NECA names new Executive Director

By Electricity Forum


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The National Electrical Contractors Association (NECA) is pleased to announce that Michael Johnston has assumed leadership of NECAÂ’s standards and safety program.

Johnston succeeds Brooke Stauffer as Executive Director, Standards and Safety. Stauffer, a well-known electrical codes and standards expert, died in a small plane crash on August 24, 2007, near Mackinaw Island, Mich.

Johnston comes to NECA from the International Association of Electrical Inspectors (IAEI) where he served as Director of Education, Codes and Standards since 1998. A certified master electrical inspector, Johnston completed his electricianÂ’s apprenticeship and earned both journeyman and master electrician licenses in Connecticut. He worked as an electrician, foreman, estimator and project manager on several electrical construction projects in Connecticut before moving to Phoenix.

In Phoenix, Johnston became a field electrical inspector for the City of Phoenix, where he rose through the ranks to become the field supervisor for all of the cityÂ’s electrical inspectors. He holds numerous certifications in electrical inspection with both IAEI and International Code Council. He also became a popular technical instructor, teaching numerous courses on the National Electrical Code (NEC).

Johnston was recruited by IAEI in 1998 and moved to Plano, Tex. At IAEI, he managed the associationÂ’s seminar and certification programs, oversaw the development of IAEI training materials, and served as a technical editor for numerous publications and the IAEI News Magazine. He continued to teach NEC courses and other industry-related training programs, and he is an active participant on the National Fire Protection AssociationÂ’s NEC code-making panels, electrical section, and education section.

JohnstonÂ’s code-enforcing and making experience will benefit NECAÂ’s growing National Electrical Installation Standards (NEIS) program. NEIS are the industryÂ’s first performance and workmanship standards for electrical construction. As an enforceable part of the contract documents, NEIS significantly reduce confusion among engineers, electrical contractors, owners, and facility managers. NECA began publishing NEIS in 1999 and currently has more than 35 standards that range from installing high-voltage switchgear to fiber optic lighting.

“NEIS have become an indispensable construction document for many electrical projects, and I’m excited about the experience that Mike will bring to the program,” said Dan Walter, NECA Vice President and COO. “Mike will also uphold NECA’s role as a champion of safe practices in the development process for the National Electrical Code.”

“I’m looking forward to joining the NECA staff and continuing to be an active contributor to electrical codes and safety,” Johnston said. “This opportunity brings together many aspects of my professional training and experience to a level where I believe I can truly make a difference for the best.”

Related News

Canada expected to miss its 2035 clean electricity goals

Canada 2035 Clean Electricity Target faces a 48.4GW shortfall as renewable capacity lags; accelerating wind, solar PV, grid upgrades, and coherent federal-provincial policy is vital to reach zero-emissions power and strengthen transmission and distribution.

 

Key Points

Canada's plan to supply nearly 100% of electricity from zero-emitting sources by 2035, requiring renewable buildout.

✅ Average adds 2.6GW; shortfall totals 48.4GW by 2035

✅ Expand wind, solar PV, storage, and grid modernization

✅ Align federal-province policy; retire or convert thermal plants

 

GlobalData’s latest report, ‘Canada Power Market Size and Trends by Installed Capacity, Generation, Transmission, Distribution and Technology, Regulations, Key Players and Forecast, 2022-2035’, discusses the power market structure of Canada and, amid looming power challenges, provides historical and forecast numbers for capacity, generation and consumption up to 2035. Detailed analysis of the country’s power market regulatory structure, competitive landscape and a list of major power plants are provided. The report also gives a snapshot of the power sector in the country on broad parameters of macroeconomics, supply security, generation infrastructure, transmission and distribution infrastructure, electricity import and export scenario, degree of competition, regulatory scenario, and future potential. An analysis of the deals in the country’s power sector is also included in the report.

Canada is expected to fall short of its 2035 clean electricity target after reviewing the country’s current renewable capacity activity. The country has targeted to produce nearly 100% of its electricity from zero-emitting sources by 2035, while electricity associations' net-zero goals extend to 2050; however, the country is adding only 2.6GW of annual renewable capacity additions on average every year, which would mean a cumulative shortfall of 48.4GW.

Canada has good governmental support, but it is not doing enough to ensure its targets are met. If the country is to meet its target to produce nearly 100% of electricity from zero-emitting sources by 2035, the country should both increase the capacity and efficiency of renewable power plants, as well as provide comprehensive end-to-end policies at both the federal and provincial levels, as debates over whether Ontario is embracing clean power continue across provinces. It should also involve communities and businesses in raising awareness of the benefits of adopting renewable energy.

The country has a large amount of proven natural gas and oil reserves that are proving too tempting an opportunity, and the Canadian Government is planning to increase the capacity of its gas-based plants under net-zero regulations permit some gas in the power mix, to secure real-time demand and supply. However, the country’s dependency on gas-based plants creates a major challenge to achieve its 2035 clean electricity target.

If the Canadian Government is to meet its 2035 targets, it should draw on examples from its European counterparts and add renewable capacity at a rapid pace, while balancing demand and emissions in key provinces. One advantage for Canada here is that it does not have land constraints, which is common in other major renewable power-generating countries. This could give the country an estimated 6.1GW of renewable capacity every year on average during the 2021-2035 period: enough capacity to meet its target. Most of these installations are expected to be for wind and solar PV.

Changing provincial governments are not helpful when it comes to implementing long-term projects, especially as Ontario faces looming electricity shortfalls that heighten planning risks, and continued stopping and starting of projects like this will only be damaging to renewable goals. Another way the country can achieve its target is by converting thermal power plants into clean energy plants and providing a roadmap or timeline for provinces to retire thermal power plants completely, even as scrapping coal can be costly for some systems.

Canada’s GDP (at constant prices) increased from $1,617.3bn in 2010 to $1,924.5bn in 2021, at a CAGR of 1.6%. The GDP (at constant prices) of the country declined sharply from $1,943.8bn in 2019 to $1,840.5bn in 2020 because of Covid-19 pandemic. After the recommencement of regular industrial and trade activities, the GDP grew by 4.6% in 2021 from 2020. The GDP is expected to cross pre-pandemic levels by the end of 2022.

 

Related News

View more

New York and New England Need More Clean Energy. Is Hydropower From Canada the Best Way to Get it?

Canadian Hydropower Transmission delivers HVDC clean energy via New England Clean Energy Connect and Champlain Hudson Power Express, linking HydroQuébec to Maine and New York grids for renewable energy, decarbonization, and lower wholesale electricity rates.

 

Key Points

HVDC delivery of HydroQuébec power to New England and New York via NECEC and CHPE, cutting emissions and costs.

✅ 1,200 MW via NECEC; 1,000 MW via CHPE.

✅ HVDC routes: 145-mile NECEC and 333-mile CHPE.

✅ Debates: land impacts, climate justice, wholesale rates.

 

As the sole residents of unorganized territory T5 R7 deep within Maine's North Woods, Duane Hanson and his wife, Sally Kwan, have watched the land around them—known for its natural beauty, diverse wildlife and recreational fishing—transformed by decades of development. 

But what troubles them most is what could happen in the next few months. State and corporate officials are pushing for construction of a 53-mile-long power line corridor cutting right through the woods and abutting the wild lands surrounding Hanson's property. 

If its proponents succeed, Hanson fears the corridor may represent the beginning of the end of his ability to live "off the land" away from the noise of technology-obsessed modern society. Soon, that noise may be in his backyard. 

"I moved here to be in the pristine wilderness," said Hanson.
 
With his life in what he considers the last "wild" place left on the East Coast on the line, the stakes have never felt higher to Hanson—and many across New England, as well.

The corridor is part of the New England Clean Energy Connect, one of two major and highly controversial transmission line projects meant to deliver Canadian hydropower from the government-owned utility HydroQuébec, in a province that has closed the door on nuclear power, to New England electricity consumers. 

As New England states rush to green their electric grids and combat the accelerating climate crisis, the simultaneous push from Canada to expand the market for hydroelectric power from its vast water resources, including Manitoba's clean energy, has offered these states a critical lifeline at just the right moment. 

The other big hydropower transmission line project will deliver 1,000 megawatts of power, or enough to serve approximately one million residential customers, to the New York City metropolitan area, which includes the city, Long Island, and parts of the Hudson Valley, New Jersey, Connecticut and Pennsylvania. 

The 333-mile-long Champlain Hudson Power Express project will consist of two high voltage direct current cables running underground and underwater from Canada, beneath Lake Champlain and the Hudson River, to Astoria, Queens. 

There, the Champlain Hudson project will interconnect to a sector of the New York electricity grid where city and corporate officials say the hydropower supplied can help reduce the fossil fuels that currently comprise significantly more of the base load than in other parts of the state. Though New York has yet to finalize a contract with HydroQuébec over its hydropower purchase, developers plan to start construction on the $2.2 billion project in 2021 and say it will be operational in 2025. 

The New England project consists of 145 miles of new HVDC transmission line that will run largely above ground from the Canadian border, through Maine to Massachusetts. The $1 billion project, funded by Massachusetts electricity consumers, is expected to deliver 1,200 megawatts of clean energy to the New England energy grid, becoming the region's largest clean energy source. 

Central Maine Power, which will construct the Maine transmission corridor, says the project will decrease wholesale electric rates and create thousands of jobs. Company officials expect to receive all necessary permits and begin construction by the year's end, with the project completed and in service by 2020. 

With only months until developers start making both projects on-the-ground realities, they have seized public attention within, and beyond, their regions. 

Hanson is one among many concerned New England and New York residents who've joined the ranks of environmental activists in a contentious battle with public and corporate officials over the place of Canadian hydropower in their states' clean energy futures. 

Officials and transmission line proponents say importing Canadian hydropower offers an immediate and feasible way to help decarbonize electricity portfolios in New York and New England and to address existing transmission constraints that limit cross-border flows today, supporting their broader efforts to combat climate change. 

But some environmental activists say hydropower has a significant carbon footprint of its own. They fear the projects will make states look "greener" at the expense of the local environment, Indigenous communities, and ultimately, the climate. 

"We're talking about the most environmentally and economically just pathway" to decarbonization, said Annel Hernandez, associate director of the NYC Environmental Justice Alliance. "Canadian hydro is not going to provide that." 

To that end, environmental groups opposing Canadian hydropower say New York and New England should seize the moment to expedite local development of wind and solar power. 

Paul Gallay, president of the nonprofit environmental organization Riverkeeper—which withdrew its initial support for the Champlain Hudson Power Express last November— believes New York has the capacity to develop enough in-state renewable energy sources to meet its clean energy goals, without the new transmission line. 

Yet New York City's analysis shows clearly that Canadian hydropower is critical for its clean energy strategy, said Dan Zarrilli, director of OneNYC and New York City's chief climate policy adviser. 

"We need every bit of clean energy we can get our hands on," he said, to meet the city's goal of carbon neutrality by 2050 and help achieve the state's clean energy mandates. 

Removing Canadian hydropower from the equation, said Zarilli, would commit the city to the "unacceptable outcome" of burning more gas. The city's marginalized communities would likely suffer most from the resulting air pollution and associated health impacts. 

While the two camps debate Canadian hydropower's carbon footprint and what climate justice requires, this much is clear: When it comes to pursuing a zero-carbon future, there are no easy answers. 

Hydropower's Carbon Footprint
Many people take for granted that because hydropower production doesn't involve burning fossil fuels, it's a carbon-neutral endeavor. But that's not always the case, depending on where hydropower is sourced. 

Large-scale hydropower projects often involve the creation of hydroelectric dams and reservoirs, and, in some cases, repowering existing dams to generate clean electricity. The release and flow of water from the reservoir through the dam provides the energy necessary to generate hydropower, which long-distance power lines, or transmission lines, carry to its intended destination—in this case, New England and New York. 

The initial process of flooding land to create a hydroelectric reservoir can have a sizable carbon footprint, especially in heavily vegetated areas. It causes the vegetation and soil underwater to decompose, releasing carbon dioxide and methane—a greenhouse gas 84 times more potent over a 20-year period than carbon dioxide. 

Hydropower accounts for 60 percent of Canada's electricity generation, and HydroQuébec has planned to increase capacity to 37,000 MW in 2021, with the nation second only to China in the percentage of the world's total hydroelectricity it generates. By contrast, hydropower only accounts for seven percent of U.S. utility-scale electricity generation, making it a foreign concept to many Americans. 

As New England works to introduce substantial amounts of Canadian hydropower to its electricity grid, hydropower proponents are promoting it as a prime source for clean electricity, and new NB Power agreements are expanding regional transfers within Canada as well. 

Last fall, Central Maine Power formed its own political action committee, Clean Energy Matters, to advance the New England hydropower project. Together with HydroQuébec, the Maine utility has spent nearly $17 million campaigning for the project this year. 

 

Related News

View more

EPA, New Taipei spar over power plant

Shenao Power Plant Controversy intensifies as the EPA, Taipower, and New Taipei officials clash over EIA findings, a marine conservation area, fisheries, public health risks, and protests against a coal-fired plant in Rueifang.

 

Key Points

Dispute over coal plant EIA, marine overlap, and health risks, pitting EPA and Taipower against New Taipei and residents.

✅ EPA approved EIA changes; city cites marine conservation conflict

✅ Rueifang residents protest; 400+ signatures, wardens oppose

✅ Debate centers on fisheries, public health, and coal plant impacts

 

The controversy over the Shenao Power Plant heated up yesterday as Environmental Protection Administration (EPA) and New Taipei City Government officials quibbled over the project’s potential impact on a fisheries conservation area and other issues, mirroring New Hampshire hydropower clashes seen elsewhere.

State-run Taiwan Power Co (Taipower) wants to build a coal-fired plant on the site of the old Shenao plant, which was near Rueifang District’s (瑞芳) Shenao Harbor.

The company’s original plan to build a new plant on the site passed an environmental impact assessment (EIA) in 2006, similar to how NEPA rules function in the US, and the EPA on March 14 approved the firm’s environmental impact difference analysis report covering proposed changes to the project.

#google#

That decision triggered widespread controversy and protests by local residents, environmental groups and lawmakers, echoing enforcement disputes such as renewable energy pollution cases reported in Maryland.

The controversy reached a new peak after New Taipei City Mayor Eric Chu on Tuesday last week posted on Facebook that construction of wave breakers for the project would overlap with a marine conservation area that was established in November 2014.

The EPA and Taipower chose to ignore the demarcation lines of the conservation area, Chu wrote.

Dozens of residents from Rueifang and other New Taipei City districts yesterday launched a protest at 9am in front of the Legislative Yuan in Taipei, amid debates similar to the Maine power line proposal in the US, where the Health, Environment and Labor Committee was scheduled to review government reports on the project.

More than 400 Rueifang residents have signed a petition against the project, including 17 of the district’s 34 borough wardens, Anti-Shenao Plant Self-Help Group director Chen Chih-chiang said.

Ruifang residents have limited access to information, and many only became aware of the construction project after the EPA’s March 14 decision attracted widespread media coverage, Chen said,

Most residents do not support the project, despite Taipower’s claims to the contrary, Chen said.

New Power Party Executive Chairman Huang Kuo-chang, who represents Rueifang and adjacent districts, said the EPA has shown an “arrogance of power” by neglecting the potential impact on public health and the local ecology of a new coal-fired power plant, even as it moves to revise coal wastewater limits elsewhere.

Huang urged residents in Taipei, Keelung, Taoyaun and Yilan County to reject the project.

If the New Taipei City Government was really concerned about the marine conservation area, it should have spoken up at earlier EIA meetings, rather than criticizing the EIA decision after it was passed, Environmental Protection Administration Deputy Minister Chan Shun-kuei told lawmakers at yesterday’s meeting.

Chan said he wondered if Chu was using the Shenao project for political gain.

However, New Taipei City Environmental Protection Department specialist Sun Chung-wei  told lawmakers that the Fisheries Agency and other experts voiced concerns about the conservation area during the first EIA committee meeting on the proposed changes to the Shenao project on June 15 last year.

Sun was invited to speak to the legislative committee by Chinese Nationalist Party (KMT) Legislator Arthur Chen.

While the New Taipei City Fisheries and Fishing Port Affairs Management Office did not present a “new” opinion during later EIA committee meetings, that did not mean it agreed to the project, Sun said.

However, Chan said that Sun was using a fallacious argument and trying to evade responsibility, as the conservation area had been demarcated by the city government.

 

Related News

View more

India to Ration Coal Supplies as Electricity Demand Surges

India Coal Supply Rationing redirects shipments from high-inventory power plants to stations facing shortages as electricity demand surges, inventories fall, and outages persist; Coal India, NTPC imports, and smaller mines bolster domestic supply.

 

Key Points

A temporary policy redirecting coal from high-stock plants to shortage-hit plants amid rising demand

✅ Shipments halted 1 week to plants with >14 days coal stock

✅ Smaller mines asked to raise output; NTPC to import 270,000 tons

✅ Outages at Adani and Tata Mundra units pressure domestic supply

 

India will ration coal supplies to power plants with high inventories to direct more shipments to stations battling shortages, even as shortages ease in some regions, as surging demand outstrips production.

Supplies to plants with more than two weeks’ coal inventory will be halted for a week, a team headed by federal Coal Secretary Alok Kumar decided on Saturday, the Power Ministry said in a statement. The government has also requested smaller mines to raise output to supplement shipments from state miner Coal India Ltd., and is taking steps to get nuclear back on track to diversify the energy mix.

A jump in electricity consumption spurred by a reviving economy and an extended summer, after an earlier steep demand decline in India, is driving demand for coal, which helps produce about 70% of the nation’s electricity. The surge in demand complicates India’s clean-energy transition efforts amid solar supply headwinds that cloud near-term alternatives, and may bolster arguments favoring the country’s dependence on coal to fuel economic growth.

“There’s no doubt India will continue to need coal for stable power for years,” said Rupesh Sankhe, vice president at Elara Capital India Pvt. in Mumbai. “Plants that meet environmental standards and are able to produce power efficiently will see utilization rising, but I doubt we’re going to have many new coal plants.”  

Coal stockpiles at the country’s power plants had fallen to 14.7 million tons as of Aug. 24, tumbling 62% from a year earlier, according to the latest data from the Central Electricity Authority. More than 88 gigawatts of generation plants, about half the capacity monitored by the power ministry, had inventories of six days or less as of that date, the data show. Power demand jumped 10.5% in July from a year earlier, even as global electricity use dipped 15% during the pandemic, according to the government.
Outages at some large plants that run on imported coal have increased the burden on those that burn domestic supplies, aiding shortfalls.

Adani Power Ltd. had almost 2 gigawatts of capacity in outage at its Mundra plant in Gujarat at the start of the week, while Tata Power Co. Ltd. had shut 80% of its 4-gigawatt plant in the same town for maintenance, power ministry data show.

NTPC Ltd., the largest power generator, will import the 270,000 tons of coal it left out from contracts placed earlier to mitigate the fuel shortage, reflecting higher imported coal volumes this fiscal, the power ministry said in a separate statement.

 

Related News

View more

NRC Makes Available Turkey Point Renewal Application

Turkey Point Subsequent License Renewal seeks NRC approval for FP&L to extend Units 3 and 4, three-loop pressurized water reactors near Homestead, Miami; public review, docketing, and an Atomic Safety and Licensing Board hearing.

 

Key Points

The NRC is reviewing FP&L's request to extend Turkey Point Units 3 and 4 operating licenses by 20 years.

✅ NRC will docket if application is complete

✅ Public review and opportunity for adjudicatory hearing

✅ Units commissioned in 1972 and 1973, near Miami

 

The U.S. Nuclear Regulatory Commission said Thursday that it had made available the first-ever "subsequent license renewal application," amid milestones at nuclear power projects worldwide, which came from Florida Power and Light and applies to the company's Turkey Point Nuclear Generating Station's Units 3 and 4.

The Nuclear Regulatory Commission recently made available for public review the first-ever subsequent license renewal application, which Florida Power & Light Company submitted on Jan. 1.

In the application, FP&L requests an additional 20 years for the operating licenses of Turkey Point Nuclear Generating Units 3 and 4, three-loop, pressurized water reactors located in Homestead, Florida, where the Florida PSC recently approved a municipal solid waste energy purchase, approximately 40 miles south of Miami.

The NRC approved the initial license renewal in June 2002, as new reactors at Georgia's Vogtle plant continue to take shape nationwide. Unit 3 is currently licensed to operate through July 19, 2032. Unit 4 is licensed to operate through April 10, 2033.

#google#

NRC staff is currently reviewing the application, while a new U.S. reactor has recently started up, underscoring broader industry momentum. If the staff determines the application is complete, they will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board.

The first-ever subsequent license renewal application, submitted by Florida Power & Light Company asks for an additional 20 years for the already-renewed operating licenses of Turkey Point, even as India moves to revive its nuclear program internationally, which are currently set to expire in July of 2032 and April of 2033. The two thee-loop, pressurized water reactors, located about 40 miles south of Miami, were commissioned in July 1972 and April 1973.

If the application is determined to be complete, the staff will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board, the agency said.

The application is available for public review on the NRC website. Copies of the application will be available at the Homestead Branch Library in Homestead, the Naraja Branch Library in Homestead and the South Dade Regional Library in Miami.

 

 

Related News

View more

Prepare for blackouts across the U.S. as summer takes hold

US Summer Grid Blackout Risk: NERC and FERC warn of strained reliability as drought, heat waves, and transmission constraints hit MISO, hydro, and renewables, elevating blackout exposure and highlighting demand response and storage solutions.

 

Key Points

A forecast of summer power shortfalls across the US grid, driven by heat, drought, transmission limits, and a changing resource mix.

✅ NERC and FERC warn of elevated blackout risk and reliability gaps.

✅ MISO region strained by drought, heat, and limited hydro.

✅ Mitigations: demand response, storage, and stronger transmission.

 

Just when it didn’t seem things couldn’t get worse — gasoline at $5 to $8 a gallon, supply shortages in everything from baby formula to new cars — comes the devastating news that many of us will endure electricity blackouts this summer, and that the U.S. has more blackouts than other developed nations according to one study.

The alarm was sounded by the nonprofit North American Electric Reliability Corp. and the Federal Energy Regulatory Commission, following a recent power grid report card highlighting vulnerabilities.

The North American electric grid is the largest machine on earth and the most complex, incorporating everything from the wonky pole you see at the roadside with a bird’s nest of wires to some of the most sophisticated engineering ever devised. It runs in real-time, even more so than the air traffic control system: All the airplanes in the sky don’t have to land at the same time, but electricity must be there at the flick of every switch.

Except it may not always be there this summer. Rod Kuckro, a respected energy journalist, says it depends on Mother Nature, with extreme weather impacts increasingly straining the grid, but the prognosis isn’t good.

Speaking on “White House Chronicle,” the weekly news and public affairs program on PBS that I host and produce, Kuckro said: “There is a confluence of factors that could affect energy supply across the majority of the (lower) 48 states. These are continued reduced hydroelectric production in the West, and the continued drought in the Southwest.”

The biggest threat to power supply, according to the NERC and the FERC, is in the vast central region, reaching from Manitoba in Canada, where grids are increasingly exposed to harsh weather in recent years, down to the Gulf of Mexico. It is served by the regional transmission organization, the Midcontinent Independent System Operator.

These operational entities are nonprofit companies that organize and distribute their regions’ bulk power for utilities. In California, it is the California Independent System Operator, working to keep the lights on as the state enters a new energy era; in the Mid-Atlantic, it is PJM; and in the Northeast, it is the New England System Independent Operator. They generate no power, but they control power flows and could initiate brownouts and blackouts.

With record storm activity and high temperatures predicted this summer, blackouts are likely to be deadly. The old, the young and the sick are all vulnerable. If the electric supply fails, with it goes everything from air conditioning to refrigeration to lights and even the ability to pump gas or access money from ATMs.

The United States, along with other modern nations, runs on electricity and when that falls short, it is catastrophic. It is chaos writ large, especially if the failure lasts more than a few hours.

On the same episode of “White House Chronicle,” Daniel Brooks, vice president of integrated grid and energy systems at the Electric Power Research Institute, also referred to a “confluence of factors” contributing to the impending electricity crisis. Brooks said, “We’re going through a significant change in terms of the energy mix and resources, and the way those resources behave under certain weather conditions.”

If power supply is stressed this summer, change in the generating mix will get a lot of political attention. At heart is the switch from fossil fuel generation to renewables. If there are power outages, a political storm will ensue. The Biden administration will be accused of speeding the switch to renewables, although the utilities don’t say that.

The weather is deteriorating, and, as experts note, the grid’s biggest challenge isn’t demand but climate change pressures that compound risks, and the grid is stretched in dealing with new realities as well as coping with old bugaboos, like the extreme difficulty in building transmission lines. Better transmission would relieve a lot of grid stress.

Peter Londa, president of Tantalus Systems, which helps its 260 utility customers digitize and cope with the new realities, explained some of the difficulties facing the utilities not only in the shifting sources of generation but also in the new shape of the electric demand. For example, he said, electric vehicles, particularly the much-awaited Ford F-150 Lightning pickup, could be an asset to homeowners and utilities, as California increasingly turns to batteries to stabilize its grid. During a blackout, their EVs could be used to power their homes for days. They could be a source of storage if thousands of owners signed up with their utilities in a storage program.

The fact is that utilities are facing three major shifts: in the generation to wind and solar, in customer demand, and especially in weather. Mother Nature is on a rampage and we all must adjust to that.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified