Ottawa pledges $71 million for Yukon power dam

By National Post


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Prime Minister Stephen Harper, wrapping up a week-long tour of CanadaÂ’s North, visited a hydroelectric dam near here where federal funding will boost the damÂ’s ability to produce clean hydroelectricity, displacing diesel-fueled power sources in the Yukon.

Mr. Harper and Yukon Premier Dennis Fentie signed a contribution agreement for the Mayo B hydro power plant, a $160-million project that is expected to be complete by 2013. The federal government will contribute $71-million to the project.

The federal government says the addition of the new power plant at the Mayo dam will help the Yukon reduce its dependency on diesel fuel for electricity and cut greenhouse has emissions by 50% from current levels.

Related News

Texas utilities struggle to restore power as Harvey hampers progress

Texas Gulf Coast Power Outages from Harvey continue as flooding, high winds, and downed lines paralyze Houston and coastal utilities, while restoration crews from out-of-state work to repair infrastructure and restore electricity across impacted communities.

 

Key Points

Power disruptions across Houston and the Gulf Coast from Harvey, driven by flooding, wind damage, and blocked access.

✅ CenterPoint warns multi-day outages in flooded zones.

✅ AEP Texas aided by crews from Kentucky, Illinois, Missouri.

✅ Entergy expects more outages as storm nears Galveston.

 

Hundreds of thousands of Texans were without power along the Gulf Coast as Tropical Storm Harvey left parts of the Houston area under water, with extended Houston outages compounding response efforts.

There were roughly 280,000 customers without power along the Texas's coast and in Houston and the surrounding areas on Monday, according to reported outages by the state's investor-owned utilities. Harvey, which made landfall on Friday, caused devastating flooding and knocked out power lines along its destructive path, similar to the Louisiana grid rebuild after Laura that required weeks of restoration.

CenterPoint Energy reported more than 100,000 outages earlier on Monday, though that figure was down to 91,744 shortly after 1 p.m. on Monday.

The company said it was unable to access hard-hit areas until floodwaters recede and electric infrastructure dries out, a challenge that, as seen in Florida power restoration efforts elsewhere, has taken weeks to resolve. Outages in the most flooded areas could last for several days, CenterPoint warned.

AEP Texas's coverage area south of Houston had 150,500 customers without electricity as of 11 a.m. ET on Monday. That was down from the peak of its outages on Saturday afternoon, which affected 220,000 customers.

Former FEMA deputy director: Texas has already begun recovery from storm  1:54 PM ET Mon, 28 Aug 2017 | 05:57

Corpus Christi and the surrounding areas along the Gulf Coast were still experiencing the most outages, while persistent Toronto outages after a spring storm underscored how long recovery can take in urban areas. AEP credited assistance from out-of-state workers for helping to get the lights back on.

"Thousands of resources have arrived from across the country to help AEP Texas with restoration efforts following this historic weather event. Crews from Kentucky, Illinois, Missouri and other states have arrived and are working on restoring power to those impacted by Hurricane Harvey," AEP said in a statement.

Entergy reported 29,500 customers were without power on Monday in areas north of Houston. The company warned that additional outages were expected if Harvey moves inland near the island city of Galveston on Wednesday as anticipated, a pattern similar to New Orleans during Ida where electricity failed despite levees holding.

Houston, Beaumont and Victoria are expected to see continued periods of torrential rain through Tuesday, before Harvey begins to move north on Wednesday and out of the flood zone by Thursday.

"Our crews are safely restoring power as quickly as possible, but the continued wind, rain and flooding are having an impact on restoration efforts," Entergy said in a statement.

South of Houston, about 7,500 Texas New Mexico Power Company customers were still experiencing outages, according to the company's outage map.

 

Related News

View more

Clean, affordable electricity should be an issue in the Ontario election

Ontario Electricity Supply Gap threatens growth as demand from EVs, heat pumps, industry, and greenhouses surges, pressuring the grid and IESO to add nuclear, renewables, storage, transmission, and imports while meeting net-zero goals.

 

Key Points

The mismatch as Ontario's electricity demand outpaces supply, driven by electrification, EVs, and industrial growth.

