Question of utility profits is contentious

By Knight Ridder Tribune


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The thorny issue of whether monopoly power companies should profit from energy efficiency nearly prevented unanimous support for a series of recommendations adopted by the state's global warming task force.

Papermakers objected to changing the way utilities earn their profit to reward energy efficiency. Energy-intensive industries such as NewPage Corp. that are already investing in energy efficiency want to see lower energy costs, not higher rates, paper council President Jeff Landin said.

At issue is a plan that state regulators will develop to allow utilities to continue to profit even as revenue falls, as the state implements aggressive moves to boost the energy efficiency of Wisconsin businesses and homes.

"This industry will do what we can to be environmentally conscious, but we can't do it without seeing savings," Landin said.

After wording in the interim report was changed in a few places, paper company representative Tom Scharff of NewPage agreed to support it and the report was adopted unanimously. The report calls for Wisconsin to explore building wind turbines in the Great Lakes and proposes a dramatic boost in energy efficiency to reverse the state's growing appetite for energy.

Tia Nelson, task force co-chair, called the vote "a very major step forward," given that the task force included representatives of industry, electric utilities and environmental groups. The task force will hold a four-city public comment session, conducted by teleconference, from 4 to 7 p.m. March 19 in Milwaukee, Madison, Green Bay and La Crosse.

Through energy efficiency, "we ought to do as much as we can because that will keep our businesses competitive, help reduce customers' bills and avoid building very expensive new power plants over the long term," task force co-chairman and utility president Roy Thilly said.

Thilly and Dan Ebert, chairman of the state Public Service Commission, said the renewable energy opportunity for Wisconsin provided by the Great Lakes could be a competitive advantage for the state. "It's incumbent on every state to maximize its competitive position," Ebert said.

"For the state of Wisconsin, that's in bioenergy, certainly because of our strong agriculture and paper industries. Another competitive advantage that we may very well have is wind from the lakes."

Industrial representatives are concerned what a big infusion of funding for energy efficiency will mean for energy costs in Wisconsin at a time when paper industry states in the Southeast aren't moving to respond to global warming. Papermakers are closing mills and don't need more restrictions on their ability to compete, Landin said.

The Public Service Commission will look for the most cost-effective energy efficiency projects, Ebert said, but providing more funds to cut energy use will be less costly for customers than building a new nuclear plant or coal-fired power plant.

Related News

China to build 525-MW hydropower station on Yangtze tributary

Baima Hydropower Station advances China renewable energy on the Wujiang River, a Yangtze tributary in Chongqing; a 525 MW cascade project approved by NDRC, delivering 1.76 billion kWh and improving river shipping.

 

Key Points

An NDRC-approved 525 MW project on Chongqing's Wujiang River, producing 1.76 billion kWh and improving navigation.

✅ 10.2 billion yuan investment; final cascade plant on Wujiang in Chongqing

✅ Expected output: 1.76 billion kWh; capacity 525 MW; NDRC approval

✅ Improves river shipping; relocation of 5,000 residents in Wulong

 

China plans to build a 525-MW hydropower station on the Wujiang River, a tributary of the Yangtze River, in Southwest China's Chongqing municipality, aligning with projects like the Lawa hydropower station elsewhere in the Yangtze basin.

The Baima project, the last of a cascade of hydropower stations on the section of the Wujiang River in Chongqing, has gotten the green light from the National Development and Reform Commission, China's state planning agency, even as some independent power projects elsewhere face uncertainty, such as the Siwash Creek project in British Columbia, the Chongqing Municipal Commission of Development and Reform said Monday.

The project, in Baima township of Wulong district, is expected to involve an investment of 10.2 billion yuan ($1.6 billion), as China explores compressed air generation to bolster grid flexibility, it said.

#google#

With a power-generating capacity of 525 MW, it is expected to generate 1.76 billion kwh of electricity a year, supporting efforts to reduce coal power production nationwide, and help improve the shipping service along the Wujiang River.

More than 5,000 local residents will be relocated to make room for the project, which forms part of a broader energy mix alongside advances in nuclear energy in China.

 

Related News

View more

Lack of energy: Ottawa’s electricity consumption drops 10 per cent during pandemic

Ottawa Electricity Consumption Drop reflects COVID-19 impacts, with Hydro Ottawa and IESO reporting 10-12% lower demand, delayed morning peaks, and shifted weekend peak to 4 p.m., alongside provincial time-of-use rate relief.

 

Key Points

A 10-12% decline in Ottawa's electricity demand during COVID-19, with later morning peaks and weekend peak at 4 p.m.

✅ Weekday demand down 11%; weekends down 10% vs April 2019.

✅ Morning peak delayed about 4 hours; 6 a.m. usage down 17%.

✅ Weekend peak moved from 7 p.m. to 4 p.m.; rate relief ongoing.

 

Ottawa residents may be spending more time at home, with residential electricity use up even as the city’s overall energy use has dropped during the COVID-19 pandemic.

Hydro Ottawa says there was a 10-to-11 per cent drop in electricity consumption in April, with the biggest decline in electricity usage happening early in the morning, a pattern echoed by BC Hydro findings in its province.

Statistics provided to CTV News Ottawa show average hourly energy consumption in the City of Ottawa dropped 11 per cent during weekdays, mirroring Manitoba Hydro trends reported during the pandemic, and a 10 per cent decline in electricity consumption on weekends.

The drop in energy consumption came as many businesses in Ottawa closed their doors due to the COVID-19 measures and physical distancing guidelines.

“Based on our internal analysis, when comparing April 2020 to April 2019, Hydro Ottawa observed a lower, flatter rise in energy use in the morning, with peak demand delayed by approximately four hours.” Hydro Ottawa said in a statement to CTV News Ottawa.

“Morning routines appear to have the largest difference in energy consumption, most likely as a result of a collective slower pace to start the day as people are staying home.”

Hydro Ottawa says overall, there was an 11 per cent average hourly reduction in energy use on weekdays in April 2020, compared to April 2019. The biggest difference was the 6 a.m. hour, with a 17 per cent decrease.

On weekends, the average electricity usage dropped 10 per cent in April, compared to April 2019. The biggest difference was between 7 a.m. and 8 a.m., with a 13 per cent drop in hydro usage.

Hydro Ottawa says weekday peak continues to be at 4 p.m., while on weekends the peak has shifted from 7 p.m. before the pandemic to 4 p.m. now, though Hydro One has not cut peak rates for self-isolating customers.

The Independent Electricity System Operator says across Ontario, there has been a 10 to 12 per cent drop in energy consumption during the pandemic, a trend reflected in province-wide demand data that is the equivalent to half the demand of Toronto.

The Ontario Government has provided emergency electricity rate relief during the COVID-19 pandemic. Residential and small business consumers on time-of-use pricing, and later ultra-low overnight options, will continue to pay one price no matter what time of day the electricity is consumed until the end of May.

 

Related News

View more

Ontario rolls out ultra-low electricity rates

Ontario Ultra-Low Overnight Electricity Rate lets eligible customers opt in to 2.4 cents per kWh time-of-use pricing, set by the Ontario Energy Board, as utilities roll out the plan between May 1 and Nov. 1.

 

Key Points

An OEB-set overnight TOU price of 2.4 cents per kWh for eligible Ontarians, rolling out in phases via local utilities.

✅ 8 of 61 utilities offering rate at May 1 launch

✅ About 20% of 5M customers eligible at rollout

✅ Enova Power delays amid merger integration work

 

A million households can opt into a new ultra-low overnight electricity rate offered by the Ministry of Energy, as province-wide rate changes begin, but that's just a fraction of customers in Ontario.

Only eight of the 61 provincial power utilities will offer the new rate on the May 1 launch date, following the earlier fixed COVID-19 hydro rate period. The rest have up to six months to get on board.

That means it will be available to 20 percent of the province's five million electricity consumers, the Ministry of Energy confirmed to CBC News.

The Ford government's new overnight pricing was pitched as a money saver for Ontarians, amid the earlier COVID-19 recovery rate that could raise bills, undercutting its existing overnight rate from 7.4 to 2.4 cents per kilowatt hour. Both rates are set by the Ontario Energy Board (OEB).

"We wanted to roll it out to as many people as possible," Kitchener-Conestoga PC MPP Mike Harris Jr. told CBC News. "These companies were ready to go, and we're going to continue to work with our local providers to make sure that everybody can meet that Nov. 1 deadline."

Enova Power — which serves Kitchener, Waterloo, Woolwich, Wellesley and Wilmot — won't offer the reduced overnight rate until the fall, after typical bills rose when fixed pricing ended province-wide.

Enova merger stalls adoption

The power company is the product of the recently merged Kitchener-Wilmot Hydro and Waterloo North Hydro.

The Sept. 1 merger is a major reason Enova Power isn't offering the ultra-low rate alongside the first wave of power companies, said Jeff Quint, innovation and communications manager.

"With mergers, a lot of work goes into them. We have to evaluate, merge and integrate several systems and processes," said Quint.

"We believe that we probably would have been able to make the May 1 timeline otherwise."

The ministry said retroactive pricing wouldn't be available, unlike the off-peak price freeze earlier in the pandemic, and Harris said he doesn't expect the province will issue any rebates to customers of companies that introduce the rates later than May 1.

"These organizations were able to look at rolling things out sooner. But, obviously — if you look at Toronto Hydro, London, Centre Wellington, Hearst, Renfrew — there's a dynamic range of large and smaller-scale providers there. I'm very hopeful the Region of Waterloo folks will be able to work to try and get this done as soon as we can," Harris said.

 

Related News

View more

Criminals posing as Toronto Hydro are sending out fraudulent messages

Toronto Hydro Scam Warning urges customers to spot phishing emails, fraudulent texts, fake bills, and door-to-door threats demanding bitcoin or prepaid cards, with disconnection threats; report scams to the Canadian Anti-Fraud Centre.

 

Key Points

Advisory on phishing, fake bills, and payment scams posing as Toronto Hydro, with steps to avoid fraud and report.

✅ Hang up suspicious calls; never pay via bitcoin or prepaid cards.

✅ Do not click links in emails or texts; compare bills and account numbers.

✅ Report fraud to the Canadian Anti-Fraud Centre: 1-888-495-8501.

 

Toronto Hydro has sent out a notice that criminals posing as Toronto Hydro are sending out fraudulent texts, letters and emails, similar to a recent BC Hydro scam reported in British Columbia.

The warning comes in a tweet, along with suggestions on how to protect yourself from fraud, especially as policy debates like an NDP public hydro plan can generate confusing messages.

According to Toronto Hydro, fraudsters are contacting people by phone, text, email, fake electricity bills, and even travelling door-to-door.

They threaten to disconnect the power unless an immediate payment is made, even though legitimate utilities must follow proper disconnection notices processes. The website states that in some cases, criminals request payment via pre-paid credit card or bitcoin.

It’s written on the website that Toronto Hydro does not accept these methods of payment, and they do not threaten to immediately disconnect power, a reminder that stories about power theft abroad are not a model for local billing.

If you suspect you are being targeted, you should immediately hang up any suspicious phone calls. Don’t click on any links in emails or texts asking you to accept electronic transfers, as scammers may impersonate well-known utilities during high-profile news such as Hydro One profit changes to appear credible.

Avoid sharing any personal information over the phone or in-person, and do not make any payments related to Smart Meter Deposits, as this fee does not exist and rate-setting is overseen by the Ontario Energy Board in Ontario.

And remember to always compare bills to previous ones, including the amount and account number, since major accounting decisions like a BC Hydro deferral report can fuel confusing narratives.

To report fraudulent activity, please contact:
Canadian Anti-Fraud Centre at 1-888-495-8501; quote file number 844396

 

Related News

View more

Europe Stores Electricity in Natural Gas Pipes

Power-to-gas converts surplus renewable electricity into green hydrogen or synthetic methane via electrolysis and methanation, enabling seasonal energy storage, grid balancing, hydrogen injection into gas pipelines, and decarbonization of heat, transport, and industry.

 

Key Points

Power-to-gas turns excess renewable power into hydrogen or methane for storage, grid support, and clean fuel.

✅ Enables hydrogen injection into existing natural gas networks

✅ Balances grids and provides seasonal energy storage capacity

✅ Supplies low-carbon fuels for industry, heat, and heavy transport

 

Last month Denmark’s biggest energy firm, Ørsted, said wind farms it is proposing for the North Sea will convert some of their excess power into gas. Electricity flowing in from offshore will feed on-shore electrolysis plants that split water to produce clean-burning hydrogen, with oxygen as a by-product. That would supply a new set of customers who need energy, but not as electricity. And it would take some strain off of Europe’s power grid as it grapples with an ever-increasing share of hard-to-handle EU wind and solar output on the grid.

Turning clean electricity into energetic gases such as hydrogen or methane is an old idea that is making a comeback as renewable power generation surges and crowds out gas in Europe. That is because gases can be stockpiled within the natural gas distribution system to cover times of weak winds and sunlight. They can also provide concentrated energy to replace fossil fuels for vehicles and industries. Although many U.S. energy experts argue that this “power-to-gas” vision may be prohibitively expensive, some of Europe’s biggest industrial firms are buying in to the idea.

European power equipment manufacturers, anticipating a wave of renewable hydrogen projects such as Ørsted’s, vowed in January that, as countries push for hydrogen-ready power plants across Europe, all of their gas-fired turbines will be certified by next year to run on up to 20 percent hydrogen, which burns faster than methane-rich natural gas. The natural gas distributors, meanwhile, have said they will use hydrogen to help them fully de-carbonize Europe’s gas supplies by 2050.

Converting power to gas is picking up steam in Europe because the region has more consistent and aggressive climate policies and evolving electricity pricing frameworks that support integration. Most U.S. states have goals to clean up some fraction of their electricity supply; coal- and gas-fired plants contribute a little more than a quarter of U.S. greenhouse gas emissions. In contrast, European countries are counting on carbon reductions of 80 percent or more by midcentury—reductions that will require an economywide switch to low-carbon energy.

Cleaning up energy by stripping the carbon out of fossil fuels is costly. So is building massive new grid infrastructure, including transmission lines and huge batteries, amid persistent grid expansion woes in parts of Europe. Power-to-gas may be the cheapest way forward, complementing Germany’s net-zero roadmap to cut electricity costs by a third. “In order to reach the targets for climate protection, we need even more renewable energy. Green hydrogen is perceived as one of the most promising ways to make the energy transition happen,” says Armin Schnettler, head of energy and electronics research at Munich-based electric equipment giant Siemens.

Europe already has more than 45 demonstration projects to improve power-to-gas technologies and their integration with power grids and gas networks. The principal focus has been to make the electrolyzers that convert electricity to hydrogen more efficient, longer-lasting and cheaper to produce.

The projects are also scaling up the various technologies. Early installations converted a few hundred kilowatts of electricity, but manufacturers such as Siemens are now building equipment that can convert 10 megawatts, which would yield enough hydrogen each year to heat around 3,000 homes or fuel 100 buses, according to financial consultancy Ernst & Young.

The improvements have been most dramatic for proton-exchange membrane electrolyzers, which are akin to the fuel cells used in hydrogen vehicles (but optimized to produce hydrogen rather than consume it). The price of proton-exchange electrolyzers has dropped by roughly 40 percent during the past decade, according to a study published in February in Nature Energy. They are also five times more compact than older alkaline electrolysis plants, enabling onsite hydrogen production near gas consumers, and they can vary their power consumption within seconds to operate on fluctuating wind and solar generation.

Many European pilot projects are demonstrating “methanation” equipment that converts hydrogen to methane, too, which can be used as a drop-in replacement for natural gas. Europe’s electrolyzer plants, however, are showing that methanation is not as critical to the power-to-gas vision as advocates long believed. Many electrolyzers are injecting their hydrogen directly into natural gas pipelines—something that U.S. gas firms forbid—and they are doing so without impacting either the gas infrastructure or natural gas consumers.

Europe’s first large-scale hydrogen injection began in eastern Germany in 2013 at a two-megawatt electrolyzer installed by Essen-based power firm E.ON. Germany has since ratcheted up the amount of hydrogen it allows in natural gas lines from an initial 2 percent by volume to 10 percent, in a market where renewables now outpace coal and nuclear in Germany, and other European states have followed suit with their own hydrogen allowances. Christopher Hebling, head of hydrogen technologies at the Freiburg-based Fraunhofer Institute for Solar Energy Systems, predicts that such limits will rise to the 20-percent level anticipated by Europe’s turbine manufacturers.

Moving renewable hydrogen and methane via natural gas pipelines promises to cut the cost of switching to renewable energy. For example, gas networks have storage caverns whose reserves could be tapped to run gas-fired electric generation power plants during periods of low wind and solar output. Hebling notes that Germany’s gas network can store 240 terawatt-hours of energy—roughly 25 times more energy than global power grids can presently store by pumping water uphill to refill hydropower reservoirs. Repurposing gas infrastructure to help the power system could save European consumers 138 billion euros ($156 billion) by 2050, according to Dutch energy consultancy Navigant (formerly Ecofys).

For all the pilot plants and promise, renewable hydrogen presently supplies a tiny fraction of Europe’s gas. And, globally, around 4 percent of hydrogen is supplied via electrolysis, with the bulk refined from fossil fuels, according to the International Renewable Energy Agency.

Power-to-gas is catching up, however. According to the February Nature Energy study, renewable hydrogen already pays for itself in some niche applications, and further electrolyzer improvements will progressively extend its market. “If costs continue to decline as they have done in recent years, power-to-gas will become competitive at large scale within the next decade,” says study co-author Gunther Glenk, an economist at the Technical University of Munich.

Glenk says power-to-gas could scale up faster if governments guaranteed premium prices for renewable hydrogen and methane, as they did to mainstream solar and wind power.

Tim Calver, an energy storage researcher turned consultant and Ernst & Young’s executive director in London, agrees that European governments need to step up their support for power-to-gas projects and markets. Calver calls the scale of funding to date, “not proportionate to the challenge that we face on long-term decarbonization and the potential role of hydrogen.”

 

Related News

View more

Wasteful air conditioning adds $200 to summer energy bills, reveals BC Hydro

BC Hydro Air Conditioning Efficiency Tips help cut energy bills as HVAC use rises. Avoid inefficient portable AC units, set thermostats near 25 C, use fans and window shading, and turn systems off when unoccupied.

 

Key Points

BC Hydro's guidelines to lower summer power bills by optimizing A/C settings, fans, shading, and usage habits at home.

✅ Set thermostats to 25 C; switch off A/C when away

✅ Prefer fans and window shading; close doors/windows in heat

✅ Avoid multiple portable A/C units; choose efficient HVAC

 

BC Hydro is scolding British Columbians for their ineffective, wasteful and costly use of home air conditioners.

In what the electric utility calls “not-so-savvy” behaviour, it says many people are over-spending on air conditioning units that are poorly installed or used incorrectly.

"The majority of British Columbians will spend more time at home this summer because of the COVID-19 pandemic," BC Hydro says in a news release about an August survey of customers.

"With A/C use on the rise, there is evidence British Columbians are not cooling down efficiently, leading to higher summer electricity bills, as extreme heat boosts U.S. bills too this summer."

BC Hydro estimates some customers are shelling out $200 more on their summer energy bills than they need to during a record-breaking 2021 demand year for electricity.

The pandemic is compounding the demand for cool, comfortable air at home. Roughly two in five British Columbians between the ages of 25 and 50 are working from home five days a week.

However, it’s not just COVID-19 that is putting a strain on energy consumption and monthly bills, with drought affecting generation as well today.

About 90 per cent of people who use an air conditioner set it to a temperature below the recommended 25 Celsius, according to BC Hydro.

In fact, one in three people have set their A/C to the determinedly unseasonable temperature of 19 C.

Another 30 per cent are using more than one portable air conditioning unit, which the utility says is considered the most inefficient model on the market, and questions remain about crypto mining electricity use in B.C. today.

The use of air conditioners is steadily increasing in B.C. and has more than tripled since 2001, according to BC Hydro, with all-time high demand also reported in B.C. during recent heat waves. The demand for climate control is particularly high among condo-dwellers since apartments tend to trap heat and stay warmer.

This may explain why one in 10 residents of the Lower Mainland has three portable air conditioning units, and elsewhere Calgary's frigid February surge according to Enmax.

In addition, 30 per cent of people keep the air conditioning on for the sake of their pets while no one is home.

BC Hydro makes these recommendations to save energy and money on monthly bills while still keeping homes cooled during summer’s hottest days, and it also offers a winter payment plan to help manage costs:

Cool homes to 25 C in summer months when home; air conditioning should be turned off when homes are unoccupied.
In place of air conditioning, running a fan for nine hours a day over the summer costs $7.
Shading windows with drapes and blinds can help insulate a home by keeping out 65 per cent of the heat.
If the temperature outside a home is warmer than inside, keep doors and windows closed to keep cooler air inside.
Use a microwave, crockpot or toaster oven to avoid the extra heat produced by larger appliances, such as an oven, when cooking. Hang clothes to dry instead of using a dryer on hot days.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.