Green Energy industry shines in California

By New York Times


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The sun is starting to grow jobs.

While interest in alternative energy is climbing across the United States, solar power especially is rising in California, the product of billions of dollars in investment and mountains of enthusiasm.

In recent months, the industry has added several thousand jobs in the production of solar energy cells and installation of solar panels on roofs. A spate of investment has also aimed at making solar power more efficient and less costly than natural gas and coal.

Entrepreneurs, academics and policy makers say this eraÂ’s solar industry is different from what was tried in the 1970s, when Jerry Brown, then the governor of California, invited derision for envisioning a future fueled by alternative energy.

They point to companies like SolarCity, an installer of rooftop solar cells based in Foster City. Since its founding in 2006, it has grown to 215 workers and $29 million in annual sales. “It is hard to find installers,” said Lyndon Rive, the chief executive. “We’re at the stage where if we continue to grow at this pace, we won’t be able to sustain the growth.”

SunPower, which makes the silicon-based cells that turn sunlight into electricity, reported 2007 revenue of more than $775 million, more than triple its 2006 revenue. The company expects sales to top $1 billion this year. SunPower, based in San Jose, said its stock price grew 251 percent in 2007, faster than any other Silicon Valley company, including Apple and Google.

Not coincidentally, three-quarters of the nation’s demand for solar comes from residents and companies in California. “There is a real economy — multiple companies, all of which have the chance to be billion-dollar operators,” said Daniel M. Kammen, a professor in the energy and resources group at the University of California, Berkeley. California, he says, is poised to be both the world’s next big solar market and its entrepreneurial center.

The question, Professor Kammen says, is: “How can we make sure it’s not just green elite or green chic, and make it the basis for the economy?”

There also are huge challenges ahead, not the least of which is the continued dominance of fossil fuels. Solar represents less than one-tenth of 1 percent of the $3 trillion global energy market, leading some critics to suggest that the state is getting ahead of itself, as it did during the 1970s.

The optimists say a crucial difference this time is the participation of private-sector investors and innovators and emerging technologies. Eight of more than a dozen of the nationÂ’s companies developing photovoltaic cells are based in California, and seven of those are in Silicon Valley.

Among the companies that academics and entrepreneurs believe could take the industry to a new level is Nanosolar, which recently started making photovoltaic cells in a 200,000-square-foot factory in San Jose. The company said the first 18 months of its capacity has already been booked for sales in Germany.

“They could absolutely transform the market if they make good on even a fraction of their goal for next year,” Professor Kammen said. “They’re not just a new entrant, but one of the biggest producers in the world.”

Many of the California companies are start-ups exploring exotic materials like copper indium gallium selenide, or CIGS, an alternative to the conventional crystalline silicon that is now the dominant technology.

The newcomers hope that CIGS, while less efficient than silicon, can be made far more cheaply than silicon-based cells. Indeed, the Nanosolar factory looks more like a newspaper plant than a chip-making factory. The CIGS material is sprayed onto giant rolls of aluminum foil and then cut into pieces the size of solar panels.

Another example is Integrated Solar, based in Los Angeles, which has developed a low-cost approach to integrating photovoltaic panels directly into the roofs of commercial buildings.

In 2007, 100 megawatts of solar generating capacity was installed in California, about a 50 percent increase over 2006, according to the Solar Energy Industries Association, a trade group.

That growth rate is likely to increase, in part because of ambitious new projects like the 177-megawatt solar thermal plant that Pacific Gas and Electric said last November it would build in San Luis Obispo.

The plant, which will generate power for more than 120,000 homes beginning in 2010, will be built by Ausra, a Palo Alto start-up backed by the investor Vinod Khosla and his former venture capital firm, Kleiner Perkins Caufield & Byers.

The industry in California is also helped by state and local governmentsÂ’ substantial subsidies to stimulate demand. The state has earmarked $3.2 billion to subsidize solar installation, with the goal of putting solar cells on one million rooftops. The state Assembly passed a law to reduce greenhouse gas emissions by 25 percent by 2020, which could spur alternatives like solar.

Additional incentives have come from a small but growing number of municipalities. The city of Berkeley will pay the upfront costs for a residentÂ’s solar installation and recoup the money over 20 years through additional property taxes on a residentÂ’s home. San Francisco is preparing to adopt its own subsidy that would range from $3,000 for a home installation to as much as $10,000 for a business.