✅ Demand growth from EVs, heat pumps, and electrified industry

✅ Capacity loss from Pickering retirement and Darlington refurb

✅ Options: SMRs, renewables, storage, conservation, imports

 

Ontario electricity demand is forecast to soon outstrip supply as it confronts a shortage in the coming years, a problem that needs attention in the upcoming provincial election.

Forecasters say Ontario will need to double its power supply by 2050 as industries ramp up demand for low-emission clean power options and consumers switch to electric vehicles and space heating. But while the Ford government has made a flurry of recent energy announcements, including a hydrogen project at Niagara Falls and an interprovincial agreement on small nuclear reactors, it has not laid out how it intends to bulk up the province’s power supply.

“Ontario is entering a period of widening electricity shortfalls,” says the Ontario Chamber of Commerce. “Having a plan to address those shortfalls is essential to ensure businesses can continue investing and growing in Ontario with confidence.”

The supply and demand mismatch is coming because of brisk economic growth combined with increasing electrification to balance demand and emissions and meet Canada’s goal to reduce CO2 emissions by 40 per cent by 2030 and to net-zero by 2050.

Hamilton’s ArcelorMittal Dofasco and Algoma Steel in Sault Ste. Marie are leaders on this transformation. They plan to replace their blast furnaces and basic oxygen furnaces later this decade with electric arc furnaces (EAFs), reducing annual CO2 emissions by three million tonnes each.


Dofasco, which operates an EAF that is already the single largest electricity user in Ontario, plans to build a second EAF and a gas-fired ironmaking furnace, which can also be powered with zero-carbon hydrogen produced from electricity, once it becomes available.

Other new projects in the agriculture, mining and manufacturing sectors are also expected to be big power users, including the recently announced $5 billion Stellantis-LG electric vehicle battery plant in Windsor. Five new transmission lines will be built to service the plant and the burgeoning greenhouse industry in southwestern Ontario. The greenhouses alone will require enough additional electricity to power a city the size of Ottawa.

On top of these demands, growing numbers of Ontario drivers are expected to switch to electric vehicles and many homeowners and business owners are expected to convert from gas heating to heat pumps and electric heating.

Ontario is recognized as one of the cleanest electricity systems in the world, with over 90 per cent of its capacity from low-emission nuclear, hydro, wind and other renewable generation. Only nine per cent comes from CO2-emitting gas plants. But that’s about to get dirtier according to analysts.

Annual electricity demand is expected to grow from 140 terawatt hours (a terawatt hour is one trillion watts for one hour) currently to about 200 terawatt hours in 2042, according to the Independent Electricity System Operator, the agency that manages Ontario’s grid.

Demand is expected to outstrip currently contracted supply in 2026, reaching a growing supply gap of about 80 terawatt hours by 2042. A big part of this gap is due to the scheduled retirement of the Pickering nuclear station in 2025 and the current refurbishment of the Darlington nuclear station reactors. While the IESO doesn’t expect blackouts or brownouts, it forecasts the province will need to sharply increase expensive power imports and triple the amount of CO2-polluting gas-fired generation.

Without cleaner, lower-cost alternatives, this will mean “a vastly dirtier and more expensive electricity system,” York University researchers Mark Winfield and Collen Kaiser said in a recent commentary.

The party that wins the provincial election will have to make hard decisions on renewable energy, including new wind and solar projects, energy conservation, battery storage, new hydro plants, small nuclear reactors, gas generation and power imports from the U.S. and Quebec. In addition, the federal government is pressing the provinces to meet a new net-zero clean electricity standard by 2035. These decisions will have huge impact on Ontario’s future, with greening the grid costs highlighted in some reports as potentially very high.

With so much at stake, Ontario’s political parties need to tell voters during the upcoming campaign how they would address these enormous challenges.

 

Related News

View more

Yukon receives funding for new wind turbines

Yukon Renewable Energy Funding backs wind turbines, grid-scale battery storage, and transmission line upgrades, cutting diesel dependence, lowering greenhouse gas emissions, and strengthening Yukon Energy's isolated grid for remote communities, local jobs, and future growth.

 

Key Points

Federal support for Yukon projects adding wind, battery storage, and grid upgrades to cut diesel use and emissions.

✅ Three 100 kW wind turbines will power Destruction Bay.

✅ 8 MW battery storage smooths peaks and reduces diesel.

✅ Mayo-McQuesten 138 kV line upgrade boosts reliability.

 

Kluane First Nation in Yukon will receive a total of $3.1 million in funding from the federal government to install and operate wind turbines that will help reduce the community’s diesel reliance.

According to a release, the community will integrate three 100-kilowatt turbines in Destruction Bay, Yukon, providing a renewable energy source for their local power grid that will reduce greenhouse gas emissions and create local jobs in the community.

A $2-million investment from Natural Resources Canada came from the Clean Energy for Rural and Remote Communities Program, part of the Government of Canada’s Investing in Canada infrastructure plan, which supports green energy solutions across jurisdictions. Crown-Indigenous Relations’ and Northern Affairs Canada also contributed a $1.1-million investment from the Northern REACHE Program.

Also, the Government of Canada announced more than $39.2 million in funding for two Yukon Energy projects that will increase the reliability of Yukon’s electrical grid, including exploration of a potential connection to the B.C. grid to bolster resiliency, and help build the robust energy system needed to support future growth. The investment comes from the government’s Green Infrastructure Stream (GIS) of the Investing in Canada infrastructure plan.

 

Project 1: Grid-scale battery storage

The federal government is investing $16.5 million in Yukon Energy’s construction of a new battery storage system in Yukon. Once completed, the 8 MW battery will be the largest grid-connected battery in the North, and one of the largest in Canada, alongside major Ontario battery projects underway.

The new battery is a critical investment in Yukon Energy’s ability to meet growing demands for power and securing Yukon’s energy future. As an isolated grid, one of the largest challenges Yukon Energy faces is meeting peak demands for power during winter months, as electrification grows with EV adoption in the N.W.T. and beyond.

When complete, the new system will store excess electricity generated during off-peak periods, complementing emerging vehicle-to-grid integration approaches, and provide Yukoners with access to more power during peak periods. This new energy storage system will create a more reliable power supply and help reduce the territory’s reliance on diesel fuel. Over the 20-year life of project, the new battery is expected to reduce carbon emissions in Yukon by more than 20,000 tonnes.

A location for the new battery energy storage system has not been identified. Yukon Energy will begin permitting of the project in 2020 with construction targeted to be complete by mid-2023.

 

Project 2: Replacing and upgrading the Mayo to McQuesten Transmission Line

Yukon Energy has received $22.7 million in federal funding to proceed with Stage 1 of the Stewart to Keno City Transmission Project – replacing and upgrading the 65 year-old transmission line between Mayo and McQuesten. The project also includes the addition of system protection equipment at the Stewart Crossing South substation. The Yukon government, through the Yukon Development Corporation, has already provided $3.5 million towards planning for the project.

Replacing the Mayo to McQuesten transmission line is critical to Yukon Energy’s ability to deliver safe and reliable electricity to customers in the Mayo and Keno regions, mirroring broader regional transmission initiatives that enhance grid resilience, and to support economic growth in Yukon. The transmission line has reached end-of-life and become increasingly unreliable for customers in the area.

The First Nation of Na-Cho Nyak Dun has expressed their support of this project. The project has also been approved by the Yukon Environmental and Socio-Economic Assessment Board.

Yukon Energy will begin replacing and upgrading the 31 km transmission line between Mayo and McQuesten in 2020. Construction is expected to be complete in late 2020. When finished, the new 138 kV transmission line will provide more reliable electricity to customers in the Mayo and Keno regions and be equipped to support industrial growth and development in the area, including the Victoria Gold Mine, with renewable power from the Yukon grid.

Planning work for the remainder of the Stewart to Keno City Transmission Project has been completed. Yukon Energy continues to explore funding opportunities that are needed to proceed with other stages of the project.

 

Related News

View more

Saskatchewan to credit solar panel owners, but not as much as old program did

Saskatchewan Solar Net Metering Program lets rooftop solar users offset at retail rate while earning 7.5 cents/kWh credits for excess energy; rebates are removed, SaskPower balances grid costs with a 100 kW cap.

 

Key Points

An updated SaskPower plan crediting rooftop solar at 7.5 cents/kWh, offsetting usage at retail rate, without rebates.

✅ Excess energy credited at 7.5 cents/kWh

✅ Offsets on-site use at retail electricity rates

✅ Up to 100 kW generation; no program capacity cap

 

Saskatchewan has unveiled a new program that credits electricity customers for generating their own solar power, but it won’t pay as much as an older program did or reimburse them with rebates for their costs to buy and install equipment.

The new net metering program takes effect Nov. 1, and customers will be able to use solar to offset their own power use at the retail rate, similar to UK households' right to sell power in comparable schemes, though program details differ.

But they will only get 7.5 cents per kilowatt hour credit on their bills for excess energy they put back into the grid, as seen in Duke Energy payment changes in other jurisdictions, rather than the 14 cents in the previous program.

Dustin Duncan, the minister responsible for Crown-owned SaskPower, says the utility had to consider the interests of people wanting to use rooftop solar and everyone else who doesn’t have or can’t afford the panels, who he says would have to make up for the lost revenue.

Duncan says the idea is to create a green energy option, with wind power gains highlighting broader competitiveness, while also avoiding passing on more of the cost of the system to people who just cannot afford solar panels of their own.

Customers with solar panels will be allowed to generate up to 100 kilowatts of power against their bills.

“It’s certainly my hope that this is going to provide sustainability for the industry, as illustrated by Alberta's renewable surge creating jobs, that they have a program that they can take forward to their potential customers, while at the same time ensuring that we’re not passing onto customers that don’t have solar panels more cost to upkeep the grid,” Duncan said Tuesday.

Saskatchewan NDP leader Ryan Meili said he believes eliminating the rebate and cutting the excess power credit will kill the province’s solar energy, a concern consistent with lagging solar demand in Canada in recent national reports, he said.

“(Duncan) essentially made it so that any homeowner who wants to put up panels would take up to twice as long to pay it back, which effectively prices everybody in the small part of the solar production industry — the homeowners, the farms, the small businesses, the small towns — out of the market,” Meili said.

The province’s old net metering program hit its 16 megawatt capacity ahead of schedule, forcing the program to shut down, while disputes like the Manitoba Hydro solar lawsuit have raised questions about program management elsewhere. It also had a rebate of 20 per cent of the cost of the system, but that rebate has been discontinued.

The new net metering program won’t have any limit on program capacity, or an end date.

According to Duncan, the old program would have had a net negative impact to SaskPower of about $54 million by 2025, but this program will be much less — between $4 million and $5 million.

Duncan said other provinces either have already or are in the process of moving away from rebates for solar equipment, including Nova Scotia's proposed solar charge and similar reforms, and away from the one-to-one credits for power generation.

 

Related News

View more

Why an energy crisis and $5 gas aren't spurring a green revolution

U.S. Energy Transition Delays stem from grid bottlenecks, permitting red tape, solar tariff uncertainty, supply-chain shocks, and scarce affordable EVs, risking deeper fossil fuel lock-in despite climate targets for renewables, transmission expansion, and decarbonization.

 

Key Points

Delays driven by grid limits, permitting, and supply shocks that slow renewables, transmission, EVs, and decarbonization.

✅ Grid interconnection and transmission backlogs stall renewables

✅ Tariff probes and supply chains disrupt utility-scale solar

✅ Permitting, policy gaps, and EV costs sustain fossil fuel use

 

Big solar projects are facing major delays. Plans to adapt the grid to clean energy are confronting mountains of red tape. Affordable electric vehicles are in short supply.

The United States is struggling to squeeze opportunity out of an energy crisis that should have been a catalyst for cleaner, domestically produced power. After decades of putting the climate on the back burner, the country is finding itself unprepared to seize the moment and at risk of emerging from the crisis even more reliant on fossil fuels.

10 steps you can take to lower your carbon footprint
The problem is not entirely unique to the United States. Across the globe, climate leaders are warning that energy shortages including coal and nuclear disruptions prompted by Russia’s unprovoked invasion of Ukraine and high gas prices driven by inflation threaten to make the energy transition an afterthought — potentially thwarting efforts to keep global temperature rise under 1.5 degrees Celsius.

“The energy crisis exacerbated by the war in Ukraine has seen a perilous doubling down on fossil fuels by the major economies,” U.N. Secretary General António Guterres said at a conference in Vienna on Tuesday, according to prepared remarks. He warned governments and investors that a failure to immediately and more aggressively embrace clean energy could be disastrous for the planet.

U.S. climate envoy John F. Kerry suggested that nations are falling prey to a flawed logic that fossil fuels will help them weather this period of instability, undermining U.S. national security and climate goals, which has seen gas prices climb to a record-high national average of $5 per gallon. “You have this new revisionism suggesting that we have to be pumping oil like crazy, and we have to be moving into long-term [fossil fuel] infrastructure building,” he said at the Time100 Summit in New York this month. “We have to push back.”

Climate envoy John F. Kerry attends the Summit of the Americas in Los Angeles on June 8. Kerry has criticized the tendency to turn toward fossil fuels in times of uncertainty. (Apu Gomes/AFP/Getty Images)
In the United States — the world’s second-largest emitter of greenhouse gases after China — the hurdles go beyond the supply-chain crisis and sanctions linked to the war in Ukraine. The country’s lofty goals for all carbon pollution to be gone from the electricity sector by 2035 and for half the cars sold to be electric by 2030 are jeopardized by years of neglect of the electrical grid, regulatory hurdles that have set projects back years, and failures by Congress and policymakers to plan ahead.
The challenges are further compounded by plans to build costly new infrastructure for drilling and exporting natural gas that will make it even harder to transition away from the fossil fuel.

“We are running into structural challenges preventing consumers and businesses from going cleaner, even at this time of high oil and gas prices,” said Paul Bledsoe, a climate adviser in the Clinton administration who now works on strategy at the Progressive Policy Institute, a center-left think tank. “It is a little alarming that even now, Congress is barely talking about clean energy.”

Consumers are eager for more wind and solar. Companies looking to go carbon-neutral are facing growing waitlists for access to green energy, and a Pew Research Center poll in late January found that two-thirds of Americans want the United States to prioritize alternative energy over fossil fuel production.

But lawmakers have balked for more than a decade at making most of the fundamental economic and policy changes such as a clean electricity standard that experts widely agree are crucial to an orderly and accelerated energy transition. The United States does not have a tax on carbon, nor a national cap-and-trade program that would reorient markets toward lowering emissions. The unraveling in Congress of President Biden’s $1.75 trillion Build Back Better plan has added to the head winds that green-energy developers face, even as climate law results remain mixed.

Vice President Harris tours electric school buses at Meridian High School in Falls Church, Va., on May 20. (Mandel Ngan/AFP/Getty Images)
“There is literally nothing pushing this forward in the U.S. beyond the tax code and some state laws,” said Heather Zichal, a former White House climate adviser who is now the chief executive of the American Clean Power Association.

The effects of the U.S. government’s halting approach are being felt by solar-panel installers, who saw the number of projects in the most recent quarter fall to the lowest level since the pandemic began. There was 24 percent less solar installed in the first quarter of 2022 than in the same quarter of 2021.

The holdup largely stems from a Commerce Department investigation into alleged tariff-dodging by Chinese manufacturers. Faced with the potential for steep retroactive penalties, hundreds of industrial-scale solar projects were frozen in early April. Weak federal policies to encourage investment in solar manufacturing left American companies ill-equipped to fill the void.

“We shut down multiple projects and had to lay off dozens of people,” said George Hershman, chief executive of SOLV Energy, which specializes in large solar installations. SOLV, like dozens of other solar companies, is now scrambling to reassemble those projects after the administration announced a pause of the tariffs.

Meanwhile, adding clean electricity to the aging power grid has become an increasingly complicated undertaking, given the failure to plan for adequate transmission lines and long delays connecting viable wind and solar projects to the electricity network.

 

Related News

View more

Warren Buffett’s Secret To Cheap Electricity: Wind

Berkshire Hathaway Energy Wind Power drives cheap electricity rates in Iowa via utility-scale wind turbines, integrated transmission, battery storage, and grid management, delivering renewable energy, stable pricing, and long-term rate freezes through 2028.

 

Key Points

A vertically integrated wind utility lowering Iowa rates via owned generation, transmission, and advanced grid control.

✅ Owned wind assets meet Iowa residential demand

✅ Integrated transmission lowers costs and losses

✅ Rate freeze through 2028 sustains cheap power

 

In his latest letter to Berkshire Hathaway shareholders, Warren Buffett used the 20th anniversary of Berkshire Hathaway Energy to tout its cheap electricity bills for customers.

When Berkshire purchased the majority share of BHE in 2000, the cost of electricity for its residential customers in Iowa was 8.8 cents per kilowatt-hour (kWh) on average. Since then, these electricity rates have risen at a paltry <1% per year, with a freeze on rate hikes through 2028. As anyone who pays an electricity bill knows, that is an incredible deal.  

As Buffett himself notes with alacrity, “Last year, the rates [BHE’s competitor in Iowa] charged its residential customers were 61% higher than BHE’s. Recently, that utility received a rate increase that will widen the gap to 70%.”

 

The Winning Strategy

So, what’s Buffett’s secret to cheap electricity? Wind power.

“The extraordinary differential between our rates and theirs is largely the result of our huge accomplishments in converting wind into electricity,” Buffett explains. 

Wind turbines in Iowa that BHE owns and operates are expected to generate about 25.2 million megawatt-hours (MWh) of electricity for its customers, as projects like Building Energy operations begin to contribute. By Buffett’s estimations, that will be enough to power all of its residential customers’ electricity needs in Iowa.  


The company has plans to increase its renewable energy generation in other regions as well. This year, BHE Canada is expected to start construction on a 117.6MW wind farm in Alberta, Canada with its partner, Renewable Energy Systems, that will provide electricity to 79,000 homes in Canada’s oil country.

Observers note that Alberta is a powerhouse for both green energy and fossil fuels, underscoring the region's unique transition.

But I would argue that the secret to BHE’s success perhaps goes deeper than transitioning to sources of renewable energy. There are plenty of other utility companies that have adopted wind and solar power as an energy source. In the U.S., where renewable electricity surpassed coal in 2022, at least 50% of electricity customers have the option to buy renewable electricity from their power supplier, according to the Department of Energy. And some states, such as New York, have gone so far as to allow customers to pick from providers who generate their electricity.

What differentiates BHE from a lot of the competition in the utility space is that it owns the means to generate, store, transmit and supply renewable power to its customers across the U.S., U.K. and Canada, with lessons from the U.K. about wind power informing policy.

In its financial filings for 2019, the company reported that it owns 33,600MW of generation capacity and has 33,400 miles of transmission lines, as well as a 50% interest in Electric Transmission Texas (ETT) that has approximately 1,200 miles of transmission lines. This scale and integration enables BHE to be efficient in the distribution and sale of electricity, including selling renewable energy across regions.

BHE is certainly not alone in building renewable-energy fueled electricity dominions. Its largest competitor, NextEra, built 15GW of wind capacity and has started to expand its utility-scale solar installations. Duke Energy owns and operates 2,900 MW of renewable energy, including wind and solar. Exelon operates 40 wind turbine sites across the U.S. that generate 1,500 MW.

 

Integrated Utilities Power Ahead

It’s easy to see why utility companies see wind as a competitive source of electricity compared to fossil fuels. As I explained in my previous post, Trump’s Wrong About Wind, the cost of building and generating wind energy have fallen significantly over the past decade. Meanwhile, improvements in battery storage and power management through new technological advancements have made it more reliable (Warren Buffett bet on that one too).

But what is also striking is that integrated power and transmission enables these utility companies to make those decisions; both in terms of sourcing power from renewable energy, as well as the pricing of the final product. Until wind and solar power are widespread, these utility companies are going to have an edge of the more fragmented ends of the industry who can’t make these purchasing or pricing decisions independently. 

Warren Buffett very rarely misses a beat. He’s not the Oracle of Omaha for nothing. Berkshire Hathaway’s ownership of BHE has been immensely profitable for its shareholders. In the year ended December 31, 2019, BHE and its subsidiaries reported net income attributable to BHE shareholders of $2.95 billion.

There’s no question that renewable energy will transform the utility industry over the next decade. That change will be led by the likes of BHE, who have the power to invest, control and manage their own energy generation assets.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.