New power lines to cost $4 billion

By Toronto Star


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Some of the wires that carry Ontario's electricity are aging. Others are in the wrong places.

The Ontario Power Authority has estimated Ontario will have to spend $4 billion on new high-voltage transmission lines by 2025.

One of the tasks is connecting traditional, big-box generating stations with their markets. Hydro One is currently spending $695 million to string a new line to carry power from the refurbished Bruce A generating station near Kincardine, on Lake Huron, to Milton.

Hydro One faces a second challenge.

The Green Energy Act tilts the provincial power grid away from a handful of mega-generating stations. Instead, it calls for development of hundreds of smaller-scale sites scattered across remote highlands and lakeshores, in rural fields and on city roofs.

A letter written a year ago by then-energy minister George Smitherman to Hydro One set out a roster of projects – most due within the next five years – to connect green energy projects with the provincial grid. The Ontario Power Authority is now assessing the priorities.

As it ramps up spending, Hydro One has asked for stiff rate increases of 15.7 per cent next year, and 9.8 per cent in 2012. In fact, Hydro One had requested a 21.5 per cent increase for 2011 until Energy Minister Brad Duguid urged them to roll it back.

The spending on wires isn't confined to long-distance lines.

Local utilities also face new spending, perhaps none more than Toronto Hydro, which has one of the oldest systems in the province.

A recent inventory of its equipment found that 35 per cent of Toronto Hydro's equipment was older than its expected lifespan.

The utility has drawn up a $1.2 billion plan to drive that figure down to 25 per cent over 10 years, in order to meet what is considered the industry standard.

Related News

Chief Scientist: we need to transform our world into a sustainable ‘electric planet’

Hydrogen Energy Transition advances renewable energy integration via electrolysis, carbon capture and storage, and gas hybrids to decarbonize industry, steel, and transport, enable grid storage, replace ammonia feedstocks, and export clean power across continents.

 

Key Points

Scaling clean hydrogen with renewables and CCS to cut emissions in power and industry, and enable clean transport.

✅ Electrolysis and CCS provide low-emission hydrogen at scale.

✅ Balances renewables with storage and flexible gas assets.

✅ Decarbonizes steel, ammonia, heavy transport, and exports.

 

I want you to imagine a highway exclusively devoted to delivering the world’s energy. Each lane is restricted to trucks that carry one of the world’s seven large-scale sources of primary energy: coal, oil, natural gas, nuclear, hydro, solar and wind.

Our current energy security comes at a price, as Europe's power crisis shows, the carbon dioxide emissions from the trucks in the three busiest lanes: the ones for coal, oil and natural gas.

We can’t just put up roadblocks overnight to stop these trucks; they are carrying the overwhelming majority of the world’s energy supply.

But what if we expand clean electricity production carried by the trucks in the solar and wind lanes — three or four times over — into an economically efficient clean energy future?

Think electric cars instead of petrol cars. Think electric factories instead of oil-burning factories. Cleaner and cheaper to run. A technology-driven orderly transition. Problems wrought by technology, solved by technology.

Read more: How to transition from coal: 4 lessons for Australia from around the world

Make no mistake, this will be the biggest engineering challenge ever undertaken. The energy system is huge, and even with an internationally committed and focused effort the transition will take many decades.

It will also require respectful planning and retraining to ensure affected individuals and communities, who have fuelled our energy progress for generations, are supported throughout the transition.

As Tony, a worker from a Gippsland coal-fired power station, noted from the audience on this week’s Q+A program:

The workforce is highly innovative, we are up for the challenge, we will adapt to whatever is put in front of us and we have proven that in the past.

This is a reminder that if governments, industry, communities and individuals share a vision, a positive transition can be achieved.

The stunning technology advances I have witnessed in the past ten years, such as the UK's green industrial revolution shaping the next waves of reactors, make me optimistic.

Renewable energy is booming worldwide, and is now being delivered at a markedly lower cost than ever before.

In Australia, the cost of producing electricity from wind and solar is now around A$50 per megawatt-hour.

Even when the variability is firmed with grid-scale storage solutions, the price of solar and wind electricity is lower than existing gas-fired electricity generation and similar to new-build coal-fired electricity generation.

This has resulted in substantial solar and wind electricity uptake in Australia and, most importantly, projections of a 33% cut in emissions in the electricity sector by 2030, when compared to 2005 levels.

And this pricing trend will only continue, with a recent United Nations report noting that, in the last decade alone, the cost of solar electricity fell by 80%, and is set to drop even further.

So we’re on our way. We can do this. Time and again we have demonstrated that no challenge to humanity is beyond humanity.

Ultimately, we will need to complement solar and wind with a range of technologies such as high levels of storage, including gravity energy storage approaches, long-distance transmission, and much better efficiency in the way we use energy.

But while these technologies are being scaled up, we need an energy companion today that can react rapidly to changes in solar and wind output. An energy companion that is itself relatively low in emissions, and that only operates when needed.

In the short term, as Prime Minister Scott Morrison and energy minister Angus Taylor have previously stated, natural gas will play that critical role.

In fact, natural gas is already making it possible for nations to transition to a reliable, and relatively low-emissions, electricity supply.

Look at Britain, where coal-fired electricity generation has plummeted from 75% in 1990 to just 2% in 2019.

Driving this has been an increase in solar, wind, and hydro electricity, up from 2% to 27%. At the same time, and this is key to the delivery of a reliable electricity supply, electricity from natural gas increased from virtually zero in 1990 to more than 38% in 2019.

I am aware that building new natural gas generators may be seen as problematic, but for now let’s assume that with solar, wind and natural gas, we will achieve a reliable, low-emissions electricity supply.

Is this enough? Not really.

We still need a high-density source of transportable fuel for long-distance, heavy-duty trucks.

We still need an alternative chemical feedstock to make the ammonia used to produce fertilisers.

We still need a means to carry clean energy from one continent to another.

Enter the hero: hydrogen.


Hydrogen could fill the gaps in our energy needs. Julian Smith/AAP Image
Hydrogen is abundant. In fact, it’s the most abundant element in the Universe. The only problem is that there is nowhere on Earth that you can drill a well and find hydrogen gas.

Don’t panic. Fortunately, hydrogen is bound up in other substances. One we all know: water, the H in H₂O.

We have two viable ways to extract hydrogen, with near-zero emissions.

First, we can split water in a process called electrolysis, using renewable electricity or heat and power from nuclear beyond electricity options.

Second, we can use coal and natural gas to split the water, and capture and permanently bury the carbon dioxide emitted along the way.

I know some may be sceptical, because carbon capture and permanent storage has not been commercially viable in the electricity generation industry.

But the process for hydrogen production is significantly more cost-effective, for two crucial reasons.

First, since carbon dioxide is left behind as a residual part of the hydrogen production process, there is no additional step, and little added cost, for its extraction.

And second, because the process operates at much higher pressure, the extraction of the carbon dioxide is more energy-efficient and it is easier to store.

Returning to the electrolysis production route, we must also recognise that if hydrogen is produced exclusively from solar and wind electricity, we will exacerbate the load on the renewable lanes of our energy highway.

Think for a moment of the vast amounts of steel, aluminium and concrete needed to support, build and service solar and wind structures. And the copper and rare earth metals needed for the wires and motors. And the lithium, nickel, cobalt, manganese and other battery materials needed to stabilise the system.

It would be prudent, therefore, to safeguard against any potential resource limitations with another energy source.

Well, by producing hydrogen from natural gas or coal, using carbon capture and permanent storage, we can add back two more lanes to our energy highway, ensuring we have four primary energy sources to meet the needs of the future: solar, wind, hydrogen from natural gas, and hydrogen from coal.

Read more: 145 years after Jules Verne dreamed up a hydrogen future, it has arrived

Furthermore, once extracted, hydrogen provides unique solutions to the remaining challenges we face in our future electric planet.

First, in the transport sector, Australia’s largest end-user of energy.

Because hydrogen fuel carries much more energy than the equivalent weight of batteries, it provides a viable, longer-range alternative for powering long-haul buses, B-double trucks, trains that travel from mines in central Australia to coastal ports, and ships that carry passengers and goods around the world.

Second, in industry, where hydrogen can help solve some of the largest emissions challenges.

Take steel manufacturing. In today’s world, the use of coal in steel manufacturing is responsible for a staggering 7% of carbon dioxide emissions.

Persisting with this form of steel production will result in this percentage growing frustratingly higher as we make progress decarbonising other sectors of the economy.

Fortunately, clean hydrogen can not only provide the energy that is needed to heat the blast furnaces, it can also replace the carbon in coal used to reduce iron oxide to the pure iron from which steel is made. And with hydrogen as the reducing agent the only byproduct is water vapour.

This would have a revolutionary impact on cutting global emissions.

Third, hydrogen can store energy, as with power-to-gas in pipelines solutions not only for a rainy day, but also to ship sunshine from our shores, where it is abundant, to countries where it is needed.

Let me illustrate this point. In December last year, I was privileged to witness the launch of the world’s first liquefied hydrogen carrier ship in Japan.

As the vessel slipped into the water I saw it not only as the launch of the first ship of its type to ever be built, but as the launch of a new era in which clean energy will be routinely transported between the continents. Shipping sunshine.

And, finally, because hydrogen operates in a similar way to natural gas, our natural gas generators can be reconfigured in the future as hydrogen-ready power plants that run on hydrogen — neatly turning a potential legacy into an added bonus.

Hydrogen-powered economy
We truly are at the dawn of a new, thriving industry.

There’s a nearly A$2 trillion global market for hydrogen come 2050, assuming that we can drive the price of producing hydrogen to substantially lower than A$2 per kilogram.

In Australia, we’ve got the available land, the natural resources, the technology smarts, the global networks, and the industry expertise.

And we now have the commitment, with the National Hydrogen Strategy unanimously adopted at a meeting by the Commonwealth, state and territory governments late last year.

Indeed, as I reflect upon my term as Chief Scientist, in this my last year, chairing the development of this strategy has been one of my proudest achievements.

The full results will not be seen overnight, but it has sown the seeds, and if we continue to tend to them, they will grow into a whole new realm of practical applications and unimagined possibilities.

 

Related News

View more

Electrification Of Vehicles Prompts BC Hydro's First Call For Power In 15 Years

BC Hydro Clean Power Call 2024 seeks utility-scale renewable energy, including wind and solar, to meet rising electricity demand, advance clean goals, expand grid, and support Indigenous participation through competitive procurement and equity opportunities.

 

Key Points

BC Hydro's 2024 bid to add zero-emission wind and solar to meet rising demand and support Indigenous equity.

✅ Competitive procurement for utility-scale wind and solar

✅ Targets 3,000 GWh new greenfield by fiscal 2029

✅ Encourages Indigenous ownership and equity stakes

 

The Government of British Columbia (the Government or Province) has announced that BC Hydro would be moving forward with a call for new sources of 100 percent clean, renewable emission-free electricity, notably including wind and solar, even as nuclear power remains a divisive option among residents. The call, expected to launch in spring 2024, is BC Hydro's first call for power in 15 years and will seek power from larger scale projects.

Over the past decade, British Columbia has experienced a growing economy and population as well as a move by the housing, business and transportation sectors towards electrification, with industrial demand from LNG facilities also influencing load growth. As the Government highlighted in their recent announcement, the number of registered light-duty electric vehicles in British Columbia increased from 5,000 in 2016 to more than 100,000 in 2023. Zero-emission vehicles represented 18.1 percent of new light-duty passenger vehicles sold in British Columbia in 2022, the highest percentage for any province or territory.

Ultimately, the Province now expects electricity demand in British Columbia to increase by 15 percent by 2030. BC Hydro elaborated on the growing need for electricity in their recent Signposts Update to the British Columbia Utilities Commission (BCUC), and noted additions such as new generating stations coming online to support capacity. BC Hydro implemented its Signposts Update process to monitor whether the "Near-term actions" established in its 2021 Integrated Resource Plan continue to be appropriate and align with the changing circumstances in electricity demand. Those actions outline how BC Hydro will meet the electricity needs of its customers over the next 20 years. The original Near-term actions focused on demand-side management and not incremental electricity production.

In its Update, BC Hydro emphasized that increased use of electricity and decreased supply, along with episodes of importing out-of-province fossil power during tight periods, has advanced the forecast of the province's need for additional renewable energy by three years. Accordingly, BC Hydro has updated its 2021 Integrated Resource Plan to, among other things:

accelerate the timing of several Near-term actions on energy efficiency, demand response, industrial load curtailment, electricity purchase agreement renewals and utility-scale batteries; and
add new Near-term actions for BC Hydro to acquire an additional 3,000 GWh per year of new clean, renewable energy from greenfield facilities in the province able to achieve commercial operation as early as fiscal 2029, as well as approximately 700 GWh per year of new clean, renewable energy from existing facilities prior to fiscal 2029.
The Province's predictions align with Canada Energy Regulator's (CER) "Canada's Energy Future 2023" flagship report (Report) released on June 20, 2023. The Report, which looks at Canadians' possible energy futures, includes two long-term scenarios modelled on Canada reaching net-zero by 2050. Under either scenario, the electricity sector is predicted to serve as the cornerstone of the net-zero energy system, with examples such as Hydro-Quebec's decarbonization strategy illustrating this shift as it transforms and expands to accommodate increasing electricity use.

Key Details of the Call
Though not finalized, the call for power will be a competitive process, with the exact details to be designed by BC Hydro and the Province, incorporating input from the recently-formed BC Hydro Task Force made up of Indigenous communities, industry and stakeholders. This is a shift from previous calls for power, which operated as a continuous-intake program with a standing offer at a fixed rate, after projects like the Siwash Creek project were left in limbo.

Drawing on advice from Indigenous and external energy experts, the Province seeks to advance Indigenous ownership and equity interest opportunities in the electricity sector, potentially with minimum requirements for Indigenous participation in new projects to be a condition of the competitive process. The Province has also committed $140 million to the B.C. Indigenous Clean Energy Initiative (BCICEI) to support Indigenous-led power projects and their ability to respond to future electricity demand, facilitating their ability to compete in the call for power, despite their smaller size.

BC Hydro expects to initiate the call in spring 2024, with the goal of acquiring new sources of electricity as early as 2028, even as clean electricity affordability features prominently in Ontario's election discourse.

 

Related News

View more

B.C. Challenges Alberta's Electricity Export Restrictions

BC-Alberta Electricity Restrictions spotlight interprovincial energy tensions, limiting power exports and affecting grid reliability, energy sharing, and climate goals, while raising questions about federal-provincial coordination, smart grids, and storage investments.

 

Key Points

Policies limiting Alberta's power exports to provinces like BC, prioritizing local demand and affecting grid reliability.

✅ Prioritizes Alberta load over interprovincial power exports

✅ Risks to BC peak demand support and outage resilience

✅ Pressures for federal-provincial coordination and smart-grid investment

 

In a move that underscores the complexities of Canada's interprovincial energy relationships, the government of British Columbia (B.C.) has formally expressed concerns over recent electricity restrictions imposed by Alberta after it suspended electricity purchase talks with B.C., amid ongoing regional coordination challenges.

Background: Alberta's Electricity Restrictions

Alberta, traditionally reliant on coal and natural gas for electricity generation, has been undergoing a transition towards more sustainable energy sources as it pursues a path to clean electricity in the province.

In response, Alberta introduced restrictions on electricity exports, aiming to prioritize local consumption and stabilize its energy market and has proposed electricity market changes to address structural issues.

B.C.'s Position: Ensuring Energy Reliability and Cooperation

British Columbia, with its diverse energy portfolio and commitment to sustainability, has historically relied on the ability to import electricity from Alberta, especially during periods of high demand or unforeseen shortfalls. The recent restrictions threaten this reliability, prompting B.C.'s government to take action amid an electricity market reshuffle now underway.

B.C. officials have articulated that access to Alberta's electricity is crucial, particularly during outages or times when local generation does not meet demand. The ability to share electricity among provinces ensures a stable and resilient energy system, benefiting consumers and supporting economic activities, including critical minerals operations, that depend on consistent power supply.

Moreover, B.C. has expressed concerns that Alberta's restrictions could set a precedent that might affect future interprovincial energy agreements. Such a precedent could complicate collaborative efforts aimed at achieving national energy goals, including sustainability targets and infrastructure development.

Broader Implications: National Energy Strategy and Climate Goals

The dispute between B.C. and Alberta over electricity exports highlights the absence of a cohesive national energy strategy, as external pressures, including electricity exports at risk, add complexity. While provinces have jurisdiction over their energy resources, the interconnected nature of Canada's power grids necessitates coordinated policies that balance local priorities with national interests.

This situation also underscores the challenges Canada faces in meeting its climate objectives. Transitioning to renewable energy sources requires not only technological innovation but also collaborative policies that ensure energy reliability and affordability across provincial boundaries, as rising electricity prices in Alberta demonstrate.

Potential Path Forward: Dialogue and Negotiation

Addressing the concerns arising from Alberta's electricity restrictions requires a nuanced approach that considers the interests of all stakeholders. Open dialogue between provincial governments is essential to identify solutions that uphold the principles of energy reliability, economic cooperation, and environmental sustainability.

One potential avenue is the establishment of a federal-provincial task force dedicated to energy coordination. Such a body could facilitate discussions on resource sharing, infrastructure investments, and policy harmonization, aiming to prevent conflicts and promote mutual benefits.

Additionally, exploring technological solutions, such as smart grids and energy storage systems, could enhance the flexibility and resilience of interprovincial energy exchanges. Investments in these technologies may reduce the dependency on traditional export mechanisms, offering more dynamic and responsive energy management strategies.

The tensions between British Columbia and Alberta over electricity restrictions serve as a microcosm of the broader challenges facing Canada's energy sector. Balancing provincial autonomy with national interests, ensuring equitable access to energy resources, and achieving climate goals require collaborative efforts and innovative solutions. As the situation develops, stakeholders across the political, economic, and environmental spectrums will need to engage constructively, fostering a Canadian energy landscape that is resilient, sustainable, and inclusive.

 

Related News

View more

Energy crisis: EU outlines possible gas price cap strategies

EU Gas Price Cap Strategies aim to curb inflation during an energy crisis by capping wholesale gas and electricity generation costs, balancing supply and demand, mitigating subsidies, and safeguarding supply security amid Russia-Ukraine shocks.

 

Key Points

Temporary EU measures to cap gas and power prices, curb inflation, manage demand, and protect supply security.

✅ Flexible temporary price limits to secure gas supplies

✅ Framework cap on gas for electricity generation with demand checks

✅ Risk: subsidies, higher demand, and market distortions

 

The European Commission has outlined possible strategies to cap gas prices as the bloc faces a looming energy crisis this winter. 

Member states are divided over the emergency measures designed to pull down soaring inflation amid Russia's war in Ukraine. 

One proposal is a temporary "flexible" limit on gas prices to ensure that Europe can continue to secure enough gas, EU energy commissioner Kadri Simson said on Tuesday. 

Another option could be an EU-wide "framework" for a price cap on gas used to generate electricity, which would be combined with measures to ensure gas demand does not rise as a result, she said.

EU leaders are meeting on Friday to debate gas price cap strategies amid warnings that Europe's energy nightmare could worsen this winter.

Last week, France, Italy, Poland and 12 other EU countries urged the Commission to propose a broader price cap targeting all wholesale gas trade. 

But Germany -- Europe's biggest gas buyer -- and the Netherlands are among those opposing electricity market reforms within the bloc.

Russia has slashed gas deliveries to Europe since its February invasion of Ukraine, with Moscow blaming the cuts on Western sanctions imposed in response to the invasion, as the EU advances a plan to dump Russian energy across the bloc.

Since then, the EU has agreed on emergency laws to fill gas storage and windfall profit levies to raise money to help consumers with bills. 

Price cap critics
One energy analyst told Euronews that an energy price cap was an "unchartered territory" for the European Union. 

The EU's energy sector is largely liberalised and operates under the fundamental rules of supply and demand, making rolling back electricity prices complex in practice.

"My impression is that member states are looking at prices and quantities in isolation and that's difficult because of economics," said Elisabetta Cornago, a senior energy researcher at the Centre for European Reform.

"It's hard to picture such a level of market intervention This is uncharted territory."

The energy price cap would "quickly start costing billions" because it would force governments to continually subsidise the difference between the real market price and the artificially capped price, another expert said. 

"If you are successful and prices are low and you still get gas, consumers will increase their demand: low price means high demand. Especially now that winter is coming," said Bram Claeys, a senior advisor at the Regulatory Assistance Project. 

 

Related News

View more

As Alberta electricity generators switch to gas, power price cap comes under spotlight

Alberta Energy-Only Electricity Market faces capacity market debate, AESO price cap review, and coal-to-gas shifts by TransAlta and Capital Power, balancing reliability with volatility as investment signals evolve across Alberta's grid.

 

Key Points

An energy market paying generators only for electricity sold, with AESO oversight and a price cap guiding new capacity.

✅ AESO reviewing $999 per MW-h wholesale price cap.

✅ UCP retained energy-only; capacity market plan cancelled.

✅ TransAlta and Capital Power shift to coal-to-gas.

 

The Kenney government’s decision to cancel the redesign of Alberta’s electricity system to a capacity market won’t side-track two of the province’s largest power generators from converting coal-fired facilities to burn natural gas as part of Alberta’s shift from coal to cleaner energy overall.

But other changes could be coming to the province’s existing energy-only electricity market — including the alteration of the $999 per megawatt-hour (MW-h) wholesale price cap in Alberta.

The heads of TransAlta Corp. and Capital Power Corp. are proceeding with strategies to convert existing coal-fired power generating facilities to use natural gas in the coming years.

Calgary-based TransAlta first announced in 2017 that it would make the switch, as the NDP government was in the midst of overhauling the electricity sector and wind generation began to outpace coal in the province.

At the time, the Notley government planned to phase out coal-fired power by 2030, even as Alberta moved to retire coal by 2023 in practice, and shift Alberta into an electricity capacity market in 2021.

Such a move, made on the recommendation of the Alberta Electric System Operator (AESO), was intended to reduce price volatility and ensure system reliability.

Under the energy-only market, generators receive payments for electricity produced and sold into the grid. In a capacity market, generators are also paid for having power available on demand, regardless of how often they sell energy into the provincial grid.

The UCP government decided last month to ditch plans for a capacity market after consulting with the sector, saying it would be better for consumers.

On a conference call, TransAlta CEO Dawn Farrell said the company will convert coal-fired generating plants to burn gas, although it may alter the mix between simple conversions and switching to so-called “hybrid” plants.

(A hybrid conversion is a larger and more-expensive switch, as it includes installing a new gas turbine and heat-recovery steam generator, but it creates a highly efficient combined cycle unit.)

“Our view is fundamentally that carbon will be priced over the next 20 years no matter what,” she said Friday.

“We cannot get off coal fast enough in this company, and gas right now in Alberta is extremely inexpensive…

“So our coal-to-gas strategy is completely predicated on our belief that it’s not smart to be in carbon-intensive fuels for the future.”

Elsewhere in Canada, the Stop the Shock campaign has advocated for reviving coal power, underscoring ongoing policy debates.

The company said it’s planning the coal-to-gas conversion and re-powering of some or all of the units at its Keephills and Sundance facilities to gas-fired generation sometime between 2020 and 2023.

Similarly, Capital Power CEO Brian Vaasjo said the Edmonton-based company is moving ahead with a project that will allow it to burn both coal and natural gas at its Genesee generating station, even as Ontario’s energy minister sought to explore a halt to natural gas generation elsewhere.

In June, the company announced it would spend an estimated $50 million between 2019 and 2021 to allow it to use gas at the facility.

“What we’re doing is going to be dual fuel, so we will be able to operate 100 per cent natural gas or 100 per cent coal and everything in between,” Vaasjo said in an interview.

“You can expect to see we will be burning coal in the winter when natural gas prices are high, and we will be burning natural gas in summer when gas prices are real low.”

The transition comes as the government’s decision to stick with the energy-only market has been welcomed by players in the industry, and as Alberta's electricity future increasingly leans on wind resources.

A study by electricity consultancy EDC Associates found the capacity market would result in consumers paying an extra $1.4 billion in direct costs in 2021-22, as it required more generation to come online earlier than expected.

These additional costs would have accumulated to $10 billion by 2030, said EDC chief executive Duane-Reid Carlson.

For Capital Power, the decision to stick with the current system makes the province more investable in the future. Vaasjo said there was great uncertainty about the transition to a capacity market, and the possibility of rules shifting further.

Officials with Enmax Corp. said the city-owned utility would not have invested in future generation under the proposed capacity market.

“There is no short-term need (today) for new generation, so we’re just looking at the market and saying, ‘OK, as it evolves, we will see what happens,’” said Enmax vice-president Tim Boston.

Sticking with the energy-only market doesn’t mean Alberta will keep the existing rules.

In a July 25 letter, Alberta Energy Minister Sonya Savage directed AESO chair Will Bridge to examine if changes to the existing market are needed and report back by July 2020.

AESO, which manages the power grid, has been asked to investigate whether the current price cap of $999 per megawatt-hour (MW-h) should be changed.

The price ceiling hasn’t been altered since the energy-only market was implemented by the Klein government about two decades ago.

While allowing prices to go higher would increase volatility, reflecting lessons from Europe’s power crisis about scarcity pricing, during periods of rising demand and limited supply, it would send a signal to generators when investment in new generation is required, said Kent Fellows, a research associate at the University of Calgary’s School of Public Policy.

“Keeping the price (cap) too low could end up costing us more in the long run,” he said.

In a 2016 report, AESO said the province examined raising the price cap to $5,000 per MW-h, but “determined that it was unlikely to be successful in attracting investment due to increased price volatility.”

However, the amount of future generation that will be required in Alberta has been scaled back by the province.

In the United States, the Electricity Reliability Council of Texas (ERCOT) allows wholesale power prices in the state to climb to a cap of $9,000 per megawatt hours as demand rises — as it did Tuesday in the midst of a heat wave, according to Bloomberg.

Jim Wachowich, legal counsel for the Consumers’ Coalition of Alberta, said while few players are exposed to spot electricity prices, he has yet to be convinced raising the cap would be good for Albertans.

“Someone has to show me the evidence, and I suspect that’s what the minister has asked the AESO to do,” he said.

Generators say they believe some tinkering is needed to the energy-only market to ensure new generation is built when it’s required.

“The No. 1 change that the government has to … think about is in pricing,” added Farrell.

“If you don’t have enough of a price signal in an energy-only market to attract new capital, you won’t get new capital — and you’ll run up against the wall.”

 

Related News

View more

Ontario prepares to extend disconnect moratoriums for residential electricity customers

Ontario Electricity Relief outlines an extended disconnect moratorium, potential time-of-use price changes, and Ontario Energy Board oversight to support residential customers facing COVID-19 hardship and bill payment challenges during the emergency in Ontario.

 

Key Points

Plan to extend disconnect moratorium and weigh time-of-use price relief for residential customers during COVID-19.

✅ Extends winter disconnect ban by 3 months

✅ Considers time-of-use price adjustments

✅ Requires Ontario Energy Board approval

 

The Ontario government is preparing to announce electricity relief for residential electricity users struggling because of the COVID-19 emergency, according to sources.

Sources close to those discussions say a decision has been made to lengthen the existing five-month disconnect moratorium by an additional three months.

Separately, Hydro One's relief fund has offered support to its customers during the pandemic.

News releases about the moratorium extension are currently being drafted and are expected to be released shortly, as the pandemic has reduced electricity usage across Ontario.

Electricity utilities in Ontario are currently prohibited from disconnecting residential customers for non-payment during the winter ban period from November 15 to April 30.

The province is also looking at providing further relief by adjusting time-of-use prices, such as off-peak electricity rates, which are designed to encourage shifting of energy use away from periods of high total consumption to periods of low demand.

For businesses, the province has provided stable electricity pricing to support industrial and commercial operations.

But that would require Ontario Energy Board approval and no decision has been finalized, our sources advise.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.