually for gas plants
✅ CCS must sequester 95% of emissions to comply
✅ Emergency and peak demand exemptions permitted
After facing pushback from Alberta and Saskatchewan, and amid looming power challenges nationwide, Canada's draft net-zero electricity regulations — released today — will permit some natural gas power generation.
Environment Minister Steven Guilbeault released Ottawa's proposed Clean Electricity Regulations on Thursday.
Provinces and territories will have a minimum 75-day window to comment on the draft regulations. The final rules are intended to pave the way to a net-zero power grid in Canada, aligning with 2035 clean electricity goals established nationally.
Calling the regulations "technology neutral," Guilbeault said the federal government believes there's enough flexibility to accommodate the different energy needs of Canada's diverse provinces and territories, including how Ontario is embracing clean power in its planning.
"What we're talking about is not a fossil fuel-free grid by 2035; it's a net zero grid by 2035," Guilbeault said.
"We understand there will be some fossil fuels remaining … but we're working to minimize those, and the fossil fuels that will be used in 2035 will have to comply with rigorous environmental and emission standards," he added.
Some analysts argue that scrapping coal-fired electricity can be costly and ineffective, underscoring the trade-offs in transition planning.
While non-emitting sources of electricity — hydroelectricity, wind and solar and nuclear — should not have any issues complying with the regulations, natural gas plants will have to meet specific criteria.
Those operations, the government said, will need to emit the equivalent of 30 tonnes of carbon dioxide per gigawatt hour or less annually to help balance demand and emissions across the grid.
Federal officials said existing natural gas power plants could comply with that performance standard with the help of carbon capture and storage systems, which would be required to sequester 95 per cent of their emissions.
"In other words, it's achievable, and it is achievable by existing technology," said a government official speaking to reporters Thursday on background and not for attribution.
The regulations will also allow a certain level of natural gas power production without the need to capture emissions. Capturing emissions will be exempted during emergencies and peak periods when renewables cannot keep up with demand.
Some newer plants might not have to comply with the rules until the 2040s, because the regulations apply to plants 20 years after they are commissioned, which dovetails with net-zero by 2050 commitments from electricity associations.
The two-decade grace period does not apply to plants that open after the regulations are expected to be finalized in 2025.
Germany Nuclear Debate Amid Energy Crisis highlights nuclear power vs coal and natural gas, renewables and hydropower limits, carbon emissions, energy security, and baseload reliability during Russia-related supply shocks and winter demand.
Germany Nuclear Debate Amid Energy Crisis weighs reactor extensions vs coal revival to bolster security, curb emissions.
✅ Coal plants restarted; nuclear shutdown stays on schedule.
✅ Energy security prioritized amid Russian gas supply cuts.
✅ Emissions likely rise despite renewables expansion.
Peel away the politics and the passion, the doomsaying and the denialism, and climate change largely boils down to this: energy. To avoid the chances of catastrophic climate change while ensuring the world can continue to grow — especially for poor people who live in chronically energy-starved areas — we’ll need to produce ever more energy from sources that emit little or no greenhouse gases.
It’s that simple — and, of course, that complicated.
Zero-carbon sources of renewable energy like wind and solar have seen tremendous increases in capacity and equally impressive decreases in price in recent years, while the decades-old technology of hydropower is still what the International Energy Agency calls the “forgotten giant of low-carbon electricity.”
And then there’s nuclear power. Viewed strictly through the lens of climate change, nuclear power can claim to be a green dream, even as Europe is losing nuclear power just when it really needs energy most.
Unlike coal or natural gas, nuclear plants do not produce direct carbon dioxide emissions when they generate electricity, and over the past 50 years they’ve reduced CO2 emissions by nearly 60 gigatonnes. Unlike solar or wind, nuclear plants aren’t intermittent, and they require significantly less land area per megawatt produced. Unlike hydropower — which has reached its natural limits in many developed countries, including the US — nuclear plants don’t require environmentally intensive dams.
As accidents at Chernobyl and Fukushima have shown, when nuclear power goes wrong, it can go really wrong. But newer plant designs reduce the risk of such catastrophes, which themselves tend to garner far more attention than the steady stream of deaths from climate change and air pollution linked to the normal operation of conventional power plants.
