GE Energy Wins Contracts for New Power Plants in Middle East

By Business Wire


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
GE Energy has received contracts totaling more than $1.8 billion to supply 32 gas turbines and additional equipment for power plant projects in Kuwait and Qatar that will add more than five gigawatts of capacity to help meet the Middle EastÂ’s rapidly growing demand for electricity.

“To support the region’s dynamic growth, the Middle East urgently needs to increase its power and water capacity,” said Joseph Anis, GE Energy’s region executive for the Middle East. “With one of the industry’s broadest technology portfolios, and our global resources and experience, GE Energy is well-positioned to help the region meet these requirements.”

Under the first of the new contracts announced, GE will supply 20 Frame 9E gas turbines to Kharafi National of Kuwait for the Sabiya Power Station, which will add more than 2.5 gigawatts of power capacity for the State of Kuwait. The new power plant will be owned and operated by KuwaitÂ’s Ministry of Electricity & Water.

This will be an emergency power, fast-track project with an aggressive delivery schedule. The gas turbines will be manufactured at GEÂ’s facilities in Belfort, France, with shipments to the project site planned for October 2007 through June 2008. The commissioning phase for the new units is expected to begin in May 2008 and be completed in September 2008.

The Sabiya plant will operate in simple-cycle base load mode, initially using liquid fuel with plans to switch to natural gas when it becomes available in approximately three years.

In the second project, GE will supply gas and steam and power plant system services for a two-gigawatt power plant in Qatar – the largest such facility in the country and among the largest in the Middle East. Owned and operated by the Mesaieed Power Company Limited of Mesaieed, Qatar, the new plant is being built by Iberdrola Ingenieria y Construccion S.A.U. of Madrid, Spain.

GE will supply six Frame 9FA gas turbines, six 330H type generators and three D11 steam turbines, to be used for combined-cycle base load and part load operation; and two Frame 6B gas turbines for simple cycle black start duties.

The scope of GEÂ’s supply contract also includes additional plant equipment, technical advisory services, commissioning, performance tests and training. Under a separate contractual service agreement, GE will provide 12 years of maintenance services, encompassing two major inspection cycles.

QatarÂ’s demand for power has increased by an average of around nine percent from 2001 to 2005 while in 2006 it increased by more than 17 percent, according to the International Energy Agency.

The first Frame 9FA gas turbine-generator was prepared for shipment and left the GE factory in June of 2007. The first Frame 6B gas turbine-generator is expected to be shipped in July 2007 and the first steam turbine-generator in February of 2008.

The plant is expected to begin producing its first gigawatt of power in July of 2008, with the full power output of two gigawatts planned by April of 2010.

The Frame 9FA gas turbines are being manufactured at GEÂ’s facilities in Greenville, S.C., the Frame 6B gas turbines in Belfort, France, and the steam turbines in Schenectady, N.Y. Natural gas will be the primary fuel for the power plant, with distillate as the backup. Emissions will be limited to 9 ppm in combined-cycle operation.

The third project, also in the Mesaieed Industrial City of Qatar, is a turnkey project in which GE will lead a consortium with Doosan Heavy Industries and provide four 9FA gas turbines and two steam turbines to Qatalum for a new combined-cycle power plant that will generate power for the first aluminum smelter in Qatar. This will also be the first smelter in the entire region using F technology.

This project also includes training and a separate contractual service agreement covering maintenance services. DoosanÂ’s scope in the project includes the heat recovery steam generator, as well as the engineering, procurement and construction of the new power plant. The primary fuel source is natural gas and total plant output will be approximately 1.25 gigawatts.

The four 9FAs are planned to be shipped in late 2008 and testing is expected to start in September 2009. The start-up will be gradual according to the growth in the smelter power demand. Full commercial operation is planned for mid-2010.

Manufacturing of the gas turbines will be at GE EnergyÂ’s facility in Greenville, S.C., and the steam turbines will be built in Schenectady, N.Y.

“These new projects in Kuwait and Qatar reinforce GE’s already strong presence in the Middle East, as more than 50% of the installed thermal power in the region is based on GE technology,” said Steve Bolze, president, power generation for GE Energy. “For example, in recent months we have announced commitments totaling nearly $2 billion to supply gas turbines that will add 6.3 gigawatts of power in Saudi Arabia.”

With the latest series of orders in Kuwait and Qatar, GE Energy now has received orders and commitments totaling more than $3.5 billion for Middle East projects since December 2006.

In addition to the new orders, GE is further expanding its presence in the region by establishing new power generation projects offices in the Middle East to coordinate project management activities for the region.

Related News

Enel kicks off 90MW Spanish wind build

Enel Green Power España Aragon wind farms advance Spain's renewable energy transition, with 90MW under construction in Teruel, Endesa investment of €88 million, 25-50MW turbines, and 2017 auction-backed capacity enhancing grid integration and clean power.

 

Key Points

They are three Teruel wind projects totaling 90MW, part of Endesa's 2017-awarded plan expanding Spain's clean energy.

✅ 90MW across Sierra Costera I, Allueva, and Sierra Pelarda

✅ €88m invested; 14+7+4 turbines; Endesa-led build in Teruel

✅ Part of 2017 tender: 540MW wind, 339MW solar, nationwide

 

Enel Green Power Espana, part of Enel's wind projects worldwide, has started constructing three wind farms in Aragon, north-east Spain, which are due online by the end of the year.

The projects, all situated in the Teruel province, are worth a total investment of €88 million.

The biggest of the facilities, Sierra Costera I, will have a 50MW and will feature 14 turbines.

The wind farm is spread across the municipalities of Mezquita de Jarque, Fuentes Calientes, Canada Vellida and Rillo.

The Allueva wind facility will feature seven turbines and will exceed 25MW.

Sierra Pelarda, in Fonfria, will have four turbines and a capacity of 15MW, as advances in offshore wind turbine technology continue to push scale elsewhere.

The projects bring the total number of wind farms that Enel Green Power Espana has started building in the Teruel province to six, equal to an overall capacity of 218MW.

Endesa chief executive Jose Bogas said: “These plants mark the acceleration on a new wave of growth in the renewable energy space that Endesa is committed to pursue in the next years, driving the energy transition in Spain.”

The six wind farms under construction in Teruel are part of the 540MW that Enel Green Power Espana was awarded in the Spanish government's renewable energy tender held in May 2017.

In Aragon, the company will invest around €434 million euros, reflecting broader European wind power investment trends in recent years, to build 13 wind farms with a total installed capacity of more than 380MW.

The remaining 160MW of wind capacity will be located in Andalusia, Castile-Leon, Castile La Mancha and Galicia, even as some Spanish turbine factories closed during pandemic restrictions.

Enel Green Power Espana was also awarded 339MW of solar capacity in the Spanish government's auction held in July 2017, while other Spanish developers advance CSP projects abroad in markets like Chile.

Once all wind and solar under the 2017 tender are complete they will boost the company’s capacity by around 52%.

 

Related News

View more

The Evolution of Electric Vehicle Charging Infrastructure in the US

US EV Charging Infrastructure is evolving with interoperable NACS and CCS standards, Tesla Supercharger access, federal funding, ultra-fast charging, mobile apps, and battery advances that reduce range anxiety and expand reliable, nationwide fast-charging access.

 

Key Points

Nationwide network, standards, and funding enabling fast, interoperable EV charging access for drivers across the US.

✅ NACS and CCS interoperability expands cross-network access

✅ Tesla Superchargers opening to more brands accelerate adoption

✅ Federal funding builds fast chargers along highways and communities

 

The landscape of electric vehicle (EV) charging infrastructure in the United States is rapidly evolving, driven by technological advancements, collaborative efforts between automakers and charging networks across the country, and government initiatives to support sustainable transportation.

Interoperability and Collaboration

Recent developments highlight a shift towards interoperability among charging networks, even as control over charging continues to be contested across the market today. The introduction of the North American Charging Standard (NACS) and the adoption of the Combined Charging System (CCS) by major automakers underscore efforts to standardize charging protocols. This move aims to enhance convenience for EV drivers by allowing them to use multiple charging networks seamlessly.

Tesla's Role and Expansion

Tesla, a trailblazer in the EV industry, has expanded its Supercharger network to accommodate other EV brands. This initiative represents a significant step towards inclusivity, addressing range anxiety and supporting the broader adoption of electric vehicles. Tesla's expansive network of fast-charging stations across the US continues to play a pivotal role in shaping the EV charging landscape.

Government Support and Infrastructure Investment

The federal government's commitment to infrastructure development is crucial in advancing EV adoption. The Bipartisan Infrastructure Law allocates substantial funding for EV charging station deployment along highways and in underserved communities, while automakers plan 30,000 chargers to complement public investment today. These investments aim to expand access to charging infrastructure, promote economic growth, and reduce greenhouse gas emissions associated with transportation.

Technological Advancements and User Experience

Technological innovations in EV charging, including energy storage and mobile charging solutions, continue to improve user experience and efficiency. Ultra-fast charging capabilities, coupled with user-friendly interfaces and mobile apps, simplify the charging process for consumers. Advancements in battery technology also contribute to faster charging times and increased vehicle range, enhancing the practicality and appeal of electric vehicles.

Challenges and Future Outlook

Despite progress, challenges remain in scaling EV charging infrastructure to meet growing demand. Issues such as grid capacity constraints are coming into sharp focus, alongside permitting processes and funding barriers that necessitate continued collaboration between stakeholders. Addressing these challenges is crucial in supporting the transition to sustainable transportation and achieving national climate goals.

Conclusion

The evolution of EV charging infrastructure in the United States reflects a transformative shift towards sustainable mobility solutions. Through interoperability, government support, technological innovation, and industry collaboration, stakeholders are paving the way for a robust and accessible charging ecosystem. As investments and innovations continue to shape the landscape, and amid surging U.S. EV sales across 2024, the trajectory of EV infrastructure development promises to accelerate, ensuring reliable and widespread access to charging solutions that support a cleaner and greener future.

 

Related News

View more

National Grid and SSE to use electrical transformers to heat homes

Grid Transformer Waste Heat Recovery turns substations into neighborhood boilers, supplying district heating via heat networks, helping National Grid and SSE cut emissions, boost energy efficiency, and advance low carbon, net zero decarbonization.

 

Key Points

Grid Transformer Waste Heat Recovery captures substation heat for district heating, cutting emissions and gas use.

✅ Captures waste heat from National Grid transformers

✅ Feeds SSE district heat networks for nearby homes

✅ Cuts carbon, improves efficiency, aligns with net zero

 

Thousands of homes could soon be warmed by the heat from giant electricity grid transformers for the first time as part of new plans to harness “waste heat” and cut carbon emissions from home heating.

Trials are due to begin on how to capture the heat generated by transmission network transformers, owned by National Grid, to provide home heating for households connected to district heating networks operated by SSE.

Currently, hot air is vented from the giant substations to help cool the transformers that help to control the electricity running through National Grid’s high-voltage transmission lines.

However, if the trial succeeds, about 1,300 National Grid substations could soon act as neighbourhood “boilers”, piping water heated by the substations into nearby heating networks, and on into the thousands of homes that use SSE’s services.

“Electric power transformers generate huge amounts of heat as a byproduct when electricity flows through them. At the moment, this heat is just vented directly into the atmosphere and wasted,” said Nathan Sanders, the managing director of SSE Energy Solutions.

“This groundbreaking project aims to capture that waste heat and effectively turn transformers into community ‘boilers’ that serve local heat networks with a low- or even zero-carbon alternative to fossil-fuel-powered heat sources such as gas boilers, a shift akin to a gas-for-electricity swap in heating markets,” Sanders added.

Alexander Yanushkevich, National Grid’s innovation manager, said the scheme was “essential to achieve net zero” and a “great example of how, taking a whole-system approach, including power-to-gas in Europe precedents, the UK can lead the way in helping accelerate decarbonisation”.

The energy companies believe the scheme could initially reduce heat network carbon emissions by more than 40% compared with fossil gas systems. Once the UK’s electricity system is zero carbon, and with recent milestones where wind was the main source of UK electricity on the grid, the heating solution could play a big role in helping the UK meet its climate targets.

The first trials have begun at National Grid’s specially designed testing site at Deeside in Wales to establish how the waste heat could be used in district heating networks. Once complete, the intellectual property will be shared with smaller regional electricity network owners, which may choose to roll out schemes in their areas.

Tim O’Reilly, the head of strategy at National Grid, said: “We have 1,300 transmission transformers, but there’s no reason why you couldn’t apply this technology to smaller electricity network transformers, too, echoing moves to use more electricity for heat in colder regions.”

Once the trials are complete, National Grid and SSE will have a better idea of how many homes could be warmed using the heat generated by electricity network substations, O’Reilly said, and how the heat can be used in ways that complement virtual power plants for grid resilience.

“The heavier the [electricity] load, which typically reaches a peak at around teatime, the more heat energy the transformer will be able to produce, aligning with times when wind leads the power mix nationally. So it fits quite nicely to when people require heat in the evenings,” he added.

Other projects designed to capture waste heat to use in district heating schemes include trapping the heat generated on the Northern line of London’s tube network to warm homes in Islington, and harnessing the geothermal heat from disused mines for district heating networks in Durham.

Only between 2% and 3% of the UK is connected to a district heating network, but more networks are expected to emerge in the years ahead as the UK tries to reduce the carbon emissions from homes, alongside its nuclear power plans in the wider energy strategy.

 

Related News

View more

German coalition backs electricity subsidy for industries

Germany Industrial Electricity Price Subsidy weighs subsidies for energy-intensive industries to bolster competitiveness as Germany shifts to renewables, expands grid capacity, and debates free-market tax cuts versus targeted relief and long-term policies.

 

Key Points

Policy to subsidize power for energy-intensive industry, preserving competitiveness during the energy transition.

✅ SPD backs 5-7 cents per kWh for 10-15 years

✅ FDP prefers tax cuts and free-market pricing

✅ Scholz urges cheap renewables and grid expansion first

 

Germany’s three-party coalition is debating whether electricity prices for energy-intensive industries should be subsidised in a market where rolling back European electricity prices can be tougher than it appears, to prevent companies from moving production abroad.

Calls to reduce the electricity bill for big industrial producers are being made by leading politicians, who, like others in Germany, fear the country could lose its position as an industrial powerhouse as it gradually shifts away from fossil fuel-based production, amid historic low energy demand and economic stagnation concerns.

“It is in the interest of all of us that this strong industry, which we undoubtedly have in Germany, is preserved,” Lars Klingbeil, head of Germany’s leading government party SPD (S&D), told Bayrischer Rundfunk on Wednesday.

To achieve this, Klingbeil is advocating a reduced electricity price for the industry of about 5 to 7 cents per Kilowatt hour, which the federal government would subsidise. This should be introduced within the next year and last for about 10 to 15 years, he said.

Under the current support scheme, which was financed as part of the €200 billion “rescue shield” against the energy crisis, energy-intensive industries already pay 13 cents per Kilowatt hour (KWh) for 70% of their previous electricity needs, which is substantially lower than the 30 to 40 cents per KWh that private consumers pay.

“We see that the Americans, for example, are spending $450 billion on the Inflation Reduction Act, and we see what China is doing in terms of economic policy,” Klingbeil said.

“If we find out in 10 years that we have let all the large industrial companies slip away because the investments are not being made here in Germany or Europe, and jobs and prosperity and growth are being lost here, then we will lose as a country,” he added.

However, not everyone in the German coalition favours subsidising electricity prices.

Finance Minister Christian Lindner of the liberal FDP (Renew), for example, has argued against such a step, instead promoting free-market principles and, amid rising household energy costs, reducing taxes on electricity for all.

“Privileging industrial companies would only be feasible at the expense of other electricity consumers and taxpayers, for example, private households or the small trade sector,” Lindner wrote in an op-ed for Handelsblatt on Tuesday.

“Increasing competitiveness for some would mean a loss of competitiveness for others,” he added.

Chancellor Olaf Scholz, himself a member of SPD, was more careful with his words, amid ongoing EU electricity reform debates in Brussels.

Asked about a subsidised electricity price for the industry at a town hall event on Monday, Scholz said he does not “want to make any promises now”.

“First of all, we have to make sure that we have cheap electricity in Germany in the first place,” Scholz said, promoting the expansion of renewable energy such as wind and solar, as local utilities cry for help, as well as more electricity grid infrastructure.

“What we will not be able to do as an economy, even as France’s new electricity pricing scheme advances, is to subsidise everything that takes place in normal economic activity,” Scholz said. “We should not get into the habit of doing that,” he added.

 

Related News

View more

Does Providing Electricity To The Poor Reduce Poverty? Maybe Not

Rural Electrification Poverty Impact examines energy access, grid connections, and reliability, testing economic development claims via randomized trials; findings show minimal gains without appliances, reliable supply, and complementary services like education and job creation initiatives.

 

Key Points

Study of household grid connections showing modest poverty impact without reliable power and appliances.

✅ Randomized grid connections showed no short-term income gains.

✅ Low reliability and few appliances limited electricity use.

✅ Complementary investments in jobs, education, health may be needed.

 

The head of Swedfund, the development finance group, recently summarized a widely-held belief: “Access to reliable electricity drives development and is essential for job creation, women’s empowerment and combating poverty.” This view has been the driving force behind a number of efforts to provide electricity to the 1.1 billion people around the world living in energy poverty, such as India's village electrification initiatives in recent years.

But does electricity really help lift households out of poverty? My co-authors and I set out to answer this question. We designed an experiment in which we first identified a sample of “under grid” households in Western Kenya—structures that were located close to but not connected to a grid. These households were then randomly divided into treatment and control groups. In the treatment group, we worked closely with the rural electrification agency to connect the households to the grid for free or at various discounts. In the control group, we made no changes. After eighteen months, we surveyed people from both groups and collected data on an assortment of outcomes, including whether they were employed outside of subsistence agriculture (the most common type of work in the region) and how many assets they owned. We even gave children basic tests, as a frequent assertion is that electricity helps children perform better in school since they are able to study at night.

When we analyzed the data, we found no differences between the treatment and control groups. The rural electrification agency had spent more than $1,000 to connect each household. Yet eighteen months later, the households we connected seemed to be no better off. Even the children’s test scores were more or less the same. The results of our experiment were discouraging, and at odds with the popular view that supplying households with access to electricity will drive economic development. Lifting people out of poverty may require a more comprehensive approach to ensure that electricity is not only affordable (with some evidence that EV growth can benefit all customers in mature markets), but is also reliable, useable, and available to the whole community, paired with other important investments.

For instance, in many low-income countries, the grid has frequent blackouts and maintenance problems, making electricity unreliable, as seen in Nigeria's electricity crisis in recent years. Even if the grid were reliable, poor households may not be able to afford the appliances that would allow for more than just lighting and cell phone charging. In our data, households barely bought any appliances and they used just 3 kilowatt-hours per month. Compare that to the U.S. average of 900 kilowatt-hours per month, a figure that could rise as EV adoption increases electricity demand over time.

There are also other factors to consider. After all, correlation does not equal causation. There is no doubt that the 1.1 billion people without power are the world’s poorest citizens. But this is not the only challenge they face. The poor may also lack running water, basic sanitation, consistent food supplies, quality education, sufficient health care, political influence, and a host of other factors that may be harder to measure but are no less important to well-being. Prioritizing investments in some of these other factors may lead to higher immediate returns. Previous work by one of my co-authors, for example, shows substantial economic gains from government spending on treatment for intestinal worms in children.

It’s possible that our results don’t generalize. They certainly don’t apply to enhancing electricity services for non-residential customers, like factories, hospitals, and schools, and electric utilities adapting to new load patterns. Perhaps the households we studied in Western Kenya are particularly poor (although measures of well-being suggest they are comparable to rural households across Sub-Saharan Africa) or politically disenfranchised. Perhaps if we had waited longer, or if we had electrified an entire region, the household impacts we measured would have been much greater. But others who have studied this question have found similar results. One study, also conducted in Western Kenya, found that subsidizing solar lamps helped families save on kerosene, but did not lead children to study more. Another study found that installing solar-powered microgrids in Indian villages resulted in no socioeconomic benefits.

 

Related News

View more

Hitachi freezes British nuclear project, books $2.8bn hit

Hitachi UK Nuclear Project Freeze reflects Horizon Nuclear Power's suspended Anglesey plant amid Brexit uncertainty, investor funding gaps, rising safety regulation costs, and a 300 billion yen write-down, impacting Britain's low-carbon electricity plans.

 

Key Points

Hitachi halted Horizon's Anglesey nuclear plant over funding and Brexit risks, recording a 300 billion yen write-down.

✅ 3 trillion yen UK nuclear project funding stalled

✅ 300 billion yen impairment wipes Horizon asset value

✅ Brexit, safety rules raised costs and investor risk

 

Japan’s Hitachi Ltd said on Thursday it has decided to freeze a 3 trillion yen ($28 billion) British nuclear power project and will consequently book a write down of 300 billion yen.

The suspension comes as Hitachi’s Horizon Nuclear Power failed to find private investors for its plans to build a plant in Anglesey, Wales, where local economic concerns have been raised, which promised to provide about 6 percent of Britain’s electricity.

“We’ve made the decision to freeze the project from the economic standpoint as a private company,” Hitachi said in a statement.

Hitachi had called on the British government to boost financial support for the project to appease investor anxiety, but turmoil over the country’s impending exit from the European Union limited the government’s capacity to compile plans, people close to the matter previously said.

Hitachi had called on the British government to boost financial support for the project to appease investor anxiety, but turmoil over the country’s impending exit from the European Union and setbacks at Hinkley Point C limited the government’s capacity to compile plans, people close to the matter previously said.

Hitachi had banked on a group of Japanese investors and the British government each taking a one-third stake in the equity portion of the project, the people said. The project would be financed one-third by equity and rest by debt.

The nuclear writedown wipes off the Horizon unit’s asset value, which stood at 296 billion yen as of September-end.

Hitachi stopped short of scrapping the northern Wales project. The company will continue to discuss with the British government on nuclear power, it said.

However, industry sources said hurdles to proceed with the project are high considering tighter safety regulations since a meltdown at Japan’s Fukushima nuclear power plant in 2011 drove up costs, even as Europe’s nuclear decline strains energy planning.

Analysts and investors viewed the suspension as an effective withdrawal and saw the decision as a positive step that has removed uncertainties for the Japanese conglomerate.

Hitachi bought Horizon in 2012 for 696 million pounds ($1.12 billion), fromE.ON and RWE as the German utilities decided to sell their joint venture following Germany’s nuclear exit after the Fukushima accident.

Hitachi’s latest decision further dims Japan’s export prospects, even as some peers pursue UK offshore wind investments to diversify.

Toshiba Corp last year scrapped its British NuGen project after its US reactor unit Westinghouse went bankrupt, while Westinghouse in China reported no major impact, and it failed to sell NuGen to South Korea’s KEPCO.

Mitsubishi Heavy Industries Ltd has effectively abandoned its Sinop nuclear project in Turkey, a person involved in the project previously told Reuters, as cost estimates had nearly doubled to around 5 trillion yen.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified