Italy rejoins the nuclear club

By Power Engineering


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The recent announcement that Italy, after more than 20 years of being at least nuclear generation-free – it currently imports significant amounts of electricity from France’s nuclear fleet – is to resume building nuclear power plants is yet another strong indication of Europe’s renewed interest in nuclear power.

Late last month, Claudio Scajola, industry minister, told Confindustria, an industrial employers association, that “we can no longer put off an action plan to return to nuclear power,” predicting that construction on new plants could begin as early as 2013.

This move was part of the campaign manifesto of the newly elected centre-right government, and Prime Minister Silvio Berlusconi speaking at his first cabinet meeting insisted that Italy should “start looking at nuclear power production.”

This decision is clearly a dramatic turnaround for Italy when you consider the public condemnation of nuclear power in its 1987 referendum, a year after UkraineÂ’s Chernobyl disaster, which resulted in the closure of its nuclear energy programme and the decommissioning of the its four operating nuclear reactors.

However, the BerlusconiÂ’s government gave few specifics to back the announcement, but subsequently officials said they were still studying issues such as what reactor design to use, and more importantly whether a new referendum would be legally required to enable the reintroduction of nuclear.

Environmental groups were quick to attack the plan, with Giuseppe Onufrio, a director of Greenpeace Italy, being reported as calling it “a declaration of war”.

Similarly, opposition politician Emma Bonino, who is vice president of the Senate, said that it did not make economic sense to build nuclear plants that would not be ready for 25 years. “We should be investing more in solar and wind and we should be moving much more quickly to improve energy efficiency”.

But conditions now are very different from those in the 1980s, when Europe turned its back on nuclear. With the skyrocketing price of oil (approaching $150 a barrel), European countries, which do not have their own oil and natural gas resources, are being forced by economics to consider new forms of energy and to do it fast.

Following Scajola’s announcement, Fulvio Conti, managing director of Enel SpA, Italy’s largest power company, said “we are ready”, but added that “new regulation and strong agreement on the plan within the country” would be needed. Enel currently operates at least one nuclear plant in Bulgaria and is said to be researching so-called fourth-generation nuclear reactors.

Giuliano Zuccoli, chairman of A2A SpA, an Italian-based multi-utility company, has also been reported as saying that his company is interested in the idea of creating an Italian consortium to build new nuclear plants in the country. The consortium would comprise major electricity producers, such as Enel, industrial groups that are heavy energy users and potentially local authorities. This approach has been successfully implemented in Finland to cover both the significant investments needed and decommissioning costs.

Although it is far from certain that Italy will once again produce electricity from nuclear power and thereby lessen its dependence on oil and gas, it has clearly made a decisive move towards this goal.

Italy is not alone in recently signalling its renewed interest in nuclear. Again last month, the Netherlands added its name to the growing list of European countries considering building new nuclear power plants.

The Netherlands is very gas-dependent, which is being compounded by the fact that its domestic gas reserves are dwindling fast. Maria van der Hoeven, the Dutch economics minister, said: “There are two questions: can we do without (nuclear) – and I don’t think we can – and do we need our own nuclear power plants?”

Sweden has also delayed the phase-out of its nuclear power, and apparently in Spain the argument for nuclear is growing in strength.

Taken together these certainly give credence to the belief of many inside and outside of the power industry that a nuclear bandwagon is definitely in town, and more importantly, appears to be picking up speed.

Related News

Bitcoin mining uses so much electricity that 1 city could curtail facility's power during heat waves

Medicine Hat Bitcoin Mining Facility drives massive electricity demand and energy use, leveraging natural gas and nearby wind power; Hut 8 touts economic growth, while critics cite carbon emissions, renewables integration, and climate impact.

 

Key Points

A Hut 8 project in Alberta that mines bitcoin at scale, consuming up to 60 MW and impacting energy and emissions.

✅ Consumes more than 60 MW, rivaling citywide electricity use

✅ Sited by natural gas plant; wind turbines nearby

✅ Economic gains vs. carbon emissions and climate risks

 

On the day of the grand opening of the largest bitcoin mining project in the country, the weather was partly cloudy and 15 C. On a Friday afternoon like this one, the new facility uses as much electricity as all of Medicine Hat, Alta., a city of more than 60,000 people and home to several large industrial plants.

The vast amount of electricity needed for bitcoin mining is why the city of Medicine Hat has championed the economic benefits of the project, while environmentalists say they are wary of the significant energy use.

Toronto-based Hut 8 has spent more than $100 million to develop the 4½-hectare site on the northern edge of the city. It has 56 shipping containers, each filled with 180 computer servers that digitally mine for bitcoin around the clock.

The company said it has already mined more than 3,300 bitcoins in Alberta, including at its much smaller site in Drumheller. On average, the Medicine Hat facility mines about 20 bitcoins per day. The value of bitcoin can fluctuate daily, but has sold recently for around $9,000.

The bitcoin mining facility is located right beside the city of Medicine Hat's new natural gas-fired power plant and four wind turbines are a short distance away. The bitcoin plant can consume more than 60 megawatts of power, more than 10 times more electricity used by any other facility in the city, according to the mayor.

That's why, in the event of a summer heat wave, the city has provisions in place to pull the plug on the electricity it provides to Hut 8, mirroring utility pauses on crypto loads seen elsewhere, so there won't be any blackouts for residents, according to the mayor.

Still, some say the bitcoin mining industry wastes far too much energy

"It's a huge magnitude when you talk about the carbon emissions," said Saeed Kaddoura, an analyst with the Pembina Institute, an environmental think-tank. "Moving forward, there needs to be some consideration on what the environmental impact of this is."

Medicine Hat owns its own natural gas and electricity generation and distribution businesses. The city leases the land to Hut 8 and the facility employs 40 full-time workers. Add up the economic benefits and the city of Medicine Hat will receive a significant financial boost from the new project, says Ted Clugston, the city's mayor.

Financial details of the city's deal with Hut 8 are not disclosed.

For more than a century, the city has attracted business by offering low-cost energy, and the mayor said this project is no different.

"They could have gone anywhere in the world and they chose Medicine Hat," said Clugston. "[Hut 8] is not here for renewable energy because it is not reliable. They need gas-fired generation and we have it in spades."

Environmental groups are concerned by the sheer amount of energy consumed by bitcoin mining, with some utilities warning they can't serve new energy-intensive customers right now, especially in places like Medicine Hat where most of the electricity is produced by fossil fuels.

The bitcoin system is designed, so only a limited number of the cryptocurrency can be mined everyday. Over time, as more miners compete for a decreasing number of available bitcoins, facilities will have to use more electricity compared to the amount of the cryptocurrency they collect.

"The way the bitcoin algorithm works is that it's designed to waste as much electricity as possible. And the more popular bitcoin becomes, the more electricity it wastes," said Keith Stewart, a spokesperson for Greenpeace.

Stewart questions whether natural gas should be used to produce a digital product.

"If you live in Alberta, you want to have heat and light, those types of things. I don't think bitcoin is a necessity of life for anyone," he said.

The CEO of Hut 8 completely disagrees, arguing the cryptocurrency is essential.  

"Bitcoin was created during the financial crisis. It has really served a purpose in terms of providing the opportunity for people who don't necessarily trust their government or their central banks," said Andrew Kiguel.

 

Related News

View more

Pandemic causes drop in electricity demand across the province: Manitoba Hydro

Manitoba Electricity Demand Drop reflects COVID-19 effects, lowering peak demand about 6% as businesses and offices close, impacting the regional grid; recession-like patterns emerge while Winnipeg water consumption stays steady and peak usage shifts later.

 

Key Points

An observed 6% decline in Manitoba peak electricity during COVID-19 due to closures; Winnipeg water use remains steady.

✅ Daily peak load down roughly 6% provincewide

✅ Business and office shutdowns drive lower consumption

✅ Winnipeg peak water time shifts to 9 a.m., volume steady

 

The COVID-19 pandemic has caused a drop in the electricity demand across the province, according to Manitoba Hydro, mirroring the Ontario electricity usage decline reported elsewhere in Canada.

On Tuesday, Manitoba Hydro said it has tracked overall electrical use, which includes houses, farms and businesses both large and small, while also cautioning customers about pandemic-related scam calls in recent weeks.

Hydro said it has seen about a six per cent reduction in the daily peak electricity demand, adding this is due to the many businesses and downtown offices which are temporarily closed, even as residential electricity use has increased in many regions.


"Currently, the impact on Manitoba electricity demand appears to be consistent with what we saw during the 2008 recession," Bruce Owen, the media relations officer for Manitoba Hydro, noting a similar Ottawa demand decline during the pandemic, said in an email to CTV News.

Owen added this trend of reduced electricity demand is being seen across North America, with BC Hydro pandemic load patterns reported and the regional grid in the American Midwest – an area where Manitoba Hydro is a member.

While electricity demand is down, BC Hydro expects holiday usage to rise and water usage in Winnipeg has remained the same.

The City of Winnipeg said it has not seen any change in overall water consumption, but as Hydro One kept peak rates in Ontario, peak demand times have moved from 7 – 8 a.m. to 9 a.m.

 

Related News

View more

Some in Tennessee could be without power for weeks after strong storms hit

Middle Tennessee Power Outages disrupt 100,000+ customers as severe thunderstorms, straight-line winds, downed trees, and debris challenge Nashville crews, slow restoration amid COVID-19, and threaten more hail, flash flooding, and damaging gusts.

 

Key Points

Blackouts across Nashville after severe storms and winds, leaving customers without power and facing restoration delays.

✅ Straight-line winds 60-80 mph toppled trees and power lines

✅ 130,000+ customers impacted; some outages may last 1-2 weeks

✅ Restoration slowed by debris, COVID-19 protocols, and new storms

 

Some middle Tennessee residents could be without electricity for up to two weeks after strong thunderstorms swept through the area Sunday, knocking out power for more than 100,000 customers, a scale comparable to Los Angeles outages after a station fire.

"Straight line winds as high as 60-80 miles per hour knocked down trees, power lines and power polls, interrupting power to 130,000 of our 400,000+ customers," Nashville Electric said in a statement Monday. The utility said the outage was one of the largest on record, though Carolina power outages recently left a quarter-million without power as well.

"Restoration times will depend on individual circumstances. In some cases, power could be out for a week or two" as challenges related to coronavirus and the need for utilities adapt to climate change complicated crews' responses and more storms were expected, the statement said. "This is unfortunate timing on the heels of a tornado and as we deal with battling COVID-19."

Metropolitan Nashville and Davidson County Mayor John Cooper also noted that the power outages were especially inconvenient, a challenge similar to Hong Kong families without power during Typhoon Mangkhut, as people were largely staying home to slow the spread of coronavirus. He also pointed out that the storms came on the two month anniversary of the Nashville tornado that left at least two dozen people dead.

"Crews are working diligently to restore power and clear any debris in neighborhoods," Cooper said.

He said that no fatalities were reported in the county but sent condolences to Spring Hill, whose police department reported that firefighter Mitchell Earwood died during the storm due to "a tragic weather-related incident" while at his home and off duty. He had served with the fire department for 10 years.

The Metro Nashville Department of Public Works said it received reports of more than 80 downed trees in Davidson County.

Officials also warn that copper theft can be deadly when electrical infrastructure is damaged after storms.

The National Weather Service Nashville said a 72 mph wind gust was measured at Nashville International Airport — the fifth fastest on record.

The weather service warned that strong storms with winds of up to 75 mph, large hail, record-long lightning bolt potential seen in the U.S., and isolated flash flooding could hit middle Tennessee again Monday afternoon and night.

"Treat Severe Thunderstorm Warnings the same way you would Tornado Warnings and review storm safety tips before you JUST TAKE SHELTER," the NWS instructs. "70 mph is 70 mph whether it's spinning around in a circle or blowing in a straight line."

 

Related News

View more

Calgary's electricity use soars in frigid February, Enmax says

Calgary Winter Energy Usage Surge highlights soaring electricity demand, added megawatt-hours, and grid reliability challenges driven by extreme cold, heating loads, and climate change, with summer air conditioning also shifting seasonal peaks.

 

Key Points

A spike in Calgary's power use from extreme cold, adding 22k MWh and testing reliability as heating demand rises.

✅ +22,000 MWh vs Feb 2018 amid fourth-coldest February

✅ Heating loads spike; summer A/C now drives peak demand

✅ Grid reliability monitored; more solar and green resources ahead

 

February was so cold in Calgary that the city used enough extra energy to power 3,400 homes for a whole year, echoing record-breaking demand in B.C. in 2021 during severe cold.

Enmax Power Corporation, the primary electricity utility in the city, says the city 's energy consumption was up 22,000 megawatt hours last month compared with Februray 2018.

"We've seen through this cold period our system has held up very well. It's been very reliable," Enmax vice-president Andre van Dijk told the Calgary Eyeopener on Friday. "You know, in the absence of a windstorm combined with cold temperatures and that sort of thing, the system has actually held up pretty well."

The past month was the fourth coldest in Calgary's history, and similar conditions have pushed all-time high demand in B.C. in recent years across the West. The average temperature for last month was –18.1 C. The long-term average for February is –5.4 C.

 

Watching use, predicting issues

The electricity company monitors demand and load on a daily basis, always trying to predict issues before they happen, van Dijk said, and utilities have introduced winter payment plans to help customers manage bills during prolonged cold.

One of the issues they're watching is climate change, and how extreme temperatures and weather affect both the grid's reliability, as seen when Quebec shattered consumption records during cold snaps, and the public's energy use.

The colder it gets, the higher you turn up the heat. The hotter it is, the more you use air conditioning.

He also noted that using fuels then contributes to climate change, creating a cycle.

​"We are seeing variations in temperature and we've seen large weather events across the continent, across the world, in fact, that impact electrical systems, whether that's flooding, as we've experienced here, or high winds, tornadoes," van Dijk said.

"Climate change and changing weather patterns have definitely had had an impact on us as an electrical industry."

In 2012, he said, Calgary switched from using the most power during winter to using the most during summer, in large part due to air conditioning, he said.

"Temperature is a strong influencer of energy consumption and of our demand," van Dijk said.

Christmas tree lights have also become primarily LED, van Dijk said, which cuts down on a big energy draw in the winter.

He said he expects more solar and other green resources will be added into the electrical system in the future to mitigate how much the increasingly levels of energy use impact climate change, and to help moderate electricity costs in Alberta over time.

 

Related News

View more

Millions at Risk of Electricity Shut-Offs Amid Summer Heat

Summer Heatwave Electricity Shut-offs strain power grids as peak demand surges, prompting load shedding, customer alerts, and energy conservation. Vulnerable populations face higher risks, while cooling centers, efficiency upgrades, and renewables bolster resilience.

 

Key Points

Episodic power cuts during extreme heat to balance grid load, protect infrastructure, and manage peak demand.

✅ Causes: peak demand, heatwaves, aging grid, AC load spikes.

✅ Impacts: vulnerable households, health risks, economic losses.

✅ Solutions: load shedding, cooling centers, efficiency, renewables.

 

As temperatures soar across various regions, millions of households are facing the threat of U.S. blackouts due to strain on power grids and heightened demand for cooling during summer heatwaves. This article delves into the causes behind these potential shut-offs, the impact on affected communities, and strategies to mitigate such risks in the future.

Summer Heatwave Challenges

Summer heatwaves bring not only discomfort but also significant challenges to electrical grids, particularly in densely populated urban areas where air conditioning units and cooling systems, along with the data center demand boom, strain the capacity of infrastructure designed to meet peak demand. As temperatures rise, the demand for electricity peaks, pushing power grids to their limits and increasing the likelihood of disruptions.

Vulnerable Populations

The risk of electricity shut-offs disproportionately affects vulnerable populations, including low-income households, seniors, and individuals with medical conditions that require continuous access to electricity for cooling or medical devices. These groups are particularly susceptible to heat-related illnesses and discomfort when faced with more frequent outages during extreme heat events.

Utility Response and Management

Utility companies play a critical role in managing electricity demand and mitigating the risk of shut-offs during summer heatwaves. Strategies such as load shedding, where electricity is temporarily reduced in specific areas to balance supply and demand, and deploying AI for demand forecasting are often employed to prevent widespread outages. Additionally, utilities communicate with customers to provide updates on potential shut-offs and offer advice on energy conservation measures.

Community Resilience

Community resilience efforts are crucial in addressing the challenges posed by summer heatwaves and electricity shut-offs, especially as Canadian grids face harsher weather that heightens outage risks. Local governments, non-profit organizations, and community groups collaborate to establish cooling centers, distribute fans, and provide support services for vulnerable populations during heat emergencies. These initiatives help mitigate the health impacts of extreme heat and ensure that all residents have access to relief from oppressive temperatures.

Long-term Solutions

Investing in resilient infrastructure, enhancing energy efficiency, and promoting renewable energy sources are long-term solutions to reduce the risk of electricity shut-offs during summer heatwaves by addressing grid vulnerabilities that persist. By modernizing electrical grids, integrating smart technologies, and diversifying energy sources, communities can enhance their capacity to withstand extreme weather events and ensure reliable electricity supply year-round.

Public Awareness and Preparedness

Public awareness and preparedness are essential components of mitigating the impact of electricity shut-offs during summer heatwaves. Educating residents about energy conservation practices, encouraging the use of programmable thermostats, and promoting the importance of emergency preparedness plans empower individuals and families to navigate heat emergencies safely and effectively.

Conclusion

As summer heatwaves become more frequent and intense due to climate change impacts on the grid, the risk of electricity shut-offs poses significant challenges to communities across the globe. By implementing proactive measures, enhancing infrastructure resilience, and fostering community collaboration, stakeholders can mitigate the impact of extreme heat events and ensure that all residents have access to safe and reliable electricity during the hottest months of the year.

 

Related News

View more

Trump Tariff Threat Delays Quebec's Green Energy Bill

Quebec Energy Bill Tariff Delay disrupts Canada-U.S. trade, renewable energy investment, hydroelectric expansion, and clean technology projects, as Trump tariffs on aluminum and steel raise costs, threatening climate targets and green infrastructure timelines.

 

Key Points

A policy pause in Quebec from U.S. tariff threats, disrupting clean investment, hydro expansion, and climate targets.

✅ Tariff risk inflates aluminum and steel project costs.

✅ Quebec delays clean energy legislation amid trade uncertainty.

✅ Hydroelectric reliance complicates emissions reduction timelines.

 

The Trump administration's tariff threat has had a significant impact on Quebec's energy sector, with tariff threats boosting support for projects even as the uncertainty resulted in the delay of a critical energy bill. Originally introduced to streamline energy development and tackle climate change, the bill was meant to help transition Quebec towards greener alternatives while fostering economic growth. However, the U.S. threat to impose tariffs on Canadian goods, including energy products, introduced a wave of uncertainty that led to a pause in the bill's legislative process.

Quebec’s energy bill had ambitious goals of transitioning to renewable sources like wind, solar, and hydroelectric power. It sought to support investments in clean technologies and the expansion of the province's clean energy infrastructure, as the U.S. demand for Canadian green power continues to grow across the border. Moreover, it emphasized the reduction of carbon emissions, an important step towards meeting Quebec's climate targets. At its core, the bill aimed to position the province as a leader in green energy development in Canada and globally.

The interruption caused by President Donald Trump's tariff rhetoric has, however, cast a shadow over the legislation. Tariffs, if enacted, would disproportionately affect Canada's energy exports, with electricity exports at risk under growing tensions, particularly in sectors like aluminum and steel, which are integral to energy infrastructure development. These tariffs could increase the cost of energy-related projects, thereby hindering Quebec's ability to achieve its renewable energy goals and reduce carbon emissions in a timely manner.

The tariff threat was seen as a part of the broader trade tensions between the U.S. and Canada, a continuation of the trade war that had escalated under Trump’s presidency. In this context, the Quebec government was forced to reconsider its legislative priorities, with policymakers citing concerns over the potential long-term consequences on the energy industry, as leaders elsewhere threatened to cut U.S.-bound electricity to exert leverage. With the uncertainty around tariffs and trade relations, the government opted to delay the bill until the geopolitical situation stabilized.

This delay underscores the vulnerability of Quebec’s energy agenda to external pressures. While the provincial government had set its sights on an ambitious green energy future, it now faces significant challenges in ensuring that its projects remain economically viable under the cloud of potential tariffs, even as experts warn against curbing Quebec's exports during the dispute. The delay in the energy bill also reflects broader challenges faced by the Canadian energy sector, which is highly integrated with the U.S. market.

The situation is further complicated by the province's reliance on hydroelectric power, a cornerstone of its energy strategy that supplies markets like New York, where tariffs could spike New York energy prices if cross-border flows are disrupted. While hydroelectric power is a clean and renewable source of energy, there are concerns about the environmental impact of large-scale dams, and these concerns have been growing in recent years. The tariff threat may prompt a reevaluation of Quebec’s energy mix and force the government to balance its environmental goals with economic realities.

The potential imposition of tariffs also raises questions about the future of North American energy cooperation. Historically, Canada and the U.S. have enjoyed a symbiotic energy relationship, with significant energy trade flowing across the border. The energy bill in Quebec was designed with the understanding that cross-border energy trade would continue to thrive. The Trump administration's tariff threat, however, casts doubt on this stability, forcing Quebec lawmakers to reconsider how they proceed with energy policy in a more uncertain trade environment.

Looking forward, Quebec's energy sector will likely need to adjust its strategies to account for the possibility of tariffs, while still pushing for a sustainable energy future, especially if Biden outlook for Canada's energy proves more favorable for the sector in the medium term. It may also open the door for deeper discussions about diversification, both in terms of energy sources and trade partnerships, as Quebec seeks to mitigate the impact of external threats. The delay in the energy bill, though unfortunate, may serve as a wake-up call for Canadian lawmakers to rethink how they balance environmental goals with global trade realities.

Ultimately, the Trump tariff threat highlights the delicate balance between regional energy ambitions and international trade dynamics. For Quebec, the delay in the energy bill could prove to be a pivotal moment in shaping the future of its energy policy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.