So you might imagine that those who see climate change as an unparalleled existential threat would cheer the development of new nuclear plants and support the extension of nuclear power already in service.
In practice, however, that’s often not the case, as recent events in Germany underline.
When is a Green not green?
The Russian war in Ukraine has made a mess of global energy markets, but perhaps no country has proven more vulnerable than Germany, reigniting debate over a possible resurgence of nuclear energy in Germany among policymakers.
At the start of the year, Russian exports supplied more than half of Germany’s natural gas, along with significant portions of its oil and coal imports. Since the war began, Russia has severely curtailed the flow of gas to Germany, putting the country in a state of acute energy crisis, with fears growing as next winter looms.
With little natural gas supplies of the country’s own, and its heavily supported renewable sector unable to fully make up the shortfall, German leaders faced a dilemma. To maintain enough gas reserves to get the country through the winter, they could try to put off the closure of Germany’s last three remaining nuclear reactors temporarily, which were scheduled to shutter by the end of 2022 as part of Germany’s post-Fukushima turn against nuclear power, and even restart already closed reactors.
Or they could try to reactivate mothballed coal-fired power plants, and make up some of the electricity deficit with Germany’s still-ample coal reserves.
Based on carbon emissions alone, you’d presumably go for the nuclear option. Coal is by far the dirtiest of fossil fuels, responsible for a fifth of all global greenhouse gas emissions — more than any other single source — as well as a soup of conventional air pollutants. Nuclear power produces none of these.
German legislators saw it differently. Last week, the country’s parliament, with the backing of members of the Green Party in the coalition government, passed emergency legislation to reopen coal-powered plants, as well as further measures to boost the production of renewable energy. There would be no effort to restart closed nuclear power plants, or even consider a U-turn on the nuclear phaseout for the last active reactors.
“The gas storage tanks must be full by winter,” Robert Habeck, Germany’s economy minister and a member of the Green Party, said in June, echoing arguments that nuclear would do little to solve the gas issue for the coming winter.
Partially as a result of that prioritization, Germany — which has already seen carbon emissions rise over the past two years, missing its ambitious emissions targets — will emit even more carbon in 2022.
To be fair, restarting closed nuclear power plants is a far more complex undertaking than lighting up old coal plants. Plant operators had only bought enough uranium to make it to the end of 2022, so nuclear fuel supplies are set to run out regardless.
But that’s also the point. Germany, which views itself as a global leader on climate, is grasping at the most carbon-intensive fuel source in part because it made the decision in 2011 to fully turn its back on nuclear for good at the time, enshrining what had been a planned phase-out into law.
Ontario Global Adjustment Appeal spotlights Ontario's electricity fee, regulatory charge vs tax debate, FIT contracts, green energy policy, and constitutional challenge as National Steel Car contests soaring power costs before the Ontario Superior Court.
Court challenge over Ontario's global adjustment fee, disputing its status as a regulatory charge instead of a tax.
✅ Challenges classification of global adjustment as tax vs regulatory charge.
✅ Focuses on FIT contracts, renewable energy payments, power cost impacts.
✅ Appeals Ontario ruling; implications for ratepayers and policy.
A manufacturer of steel rail cars is pursuing an appeal after its lawsuit challenging the constitutionality of a major Ontario electricity fee was struck down earlier this year.
Lawyers for Hamilton, Ont.-based National Steel Car Ltd. filed a notice of appeal in July after Ontario Superior Court Justice Wendy Matheson ruled in June that an electricity fee known as the global adjustment charge was a regulatory charge, and not an unconstitutional tax used to finance policy goals, as National Steel Car alleges.
The company, the decision noted, began its legal crusade last year after seeing its electricity bills had “increased dramatically” since the Ontario government passed green energy legislation nearly a decade ago, and amid concerns that high electricity rates are hurting Ontario manufacturers.
Under that legislation, the judge wrote, “private suppliers of renewable energy were paid to ’feed in’ energy into Ontario’s electricity grid.” The contracts for these so-called “feed-in tariff” contracts, or FIT contracts, were the “primary focus” of the lawsuit.
“The applicant seeks a declaration that part of the amount it has paid for electricity is an unconstitutional tax rather than a valid regulatory charge,” the judge added. “More specifically, it challenges part of the Global Adjustment, which is a component of electricity pricing and incorporates obligations under FIT contracts.”
Chiefly representing the difference between Ontario’s market price for power and the guaranteed price owed to generators, global adjustment now makes up the bulk of the commodity cost of electricity in the province. The fee has risen over the past decade, amid calls to reject steep Nova Scotia rate hikes as well — costing electricity customers $37 billion in global adjustment from 2006 to 2014, according to the province’s auditor general — because of investments in the electricity grid and green-energy contracts, among other reasons.
National Steel Car argued the global adjustment is a tax, and an unconstitutional one at that because it violated a section of the Constitution Act requiring taxes to be authorized by the legislature. The company also said the imposition of the global adjustment broke an Ontario law requiring a referendum to be held for new taxes.
The province, Justice Matheson wrote, had argued “that it is plain and obvious that these applications will fail.” In a decision released in June, the judge granted motions to strike out National Steel Car’s applications.
“The Global Adjustment,” she added, “is not a tax because its purpose, in pith and substance, is not to tax, and it is a regulatory charge and therefore, again, not a tax.”
Now, National Steel Car is arguing that the judge erred in several ways, including in fact, “by finding that the FIT contracts must be paid, when they can be cancelled.”
There has been a change in government at Queen’s Park since National Steel Car first filed its lawsuit last year, and that change has put green energy contracts under fire. The Progressive Conservative government of new Premier Doug Ford has already made a number of decisions on the electricity file, such as moving to cancel and wind down more than 750 renewable energy contracts, as well as repealing the province’s Green Energy Act.
The Tories also struck a commission of inquiry into the province’s finances that warned the global adjustment “may be struck down as unconstitutional,” a warning delivered amid cases where Nova Scotia's regulator approved a 14% rate hike in a high-profile decision.
“There is a risk that a court may find the global adjustment is not a valid regulatory charge if shifting costs over a longer period of time inadvertently results in future ratepayers cross-subsidizing today’s ratepayers,” the commission’s report said.
A spokesperson for Ontario’s Ministry of Energy, Northern Development and Mines said in an email that it would be “inappropriate to comment about the specifics of any case before the courts or currently under arbitration.”
National Steel Car is also prepared to fight its case all the way up to the Supreme Court of Canada, according to its lawyer.
“What is clear from our proceeding with the appeal is National Steel Car has every intention of seeing that lawsuit through to its conclusion if this government isn’t interested or prepared to reasonably settle it,” Jerome Morse said.
Hydro-Quebec Rate Freeze maintains current electricity rates, aligned with Bill 34, inflation indexing, and energy board oversight, delivering rebates to residential, commercial, and industrial customers and projecting nearly $1 billion in savings across Quebec.
A Bill 34 policy holding power rates, adding 2020 rebates, and indexing 2021-2024 rates to inflation for Quebec customers.
✅ 2020-21 rates frozen; savings near $1B over five years.
✅ $500M rebate: residential, commercial, industrial shares.
✅ 2021-2024 rates index to inflation; five-year reviews after 2025.
Hydro-Quebec Distribution will not file a rate adjustment application with the province’s energy board this year, amid a class-action lawsuit alleging customers were overcharged.
In a statement released on Friday the Crown Corporation said it wants current electricity rates to be maintained for another year, as pandemic-driven demand pressures persist, starting April 1. That is consistent with the recently tabled Bill 34, and echoes Ontario legislation to lower electricity rates in its aims, which guarantees lower electricity rates for Quebecers.
The bill also provides a $500 million rebate in 2020, similar to a $535 million refund previously issued, half of which will go to residential customers while $190 million will go to commercial customers and another $60 million to industrial ones.
Hydro-Quebec said the 2020-21 rate freeze will generate savings of nearly $1 billion for its clients over the next five years, even as Manitoba Hydro scales back increases in a different market.
Bill 34, which was tabled in June, also proposes to set rates based on inflation for the years 2021 to 2024, contrasting with Ontario rate increases over the same period. After 2025 Hydro-Quebec would have to ask the energy board to set new rates every five years, as opposed to the current annual system, while BC Hydro is raising rates by comparison.
Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.
Explore 50+ live, expert-led electrical training courses –