The subsidies have prompted a surge in private investment, led by venture capitalists. In 2007, these seed investors put $654 million in 33 solar-related deals in California, up from $253 million in 16 deals in 2006, according to the Cleantech Group, which tracks investments in alternative energy. California received roughly half of all solar power venture investments made in 2007 in the United States.

“We’re just starting to see successful companies come out through the other end of that process,” said Nancy C. Floyd, managing director at Nth Power, a venture capital firm that focuses on alternative energy. “And through innovation and volume, prices are coming down.”

Whether any of this investment pays off depends, as it did in previous eras, on reaching the point at which solar cells produce electricity as inexpensively as fossil fuels. The cost of solar energy is projected to fall steeply as cheaper new technology reaches economies of scale. Optimists believe that some regions in California could reach that point in half a decade.

At present, solar power is three to five times as expensive as coal, depending on the technology used, said Dan Reicher, director for climate change and energy initiatives at Google.org, the philanthropic division of the Internet company. Among its investments, Google says, is $10 million in financing for eSolar, a company in Pasadena that builds systems that concentrate sunlight from reflecting mirrors.

“We’re at the dawn of a revolution that could be as powerful as the Internet revolution,” Mr. Reicher said. The problem is, he said, “renewable energy simply costs too much.”

At a conference of alternative energy companies in San Francisco last month, to discuss how to encourage the industry’s growth, Mr. Brown, the former governor, joked that if the participants wanted to make real headway selling alternative energy, they should try not to come off as flaky. “Don’t get too far ahead of yourselves,” said Mr. Brown, now the state’s attorney general. “You will be stigmatized. Don’t use too many big words and make it all sound like yesterday.”

Related News

Prevent Summer Power Outages

Summer Heatwave Electricity Shutoffs strain utilities and vulnerable communities, highlighting energy assistance, utility moratoriums, cooling centers, demand response, and grid resilience amid extreme heat, climate change, and rising air conditioning loads.

 

Key Points

Service disconnections for unpaid bills during extreme heat, risking vulnerable households and straining power grids.

✅ Moratoriums and flexible payment plans reduce shutoff risk.

✅ Cooling centers and assistance programs protect at-risk residents.

✅ Demand response, smart grids, and efficiency ease peak loads.

 

As summer temperatures soar, millions of people across the United States face the grim prospect of electricity shutoffs due to unpaid bills, as heat exacerbates electricity struggles for many families nationwide. This predicament highlights a critical issue exacerbated by extreme weather conditions and economic disparities.

The Challenge of Summer Heatwaves

Summer heatwaves not only strain power grids, as unprecedented electricity demand has shown, but also intensify energy consumption as households and businesses crank up their air conditioning units. This surge in demand places considerable stress on utilities, particularly in regions unaccustomed to prolonged heatwaves or lacking adequate infrastructure to cope with increased loads.

Vulnerable Populations

The threat of electricity shutoffs disproportionately affects vulnerable populations, including low-income households who face sky-high energy bills during extreme heat, elderly individuals, and those with underlying health conditions. Lack of access to air conditioning during extreme heat can lead to heat-related illnesses such as heat exhaustion and heatstroke, posing serious health risks.

Economic and Social Implications

The economic impact of electricity shutoffs extends beyond immediate discomfort, affecting productivity, food storage, and the ability to work remotely for those reliant on electronic devices, while rising electricity prices further strain household budgets. Socially, the inability to cool homes and maintain basic comforts strains community resilience and exacerbates inequalities.

Policy and Community Responses

In response to these challenges, policymakers and community organizations advocate for measures to prevent electricity shutoffs during heatwaves. Proposed solutions include extending moratoriums on shutoffs, informed by lessons from COVID-19 energy insecurity measures, implementing flexible payment plans, providing financial assistance to at-risk households, and enhancing communication about available resources.

Public Awareness and Preparedness

Raising public awareness about energy conservation during peak hours and promoting strategies to stay cool without overreliance on air conditioning are crucial steps towards mitigating electricity demand. Encouraging energy-efficient practices and investing in renewable energy sources also contribute to long-term resilience against climate-driven energy challenges.

Collaborative Efforts

Collaboration between government agencies, utilities, nonprofits, and community groups is essential in developing comprehensive strategies to safeguard vulnerable populations during heatwaves, especially when systems like the Texas power grid face renewed stress during prolonged heatwaves. By pooling resources and expertise, stakeholders can better coordinate emergency response efforts, distribute cooling centers, and ensure timely assistance to those in need.

Technology and Innovation

Advancements in smart grid technology and decentralized energy solutions offer promising avenues for enhancing grid resilience and minimizing disruptions during extreme weather events. These innovations enable more efficient energy management, demand response programs, and proactive monitoring of grid stability, though some utilities face summer supply-chain constraints that delay deployments.

Conclusion

As summer heatwaves become more frequent and severe, the risk of electricity shutoffs underscores the urgent need for proactive measures to protect vulnerable communities. By prioritizing equity, sustainability, and resilience in energy policy and practice, stakeholders can work towards ensuring reliable access to electricity, particularly during times of heightened climate vulnerability. Addressing these challenges requires collective action and a commitment to fostering inclusive and sustainable solutions that prioritize human well-being amid changing climate realities.

 

Related News

View more

Wall Street Backs Rick Perry’s $19 Billion Data Center Venture

Wall Street backs Rick Perry’s $19 billion nuclear-powered data center venture, Fermi America, combining nuclear energy, AI infrastructure, and data centers to meet soaring electricity demand and attract major investors betting on America’s clean energy technology future.

 

What is "Wall Street Backs Rick Perry’s $19 Billion Nuclear-Powered Data Center Venture”?

Wall Street is backing Rick Perry’s $19 billion nuclear-powered data center venture because it combines the explosive growth of AI with the promise of clean, reliable nuclear energy.

✅ Addresses AI’s massive power demands with nuclear generation

✅ Positions Fermi America as a pioneer in energy-tech convergence

✅ Reflects investor confidence in long-term clean energy solutions

Former Texas Governor and U.S. Energy Secretary Rick Perry has returned to the energy spotlight, this time leading a bold experiment at the intersection of nuclear power and artificial intelligence. His startup, Fermi America, headquartered in Amarillo, Texas, went public this week with an initial valuation of $19 billion after its shares surged 55 percent above the opening price on the first day of trading.

The company aims to tackle one of the most pressing challenges in modern technology: the staggering energy demand of AI data centers. “Artificial intelligence, which is getting more and more embedded in all parts of our lives, the servers that host the data for artificial intelligence are stored in these massive warehouses called data centers,” said Houston Chronicle energy reporter Claire Hao. “And data centers use a ton of electricity.”

Fermi America’s plan, Hao explained, is as ambitious as it is unconventional. Fermi America has a proposal to build what it claims will be the world’s largest data center, powered by what it asserts will be the country’s largest nuclear complex. So very ambitious plans.”

According to the company’s roadmap, Fermi aims to bring its first mega reactor online by 2032, followed by three additional large reactors. In the meantime, the firm intends to integrate natural gas and solar energy by the end of next year to support early-stage operations.

While much of the energy sector’s attention has turned toward small modular reactors, Fermi’s approach focuses on traditional large-scale nuclear technology. “What Fermi is talking about building are large traditional reactors,” Hao said. “These very large traditional reactors are a tried and true technology. But the nuclear industry has a history of taking a very long time to build them, and they are also very expensive to build.” She noted that the most recent example, completed in 2023 by a Georgia utility, came in $17 billion over budget and several years late.

To mitigate such risks, Fermi has recruited specialists with international experience. “They’ve hired folks that have successfully built these projects in China and in other countries where it has been a lot smoother to build these,” Hao said. “Fermi wants to try to make it a quicker process.”

Perry’s involvement lends both visibility and controversy. In addition to co-founding the company, Griffin Perry, his son, plays a role in its management. The firm has hinted that it might even name reactors after former President Donald Trump, under whom Perry served as Secretary of Energy. Perry has framed the project as part of a national effort to regain technological ground. “He really wants to help the U.S. catch up to countries like China when it comes to delivering nuclear power for the AI race,” Hao explained. “He says we’re already behind.”

Despite the fanfare, Fermi America is still a fledgling enterprise. Founded in January and announced publicly in June, the company reported a $6.4 million loss in the first half of the year and has yet to generate any revenue. Still, its IPO exceeded expectations, opening at $21 a share and closing above $32 on the first day.

“I think that just shows there’s a lot of hype on Wall Street around artificial intelligence-related ventures,” Hao said. “Fermi, in the four months since it announced itself as a company, has found a lot of different ways to grab people’s attention.”

For now, the project represents both a technological gamble and a test of investor faith — a fusion of nuclear ambition and AI optimism that has Wall Street watching closely.

 

Related Articles

 

View more

Electricity deal clinches $100M bitcoin mining operation in Medicine Hat

Medicine Hat Bitcoin Mining Deal delivers 42 MW electricity to Hut 8, enabling blockchain data centres, cryptocurrency mining expansion, and economic diversification in Alberta with low-cost power, land lease, and rapid construction near Unit 16.

 

Key Points

A pact to supply 42 MW and lease land, enabling Hut 8's blockchain data centres and crypto mining growth in Alberta.

✅ 42 MW electricity from city; land lease near Unit 16

✅ Hut 8 expands to 60.7 MW; blockchain data centres

✅ 100 temporary jobs; 42 ongoing roles in Alberta

 

The City of Medicine Hat has agreed to supply electricity and lease land to a Toronto-based cryptocurrency mining company, at a time when some provinces are pausing large new crypto loads in a deal that will see $100 million in construction spending in the southern Alberta city.

The city will provide electric energy capacity of about 42 megawatts to Hut 8 Mining Corp., which will construct bitcoin mining facilities near the city's new Unit 16 power plant.

The operation is expected to be running by September and will triple the company's operating power to 60.7 megawatts, Hut 8 said, amid broader investments in new turbines across Canada.

#google#

"The signing of the electricity supply agreement and the land lease represents a key component in achieving our business plan for the roll-out of our BlockBox Data Centres in low-cost energy jurisdictions," said the company's board chairman, Bill Tai, in a release.

"[Medicine Hat] offers stable, cost-competitive utility rates and has been very welcoming and supportive of Hut 8's fast-paced growth plans."

In bitcoin mining operations, rows upon rows of power-consuming computers are used to solve mathematical puzzles in exchange for bitcoins and confirm crytopcurrency transactions. The verified transactions are then added to the public ledger known as the blockchain.

Hut 8's existing 18.7-megawatt mining operation at Drumheller, Alta. — a gated compound filled with rows of shipping containers housing the computers — has so far mined 750 bitcoins. Bitcoin was trading Tuesday morning for about $11,180.

Medicine Hat Mayor Ted Clugston says the deal is part of the city's efforts to diversify its economy.

We've made economic development a huge priority down here because we were hit very, very hard by the oil and gas decline," he said, noting that being the generator and vendor of its own electricity puts the city in a uniquely good position.

"Really we're just turning gas into electricity and they're taking that electricity and turning it into blockchain, or ones and zeroes."

Elsewhere in Canada, using more electricity for heat has been urged by green energy advocates, reflecting broader electrification debates.

Hut 8 says construction of the facility is starting right away and will create about 100 temporary jobs. The project is expected to be finished by the third-quarter of this year.

The Medicine Hat mining operation will generate 42 ongoing jobs for electricians, general labourers, systems technicians and security staff.

 

Related News

View more

Electrifying: New cement makes concrete generate electricity

Cement-Based Conductive Composite transforms concrete into power by energy harvesting via triboelectric nanogenerator action, carbon fibers, and built-in capacitors, enabling net-zero buildings and self-sensing structural health monitoring from footsteps, wind, rain, and waves.

 

Key Points

A carbon fiber cement that harvests and stores energy as electricity, enabling net-zero, self-sensing concrete.

✅ Uses carbon fibers to create a conductive concrete matrix

✅ Acts as a triboelectric nanogenerator and capacitor

✅ Enables net-zero, self-sensing structural health monitoring

 

Engineers from South Korea have invented a cement-based composite that can be used in concrete to make structures that generate and store electricity through exposure to external mechanical energy sources like footsteps, wind, rain and waves, and even self-powering roads concepts.

By turning structures into power sources, the cement will crack the problem of the built environment consuming 40% of the world’s energy, complementing vehicle-to-building energy strategies across the sector, they believe.

Building users need not worry about getting electrocuted. Tests showed that a 1% volume of conductive carbon fibres in a cement mixture was enough to give the cement the desired electrical properties without compromising structural performance, complementing grid-scale vanadium flow batteries in the broader storage landscape, and the current generated was far lower than the maximum allowable level for the human body.

Researchers in mechanical and civil engineering from from Incheon National University, Kyung Hee University and Korea University developed a cement-based conductive composite (CBC) with carbon fibres that can also act as a triboelectric nanogenerator (TENG), a type of mechanical energy harvester.

They designed a lab-scale structure and a CBC-based capacitor using the developed material to test its energy harvesting and storage capabilities, similar in ambition to gravity storage approaches being scaled.

“We wanted to develop a structural energy material that could be used to build net-zero energy structures that use and produce their own electricity,” said Seung-Jung Lee, a professor in Incheon National University’s Department of Civil and Environmental Engineering, noting parallels with low-income housing microgrids in urban settings.

“Since cement is an indispensable construction material, we decided to use it with conductive fillers as the core conductive element for our CBC-TENG system,” he added.

The results of their research were published this month in the journal Nano Energy.

Apart from energy storage and harvesting, the material could also be used to design self-sensing systems that monitor the structural health and predict the remaining service life of concrete structures without any external power, which is valuable in industrial settings where hydrogen-powered port equipment is being deployed.

“Our ultimate goal was to develop materials that made the lives of people better and did not need any extra energy to save the planet. And we expect that the findings from this study can be used to expand the applicability of CBC as an all-in-one energy material for net-zero energy structures,” said Prof. Lee, pointing to emerging circular battery recycling pathways for net-zero supply chains.

Publicising the research, Incheon National University quipped: “Seems like a jolting start to a brighter and greener tomorrow!”

 

Related News

View more

27,000 Plus More Clean Energy Jobs Lost in May

U.S. Clean Energy Job Losses highlight COVID-19 impacts on renewable energy, solar, wind, and energy efficiency, with PPP fatigue, unemployment, and calls for Congressional stimulus, per Department of Labor data analyzed by E2.

 

Key Points

Pandemic-driven layoffs across renewable, solar, wind, and efficiency sectors, risking recovery without federal aid.

✅ Over 620,500 clean energy jobs lost in three months

✅ Energy efficiency, solar, and wind hit hardest nationwide

✅ Industry urges Congress for stimulus, tax credit relief

 

As Congress this week begins debating economic stimulus support for the energy industry, a new analysis of unemployment data shows the biggest part of America's energy economy - clean energy - lost another 27,000 jobs in May, bringing the total number of clean energy workers who have lost their jobs in the past three months to more than 620,500.

While May saw an improvement in new unemployment claims over March and April, the findings represent the sector's third straight month of significant job losses across solar, wind, energy efficiency, clean vehicles and other industries. With coronavirus cases once again rising in many states and companies beginning to run out of the Payroll Protection Program (PPP) funding that has helped small businesses keep workers employed, and as households confront pandemic power shut-offs that heighten energy insecurity, the report increases concerns the sector will be unable to resume its economy-leading jobs growth in the short- or long-term without a significant policy response.

Given the size and scope of the clean energy industry, such a sustained loss would cast a pall on the nation's overall economic recovery, as shifting electricity demand during COVID-19 complicates forecasts, according to the analysis of the Department of Labor's May unemployment data from E2 (Environmental Entrepreneurs), E4TheFuture and the American Council on Renewable Energy (ACORE).

Prior to COVID-19, clean energy - including energy efficiency, solar and wind generation, clean vehicles and related sectors - was among the U.S. economy's biggest and fastest-growing employment sectors, growing 10.4% since 2015 to nearly 3.4 million jobs at the end of 2019. That made clean energy by far the biggest employer of workers in all energy occupations, employing nearly three times as many people as the fossil fuel industry. For comparison, coal mining employs about 47,000 workers, even as clean energy projects in coal communities aim to revitalize local economies.

The latest monthly analysis for the groups by BW Research Partnership runs contrary to recent Bureau of Labor Statistics (BLS) reports, which indicated that a more robust economic rebound was underway, even as high fuel prices haven't spurred a green shift in adoption, while also acknowledging misclassifications and serious reporting difficulties in its own data.

Bob Keefe, Executive Director at E2, said:

"May's almost 30,000 clean energy jobs loss is sadly an improvement in the rate of jobs shed but make no mistake: There remains huge uncertainty and volatility ahead. It will be very tough for clean energy to make up these continuing job losses without support from Congress. Lawmakers must act now. If they do, we can get hundreds of thousands of these workers back on the job today and build a better, cleaner, more equitable economy for tomorrow. And who doesn't want that?"

Pat Stanton, Policy Director at E4TheFuture, said:

"Most of the time, energy efficiency workers need to go inside homes, businesses and other buildings to get the job done. Since they couldn't do that during COVID lockdowns, they couldn't work. Now states are opening up. But utilities, contractors and building owners need to protect employees and occupants from possible exposure to the virus and need more clarity about potential liabilities."

Gregory Wetstone, President and CEO of ACORE, said:

"In May, we saw thousands of additional renewable energy workers join the ranks of the unemployed, further underscoring the damage COVID-19 is inflicting on our workforce. Since the pandemic began, nearly 100,000 renewable energy workers have lost their jobs. We need help from Congress to get American clean energy workers back to work. With commonsense measures like temporary refundability and a delay in the phasedown of renewable energy tax credits, Congress can help restore these good-paying jobs so the renewable sector can continue to provide the affordable, pollution-free power American consumers and businesses want and deserve."

Phil Jordan, Vice President and Principal at BW Research Partnership, said:

"We understand the challenges and limitations of data collection for BLS in the middle of a global pandemic. But any suggestion that a strong employment rebound is underway in the United States simply is not reflected in the clean energy sector right now. And with PPP expiring, that only increases uncertainty in the months ahead."

The report comes as both the Senate Committee on Energy and Natural Resources and the House Energy and Commerce Committee are considering clean energy stimulus to restart the U.S. economy, and amid assessments of mixed results from the climate law shaping expectations, and as lawmakers in both the House and Senate are increasing calls for supporting clean energy workers and businesses, including this bicameral letter signed by 57 members of Congress and another signed today by 180 House members.

Industries Hit Hardest

According to the analysis, energy efficiency lost more jobs than any other clean energy sector for the third consecutive month in May, shedding about 18,900 jobs. These workers include electricians, HVAC technicians who work with high-efficiency systems, and manufacturing employees who make Energy Star appliances, LED lighting systems and efficient building materials.

Renewable energy, including solar and wind, lost nearly 4,300 jobs in May.

Clean grid and storage and clean vehicles manufacturing -- including grid modernization, energy storage, car charging and electric and plug-in hybrid vehicle manufacturing -- lost a combined 3,200 jobs in May, as energy crisis impacts electricity, gas, and EVs in several ways.

The clean fuels sector lost more than 650 jobs in May.

States and Localities Hit Across Country

California continues to be the hardest hit state in terms of total job losses, losing 4,313 jobs in May and more than 109,700 since the COVID-19 crisis began. Florida was the second hardest hit state in May, losing an additional 2,563 clean energy jobs, while Georgia, Texas, Washington, and Michigan all suffered more than 1,000 job losses across the sector. An additional 12 states saw at least 500 clean energy unemployment filings, and reports like Pennsylvania's clean energy jobs analysis provide added context, according to the latest analysis.

For a full breakdown of clean energy job losses in each state, along with a list of the hardest hit counties and metro areas, see the full analysis here.

 

Related News

View more

Alberta ratepayers on the hook for unpaid gas and electricity bills from utility deferral program

Alberta Utility Rate Rider will add a modest fee to electricity bills and natural gas charges as the AUC recovers outstanding debt from the COVID-19 deferral program via AESO and the Balancing Pool.

 

Key Points

A temporary surcharge on Alberta power and gas bills to recover unpaid COVID-19 deferral debt, administered by the AUC.

✅ Applies per kWh and per GJ based on consumption

✅ Recovers unpaid balances from 2020-21 bill deferrals

✅ Collected via AESO and the Balancing Pool under AUC oversight

 

The province says Alberta ratepayers should expect to see an extra fee on their utility bills in the coming months.

That fee is meant to recover the outstanding debt owed to gas and electricity providers resulting from last year's three-month utility deferral program offered to struggling Albertans during the pandemic.

The provincial government announced the utility deferral program in March 2020 then formalized it with legislation, alongside a consumer price cap on power bills that shaped later policy decisions.

The program allowed residential, farm and small commercial customers who used less than 250,000 kilowatt hours of electricity per year — or consumed less than 2,500 gigajoules per year — to postpone their bills amid the COVID-19 pandemic.

According to the province, 350,000 customers, or approximately 13 per cent of the natural gas and electricity consumer base, took advantage of the program.

Customers had a year to repay providers what they owed. That deadline ended June 18, 2021.

The Alberta Utilities Commission (AUC), which regulates the utilities sector and natural gas and electricity markets and oversees a rate of last resort framework, said the vast majority of consumers have squared up.

But for those who didn't, provincial legislation dictates that Alberta ratepayers must cover any unpaid debt. The legislation exempts Medicine Hat utility customers for electricity and gas co-operative customers for gas.

"When the program was announced, it was very clear that it was a deferral program and that the monies would need to be paid back," said Geoff Scotton, a spokesperson with the Alberta Utilities Commission.

"Now we're in the situation where the providers, in good faith, who enabled those payment deferrals, need to be made whole. That's really the goal here."

Amount to be determined
Margeaux Maron, a spokesperson for Associate Minister of Natural Gas and Electricity Dale Nally, said based on early estimates, $13 to $16 million of $92 million in deferred payments remain outstanding.

As a result, the province expects the average Albertan will end up paying, unlike jurisdictions offering a lump-sum credit, a fraction of a dollar extra per monthly gas and electricity bill over a handful of months.

Scotton said at this point, there are too many unknown factors to know the exact size of the rate rider. However, he said he expects it to be modest.

Scotton said affected parties first have until the end of this week to notify the AUC exactly how much they are still owed.

Those parties include the Alberta Electric System Operator and the Balancing Pool, who essentially acted as bankers with respect to the distribution and transmission of the utilities to customers who deferred their payments.

Regulated service providers may also seek reimbursement on administrative and carrying costs, even as issues like a BC Hydro fund surplus spark debate elsewhere.

Then, Scotton said, once the outstanding amounts are known, the AUC will hold a public proceeding, similar to a Nova Scotia rate case, to determine the amount and the duration of the rate rider to be applied to each natural gas and electricity bill.

The amount will be based on consumption: per kilowatt hour for electricity and per gigajoule for natural gas.

That means larger businesses will end up paying more than the average Albertan.

Scotton said the AUC will expedite the hearing process and it expects to have a decision by the end of the summer.

Rate rider a 'surprise'
Joel MacDonald with Energyrates.ca — an organization which compares energy rates across the country — said it's not the amount of the rate rider that bothers him, but the fact that the repayment process wasn't made clear at the onset of the program.

"It came to us as a bit of a surprise," MacDonald said.

He said what was sold as a deferral program seems more like an electricity rebate program, or an "ability to pay" program.

"As opposed to the retailers looking into collection methods, anything that wasn't paid is basically just being forced upon all Alberta consumers," MacDonald said.

The expectation set out in the deferral legislation and regulations state utility providers such as Enmax and Epcor are expected to use reasonable efforts to try to collect the unpaid balances. It must then detail those reasonable efforts to the AUC.

A spokesperson for Enmax said it first works with its customers to find manageable payment arrangements and connects them with support services if they are unable to pay.

Then, if payment can't be arranged, it said it will work with a collection agency, which may even result in disconnection of service.

The spokesperson said only after all efforts have failed would Enmax seek reimbursement through this program.

Use tax revenues?
MacDonald also questioned why a government program isn't being paid for through general tax revenues.

He compared the utility deferral program to a mortgage subsidy program.

"Imagine that [Canada Mortgage And Housing Corporation] said, 'Hey, we had to give mortgage deferrals and some of these people never paid back their deferrals, so we're going to add an extra $300 to everyone's mortgage,'" he said.

"You'd expect that to come off of some sort of general taxation — not being assigned to other people's mortgages, right?"

In response, Maron said due to the current fiscal challenges facing the government — and the expected minimal costs to consumers, and even as a consumer price cap on electricity remains in place — it was determined that a rate rider would be an appropriate mechanism to repay bad debt associated with the program.

Scotton said rate riders aren't unusual — they're used to fine-tune rates for a set period of time.

He said under normal circumstances, regulated service providers can apply to the AUC to impose a rate rider to recover unexpected costs. And in some instances, they can provide a credit.

But in this situation, he said the debt is aggregated and, in turn, being collected more broadly.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified