Ameren buries hopes for buried power lines, puts efforts into tree trimming

By Knight Ridder Tribune


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
In Missouri, they're digging deep to keep the lights on.

Stung by massive power outages caused by ice and wind storms last year, the AmerenUE utility is spending $300 million in a three-year program to bury cables now seen as particularly vulnerable. The idea is that ice-laden or wind-tossed branches can't bring down lines once they're safely tucked several feet underground.

But in Central Illinois, an area just as badly ravaged by those storms, there is no similar initiative. AmerenIP is part of the same Ameren Corp. business family as AmerenUE, but they have their own budgets and their own approaches to safeguarding power supplies. AmerenIP says power lines for many new developments are placed underground because it's cheaper to do it at the start of construction, and developers are willing to pay for it.

The company says "undergrounding" existing cables in older neighborhoods, however, is staggeringly expensive, working out at something like $1 million a mile. Natalie Hemmer, an AmerenIP spokeswoman, said especially troublesome cables may be buried underground, but the company has no large-scale program to do this or the means to pay for it. She says AmerenIP, along with its sister Illinois utilities AmerenCIPS and AmerenCILCO, is jointly spending some $110 million over the next three years on an aggressive tree-trimming initiative to protect power lines.

She also points to a $114 million program to "harden" the electrical system by installing devices that contain the affects of power cuts by limiting the number of homes and businesses losing power.

Hemmer says burying cables might be the way to go in an ideal world, but any widespread effort to do it now would involve passing on massive costs to already hard-pressed consumers. "In 2007, our focus has been on rate relief," she said. "We want to get customers rate relief to help ease some of the bills they've been experiencing." But having to melt snow to flush your toilets after the power has gone off has a way of changing outlooks on the pros and cons of burying cables. Decatur couple Carol and Joe Thomas had to do that during last winter's ice storm when the power went off and they were left without heat, lights or water pressure.

Ice-laden branches had taken down power cables serving their street, and the lines stayed down for five days. "Buried cables for us obviously would have been a plus," said Carol Thomas, 59, who is disabled and has difficulty walking. "And while it may be expensive, look at how much money the power company had to spend in overtime and everything to repair all those lines. That cost was horrendous and would go a long way to putting some of these lines underground."

In December, Ameren Corp. estimated that the post-ice storm repair bill for its utilities topped $100 million. Hundreds of thousands of customers in Illinois and Missouri were left without power, and 7,000 linemen from 14 states were called in to make repairs that took weeks to finish.

AmerenUE decided enough was enough and launched Project Power On, which includes a cable-burying program in a $1 billion push that will also spend $84 million on upgrading cables and equipment and $135 million on tree trimming. Another $500 million is being spent on cleaning up power station emissions.

The Missouri electrical market is still regulated, unlike the Illinois market, and $200 million of Project Power On was approved in extra power charges agreed by state officials who oversee electricity rates. AmerenUE spokesman Tim Fox said the company ould expect to gradually get its investment back "over a long period of time" from increased customer charges but was more interested right now in keeping the lights on.

He said burying cables won't guarantee power supplies will never be interrupted, but the aim was to limit the damage. "So the hope is we'll see fewer outages and quicker restoration times," he added.

The Illinois Commerce Commission, which oversees utilities in this state, says there may be no widespread policies of burying power cables here, but that doesn't mean utilities aren't being held to higher standards. ICC spokesman Brian Sterling said the commission put "feet to the fire" to make sure utilities such as AmerenIP improve tree trimming procedures to safeguard lines.

And more pressure may be coming: A preliminary report, commissioned by the ICC, is due before the end of the year looking at how Ameren utilities dealt with the aftermath of the ice storm and earlier windstorms.

Related News

Energy-insecure households in the U.S. pay 27% more for electricity than others

Community Solar for Low-Income Homes expands energy equity by delivering renewable energy access, predictable bill savings, and tax credit benefits to renters and energy-insecure households, accelerating distributed generation and storage adoption nationwide.

 

Key Points

A program model enabling renters and LMI households to subscribe to off-site solar and save on utility bills.

✅ Earn bill credits from shared solar generation.

✅ Expands access for renters and LMI subscribers.

✅ Often paired with storage and IRA tax credit adders.

 

On a square-foot basis, the issue of inequality is made worse by higher costs for energy usage in the nation. Efforts like community solar programs such as Maryland community solar are underway to boost low-income participation in the cost benefits of renewable energy.

The Energy Information Administration (EIA) shows that households that are considered energy insecure, or those that have the inability to adequately meet basic household energy costs, are paying more for electricity than their wealthier counterparts. 

On average in the United States in 2020, households were billed about $1.04 per square foot for all energy sources. For homes that did not report energy insecurity, that average was $0.98 per square foot, while homes with energy insecurity issues paid an average of $1.24 per square foot for energy. This means that U.S. residents that need the most support on their energy bills are stuck with costs 27% higher than their neighbors on square-foot-basis.

EIA said energy-insecure households have reduced or forgone basic necessities to pay energy bills, kept their houses at unsafe temperatures because of energy cost concerns, or been unable to repair heating or cooling equipment because of cost.

In 2020, households with income less than $10,000 a year were billed an average of $1.31 per square foot for energy, while households making $100,000 or more were billed an average of $0.96 per square foot, said EIA. Renters paid considerably more ($1.28 per square foot) than owners ($0.98 per square foot). There were also considerable differences between regions, with New England solar growth sparking grid upgrade debates, ethnic groups and races, and insulation levels, as seen below.

The energy transition toward renewables like solar has offered price stability, amid record solar and storage growth nationwide, but thus far energy-insecure communities have relatively been left behind. A recent Berkeley Lab report, Residential Solar-Adopter Income and Demographic Trends, indicates that even though the rate of solar adoption among low-income residents is increasing (from 5% in 2010 to 11% in 2021), that segment of energy consumers remains under-represented among solar adopters, relative to its share of the population.


Community solar efforts

As such, the United States is targeting communities most impacted by energy costs that have not benefitted from the transition, highlighting “Energy Communities” that are eligible for an additional 10% tax credit through funds made possible by the Inflation Reduction Act.

Additionally, a push for community solar development is taking place nationwide to extend access to affordable solar energy to renters and other residents that aren’t able to leverage finances to invest in predictable, low-cost residential solar systems. The Biden Administration set a goal this year to sign up 5 million community solar households, achieving $1 billion in bill savings by 2025. The community solar model only represents about 8% of the total distributed solar capacity in the nation. This target would entail a jump from 3 GW installed capacity to 20 GW by the target year. The Department of Energy estimates community solar subscribers save an average of 20% on their bills.

California this year passed AB 2316, the Community Renewable Energy Act takes aim at four acute problems in the state’s power market: reliability amid rising outage risks, rates, climate and equity. The law creates a community renewable energy program, including community solar-plus-storage, supported by cheaper batteries, to overcome access barriers for nearly half of Californians who rent or have low incomes. Community solar typically involves customers subscribing to an off-site solar facility, receiving a utility bill credit for the power it generates.

“Community renewable energy is a proven powerful tool to help close California’s clean energy gap, bringing much needed relief to millions struggling with high housing costs and utility debt,” said Alexis Sutterman, energy equity program manager at the California Environmental Justice Alliance.

The program has energy equity baked into its structure, working to make sure Californians of all income levels participate in the benefits of the energy transition. Not only does it open solar access to renters, the law ensures that at least 51% of subscribers are low-income customers, which is expected to make projects eligible for a 10% tax credit adder under the IRA.

“The money’s on the table now,” said Jeff Cramer, president and chief executive of the Coalition for Community Solar Access. “While there are groups pushing for solar access for all, and states with strong legislation, there are other pockets of interest in surprising places in the United States. For example, Louisiana has no policy for community solar or support for low-income residents going solar but the city of New Orleans has its own utility commission with a community solar program. In Nebraska, forward-looking co-operatives have created community solar projects.

Community solar markets are active in 22 states, with more expected to come online in the future as states pursue 100% clean energy targets across the country. However, the market is expected to require strong community outreach efforts to foster trust and gain subscribers.

“There is a distrust of community solar initially in LMI communities as many have been burned before by retail energy false promises,” said Eric LaMora, executive director, community solar, Nautilus Solar on a panel at the Solar Energy Industries Association Finance, Tax, and Buyers seminar. “People are suspicious but there really are no hooks with community solar.”

LMI residents are leery to provide tax records or much documents at all in order to sign up for community solar, LaMora said. “We were surprised to see less of a default rate with LMI residents. We attribute this to the fact that they see significant savings on their electric bill, making it easier to pay each month,” he said.

 

Related News

View more

Are Norwegian energy firms ‘best in class’ for environmental management?

CO2 Tax for UK Offshore Energy Efficiency can accelerate adoption of aero-derivative gas turbines, flare gas recovery, and combined cycle power, reducing emissions on platforms like Equinor's Mariner and supporting net zero goals.

 

Key Points

A carbon price pushing operators to adopt efficient turbines, flare recovery, and combined cycle to cut emissions.

✅ Aero-derivative turbines beat industrial units on efficiency

✅ Flare gas recovery cuts routine flaring and fuel waste

✅ Combined cycle raises efficiency and lowers emissions

 

By Tom Baxter

The recent Energy Voice article from the Equinor chairman concerning the Mariner project heralding a ‘significant point of reference’ for growth highlighted the energy efficiency achievements associated with the platform.

I view energy efficiency as a key enabler to net zero, and alongside this the UK must start large-scale storage to meet system needs; it is a topic I have been involved with for many years.

As part of my energy efficiency work, I investigated Norwegian practices and compared them with the UK.

There were many differences, here are three;


1. Power for offshore installations is usually supplied from gas turbines burning fuel from the oil and gas processing plant, and even as the UK's offshore wind supply accelerates, installations convert that to electricity or couple the gas turbine to a machine such as a gas compressor.

There are two main generic types of gas turbine – aero-derivative and industrial. As the name implies aero-derivatives are aviation engines used in a static environment. Aero-derivative turbines are designed to be energy efficient as that is very import for the aviation industry.

Not so with industrial type gas turbines; they are typically 5-10% less efficient than a comparable aero-derivative.

Industrial machines do have some advantages – they can be cheaper, require less frequent maintenance, they have a wide fuel composition tolerance and they can be procured within a shorter time frame.

My comparison showed that aero-derivative machines prevailed in Norway because of the energy efficiency advantages – not the case in the UK where there are many more offshore industrial gas turbines.

Tom Baxter is visiting professor of chemical engineering at Strathclyde University and a retired technical director at Genesis Oil and Gas Consultants


2. Offshore gas flaring is probably the most obvious source of inefficient use of energy with consequent greenhouse gas emissions.

On UK installations gas is always flared due to the design of the oil and gas processing plant.

Though not a large quantity of gas, a continuous flow of gas is routinely sent to flare from some of the process plant.

In addition the flare requires pilot flames to be maintained burning at all times and, while Europe explores electricity storage in gas pipes, a purge of hydrocarbon gas is introduced into the pipes to prevent unsafe air ingress that could lead to an explosive mixture.

On many Norwegian installations the flare system is designed differently. Flare gas recovery systems are deployed which results in no flaring during continuous operations.

Flare gas recovery systems improve energy efficiency but they are costly and add additional operational complexity.


3. Returning to gas turbines, all UK offshore gas turbines are open cycle – gas is burned to produce energy and the very hot exhaust gases are vented to the atmosphere. Around 60 -70% of the energy is lost in the exhaust gases.

Some UK fields use this hot gas as a heat source for some of the oil and gas treatment operations hence improving energy efficiency.

There is another option for gas turbines that will significantly improve energy efficiency – combined cycle, and in parallel plans for nuclear power under the green industrial revolution aim to decarbonise supply.

Here the exhaust gases from an open cycle machine are taken to a separate turbine. This additional turbine utilises exhaust heat to produce steam with the steam used to drive a second turbine to generate supplementary electricity. It is the system used in most UK power stations, even as UK low-carbon generation stalled in 2019 across the grid.

Open cycle gas turbines are around 30 – 40% efficient whereas combined cycle turbines are typically 50 – 60%. Clearly deploying a combined cycle will result in a huge greenhouse gas saving.

I have worked on the development of many UK oil and gas fields and combined cycle has rarely been considered.

The reason being is that, despite the clear energy saving, they are too costly and complex to justify deploying offshore.

However that is not the case in Norway where combined cycle is used on Oseberg, Snorre and Eldfisk.

What makes the improved Norwegian energy efficiency practices different from the UK – the answer is clear; the Norwegian CO2 tax.

A tax that makes CO2 a significant part of offshore operating costs.

The consequence being that deploying energy efficient technology is much easier to justify in Norway when compared to the UK.

Do we need a CO2 tax in the UK to meet net zero – I am convinced we do. I am in good company. BP, Shell, ExxonMobil and Total are supporting a carbon tax.

Not without justification there has been much criticism of Labour’s recent oil tax plans, alongside proposals for state-owned electricity generation that aim to reshape the power market.

To my mind Labour’s laudable aims to tackle the Climate Emergency would be much better served by supporting a CO2 tax that complements the UK's coal-free energy record by strengthening renewable investment.

 

Related News

View more

OEB issues decision on Hydro One's first combined T&D rates application

OEB Hydro One Rate Decision 2023-2027 sets approved transmission and distribution rates in Ontario, with a settlement reducing revenue requirement, modest bill impacts, higher productivity factors, inflation certainty, DVA credits, and First Nations participation measures.

 

Key Points

OEB-approved Hydro One 2023-2027 transmission and distribution rates settlement, lowering costs and limiting bill impacts.

✅ $482.7M revenue reductions vs. original proposal

✅ Avg bill impact: +$0.69 trans., +$2.43 distr. per month

✅ Faster DVA refunds; productivity and efficiency incentives

 

The Ontario Energy Board (OEB) issued its Decision and Order on an application filed by Hydro One Networks Inc. (Hydro One) on August 5, 2021 seeking approval for changes to the rates it charges for electricity transmission and distribution, beginning January 1, 2023 and for each subsequent year through to December 31, 2027. 

The proceeding resulted in the filing of a settlement proposal that the OEB has now approved after concluding that it is in the public interest. 

The negotiated reductions in Hydro One's transmission and distribution revenue requirements over the 2023 to 2027 period total $482.7 million compared to the requests made by Hydro One in its application.

The OEB found that the reductions in Hydro One's proposed capital expenditure and operating, maintenance and administration costs were reasonable, and should not compromise the safety and reliability of Hydro One's transmission and distribution systems. It also concluded that the estimated bill impacts for both transmission and distribution customers are reasonable, and that the January 1, 2023 implementation and effective date of the new rates is appropriate.

In the broader Canadian context, pressures on utility finances at other companies, such as Manitoba Hydro's debt provide additional background for stakeholders.

 

Bill Impacts

This proceeding related to both transmission and distribution operations.

 

Transmission

The new transmission revenue requirement will affect Ontario electricity consumers across the province because it will be incorporated into updated transmission rates, which are paid by electricity distributors and other large consumers connected directly to the transmission system, and distributors then pass this cost on to their customers.

As a result of the settlement approved on the transmission portion of the application, it is estimated that for a typical Hydro One residential customer with a monthly consumption of 750 kWh, the total bill impact averaged over the 2023-2027 period will be an increase of $0.69 per month or 0.5%, which follows the 2021 electricity rate reductions that affected many businesses.

 

Distribution

The new OEB-approved distribution rates will affect Hydro One's distribution customers, including areas served through acquisitions such as the Peterborough Distribution sale which expanded its customer base.

As a result of the settlement reached on the distribution portion of the application, it is estimated that for a typical residential distribution customer of Hydro One with a monthly consumption of 750 kWh, the total bill impact averaged over the 2023-2027 period will be an increase of $2.43 per month or 1.5%.
This proceeding included 24 approved intervenors representing a wide variety of customer classes and other interests. Representatives of 18 of those intervenors participated in the settlement conference. Having this diversity of perspective enriches the already thorough examination of evidence and argument that the OEB routinely undertakes when considering an application.

Other features of the settlement proposal include:

  • A commitment by Hydro One to include, in future operational and capital investment plans, a discussion of how the proposed spending will directly support the achievement of Hydro One's climate change policy.
  • Eliminating further updates to reflect changes to inflation in 2022 and 2023 as originally proposed, to provide Hydro One's customers with greater certainty as to the potential impacts of inflation on their bills.
  • Increases in the productivity factors and supplemental stretch factors for both the distribution and transmission business segments which will provide Hydro One with additional incentives to achieve greater efficiencies during the 2023 to 2027 period.
  • Undertaking certain measures to seek economic participation or equity investment opportunities from First Nations.
  • Disposition of net credit balances in deferral and variance accounts (DVAs) owed to customers will be returned over a shorter period of time:
  • Transmission DVA – $22.5M over a one-year period in 2023 (versus five years)
  • Distribution DVA – $85.9M over a three-year period – 2023-2025 (versus five years)
  • Undertaking certain measures to continue examining cost-effective transmission and distribution line losses
  • In the decision, the OEB acknowledged the efforts involved by parties to participate in this entire proceeding, including the settlement conference, considering the number of participants, the complexity of the issues, and the challenging logistics of a "virtual" proceeding. The OEB commended the parties and OEB staff for achieving a comprehensive settlement on all issues.

 

Related News

View more

Learn how fees and usage impacts your electricity bill in new online CER tool

CER Interactive Electricity Bill Tool compares provincial electricity prices, fees, taxes, and usage. Explore household appliance costs, hydroelectric generation, and consumption trends across Canada with interactive calculators and a province-by-province breakdown.

 

Key Points

An online CER report with calculators comparing electricity prices, fees, and usage to explain household energy costs.

✅ Province-by-province bill, price, and consumption comparison

✅ Calculator for appliance and electronics energy costs

✅ Explains fees, taxes, regulation, and generation sources

 

Canadians have a new way to assess their electricity bill in a new, interactive online report released by the Canada Energy Regulator (CER).

The report titled What is in a residential electricity bill? features a province-to-province comparison of electricity bills, generation and consumption. It also explains electricity prices across the country, including how Calgary electricity prices have changed, allowing people to understand why costs vary depending on location, fees, regulation and taxes.  

Learn how fees and usage impacts your electricity bill in new online CER tool
Interactive tools allow people to calculate the cost of household appliances and electronic use for each province and territory, and to understand how Ontario rate increases may affect monthly bills. For example, an individual can use the tools to find out that leaving a TV on for 24-hours in Quebec costs $5.25 per month, while that same TV on for a whole day would cost $12.29 per month in Saskatchewan, $20.49 per month in the Northwest Territories, and $15.30 per month in Nova Scotia.

How Canadians use energy varies as much as how provinces and territories produce it, especially in regions like Nunavut where unique conditions influence costs. Millions of Canadians rely on electricity to power their household appliances, charge their electronics, and heat their homes. Provinces with abundant hydro-electric resources like Quebec, B.C., Manitoba, and Newfoundland and Labrador use electricity for home heating and tend to consume the most electricity.

By gathering data from various sources, this report is the first Canadian publication that features interactive tools to allow for a province-by-province comparison of electricity bills while highlighting different elements within an electricity bill, a helpful context as Canada faces a critical supply crunch in the years ahead.

The CER monitors energy markets and assesses Canadian energy requirements and trends, including clean electricity regulations developments that shape pricing. This report is part of a portfolio of publications on energy supply, demand and infrastructure that the CER publishes regularly as part of its ongoing market monitoring.

"No matter where you go in the country, Canadians want to know how much they pay for power and why, especially amid price spikes in Alberta this year," says lead author Colette Craig. "This innovative, interactive report really explains electricity bills to help everyone understand electricity pricing and consumption across Canada."

Quick Facts

  • Quebec ranks first in electricity consumption per capita at 21.0 MW.h, followed by Saskatchewan at 20.0 MW.h, Newfoundland and Labrador at 19.3 MW.h.
  • About 95% of Quebec's electricity is produced from hydroelectricity.
  • Provinces that use electricity for home heating tend to consume the most electricity.
  • Canada's largest consuming sector for electricity was industrial at 238 TW.h. The residential and commercial sectors consumed 168 TW.h and 126 TW.h, respectively.
  • In 2018, Canada produced 647.7 terawatt hours (TW.h) of electricity. More than half of the electricity in Canada (61%) is generated from hydro sources. The remainder is produced from a variety of sources, such as fossil fuels (natural gas and petroleum), nuclear, wind, coal, biomass, solar.
  • Canada is a net exporter of electricity. In 2019, net exports to the U.S. electricity market totaled 47.0 TW.h.
  • The total value of Canada's electricity exports was $2.5 billion Canadian dollars and the value of imports was $0.6 billion Canadian dollars, resulting in 2019 net exports of $1.9 billion.
  • All regions in Canada are reflected in this report but it does not include data that reflects the COVID-19 lockdown and its effects on residential electricity bills.
     

 

 

Related News

View more

U.S. Announces $28 Million To Advance And Deploy Hydropower Technology

DOE Hydropower Funding advances clean energy R&D, pumped storage hydropower, retrofits for non-powered dams, and fleet modernization under the Bipartisan Infrastructure Law and Inflation Reduction Act, boosting long-duration energy storage, licensing studies, and sustainability engagement.

 

Key Points

A $28M DOE initiative supporting hydropower R&D, pumped storage, retrofits, and stakeholder sustainability efforts.

✅ Funds retrofits for non-powered dams, expanding low-impact supply

✅ Backs studies to license new pumped storage facilities

✅ Engages stakeholders on modernization and environmental impacts

 

The U.S. Department of Energy (DOE) today announced more than $28 million across three funding opportunities to support research and development projects that will advance and preserve hydropower as a critical source of clean energy. Funded through President Biden’s Bipartisan Infrastructure Law, this funding will support the expansion of low-impact hydropower (such as retrofits for dams that do not produce power) and pumped storage hydropower, the development of new pumped storage hydropower facilities, and engagement with key voices on issues like hydropower fleet modernization, sustainability, and environmental impacts. President Biden’s Inflation Reduction Act also includes a standalone tax credit for energy storage, which will further enhance the economic attractiveness of pumped storage hydropower. Hydropower will be a key clean energy source in transitioning away from fossil fuels and meeting President Biden’s goals of 100% carbon pollution free electricity by 2035 through a clean electricity standard policy pathway and a net-zero carbon economy by 2050.

“Hydropower has long provided Americans with significant, reliable energy, which will now play a crucial role in achieving energy independence and protecting the climate,” said U.S. Secretary of Energy Jennifer M. Granholm. “President Biden’s Agenda is funding critical innovations to capitalize on the promise of hydropower and ensure communities have a say in building America’s clean energy future, including efforts to revitalize coal communities through clean projects.” 

Hydropower accounts for 31.5% of U.S. renewable electricity generation and about 6.3% of total U.S. electricity generation, with complementary programs to bolster energy security for rural communities supporting grid resilience, while pumped storage hydropower accounts for 93% of U.S. utility-scale energy storage, ensuring power is available when homes and businesses need it, even as the aging U.S. power grid poses challenges to renewable integration.  

The funding opportunities include, as part of broader clean energy funding initiatives, the following: 

  • Advancing the sustainable development of hydropower and pumped storage hydropower by encouraging innovative solutions to retrofit non-powered dams, the development and testing of technologies that mitigate challenges to pumped storage hydropower deployment, as well as opportunities for organizations not extensively engaged with DOE’s Water Power Technologies Office to support hydropower research and development. (Funding amount: $14.5 million) 
  • Supporting studies that facilitate the FERC licensing process and eventual construction and commissioning of new pumped storage hydropower facilities to facilitate the long-duration storage of intermittent renewable electricity. (Funding amount: $10 million)
  • Uplifting the efforts of diverse hydropower stakeholders to discuss and find paths forward on topics that include U.S. hydropower fleet modernization, hydropower system sustainability, and hydropower facilities’ environmental impact. (Funding amount: $4 million) 

 

Related News

View more

Opinion: Cleaning Up Ontario's Hydro Mess - Ford government needs to scrap the Fair Hydro Plan and review all options

Ontario Hydro Crisis highlights soaring electricity rates, costly subsidies, nuclear refurbishments, and stalled renewables in Ontario. Policy missteps, weak planning, and rising natural gas emissions burden ratepayers while energy efficiency and storage remain underused.

 

Key Points

High power costs and subsidies from policy errors, nuclear refurbishments, stalled efficiency and renewables in Ontario.

✅ $5.6B yearly subsidy masks electricity rates and deficits

✅ Nuclear refurbishments embed rising costs for decades

✅ Efficiency, storage, and DERs stalled amid weak planning

 

By Mark Winfield

While the troubled Site C and Muskrat Falls hydroelectric dam projects in B.C. and Newfoundland and Labrador have drawn a great deal of national attention over the past few months, Ontario has quietly been having a hydro crisis of its own.

One of the central promises in the 2018 platform of the Ontario Progressive Conservative party was to “clean up the hydro mess,” and then-PC leader Doug Ford vowed to fire Hydro One's leadership as part of that effort. There certainly is a mess, with the costs of subsidies taken from general provincial revenues to artificially lower hydro rates nearing $7 billion annually. That is a level approaching the province’s total pre-COVID-19 annual deficit. After only two years, that will also exceed total expected cost overruns of the Site C and Muskrat Falls projects, currently estimated at $12 billion ($6 billion each).

There is no doubt that Doug Ford’s government inherited a significant mess around the province’s electricity system from the previous Liberal governments of former premiers Dalton McGuinty and Kathleen Wynne. But the Ford government has also demonstrated a remarkable capacity for undoing the things its predecessors had managed to get right while doubling down on their mistakes.

The Liberals did have some significant achievements. Most notably: coal-fired electricity generation, which constituted 25 per cent of the province’s electricity supply in the early 2000s, was phased out in 2014. The phaseout dramatically improved air quality in the province. There was also a significant growth in renewable energy production. From  virtually zero in 2003, the province installed 4,500 MW of wind-powered generation, and 450 MW of solar photovoltaic by 2018, a total capacity more than double that of the Sir Adam Beck Generating Stations at Niagara Falls.

At the same time, public concerns over rising hydro rates flowing from a major reconstruction of the province’s electricity system from 2003 onwards became a central political issue in the province. But rather than reconsider the role of the key drivers of the continuing rate increases – namely the massively expensive and risky refurbishments of the Darlington and Bruce nuclear facilities, the Liberals adopted a financially ruinous Fair Hydro Plan. The central feature of the 2017 plan was a short-term 25 per cent reduction in hydro rates, financed by removing the provincial portion of the HST from hydro bills, and by extending the amortization period for capital projects within the system. The total cost of the plan in terms of lost revenues and financing costs has been estimated in excess of $40 billion over 29 years, with the burden largely falling on future ratepayers and taxpayers.


Decision-making around the electricity system became deeply politicized, and a secret cabinet forecast of soaring prices intensified public debate across Ontario. Legislation adopted by the Wynne government in 2016 eliminated the requirement for the development of system plans to be subject to any form of meaningful regulatory oversight or review. Instead, the system was guided through directives from the provincial cabinet. Major investments like the Darlington and Bruce refurbishments proceeded without meaningful, public, external reviews of their feasibility, costs or alternatives.

The Ford government proceeded to add more layers to these troubles. The province’s relatively comprehensive framework for energy efficiency was effectively dismantled in March, 2019, with little meaningful replacement. That was despite strong evidence that energy efficiency offered the most cost-effective strategy for reducing greenhouse gas emissions and electricity costs.

The Ford government basically retained the Fair Hydro Plan and promised further rate reductions, later tabling legislation to lower electricity rates as well. To its credit, the government did take steps to clarify real costs of the plan. Last year, these were revealed to amount to a de facto $5.6 billion-per-year subsidy coming from general revenues, and rising. That constituted the major portion of the province’s $7.4 billion pre-COVID-19 deficit. The financial hole was deepened further through November’s financial statement, with the addition of a further $1.3 billion subsidy to commercial and industrial consumers. The numbers can only get worse as the costs of the Darlington and Bruce refurbishments become embedded more fully into electricity rates.

The government also quietly dispensed with the last public vestige of an energy planning framework, relieving itself of the requirement to produce a Long-Term Energy Plan every three years. The next plan would normally have been due next month, in February.

Even the gains from the 2014 phaseout of coal-fired electricity are at risk. Major increases are projected in emissions of greenhouse gases, smog-causing nitrogen oxides and particulate matter from natural gas-fired power plants as the plants are run to cover electricity needs during the Bruce and Darlington refurbishments over the next decade. These developments could erode as much as 40 per cent of the improvements in air quality and greenhouse gas emission gained through the coal phaseout.

The province’s activities around renewable energy, energy storage and distributed energy resources are at a standstill, with exception of a few experimental “sandbox” projects, while other jurisdictions face profound electricity-sector change and adapt. Globally, these technologies are seen as the leading edge of energy-system development and decarbonization. Ontario seems to have chosen to make itself an energy innovation wasteland instead.

The overall result is a system with little or no space for innovation that is embedding ever-higher costs while trying to disguise those costs at enormous expense to the provincial treasury and still failing to provide effective relief to low-income electricity consumers.

The decline in electricity demand associated with the COVID-19 pandemic, along with the introduction of a temporary recovery rate for electricity, gives the province an opportunity to step back and consider its next steps with the electricity system. A phaseout of the Fair Hydro Plan electricity-rate reduction and its replacement with a more cost-effective strategy of targeted relief aimed at those most heavily burdened by rising hydro rates, particularly rural and low-income consumers, as reconnection efforts for nonpayment have underscored the hardship faced by many households, would be a good place to start.

Next, the province needs to conduct a comprehensive, public review of electricity options available to it, including additional renewables – the costs of which have fallen dramatically over the past decade – distributed energy resources, hydro imports from Quebec and energy efficiency before proceeding with further nuclear refurbishments.

In the longer term, a transparent, evidence-based process for electricity system planning needs to be established – one that is subject to substantive public and regulatory oversight and review. Finally, the province needs to establish a new organization to be called Energy Efficiency Ontario to revive its efforts around energy efficiency, developing a comprehensive energy-efficiency strategy for the province, covering electricity and natural gas use, and addressing the needs of marginalized communities.

Without these kinds of steps, the province seems destined to continue to lurch from contradictory decision after contradictory decision as the economic and environmental costs of the system’s existing trajectory continue to rise.

Mark Winfield is a professor of environmental studies at York University and co-chair of the university’s Sustainable Energy Initiative.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified