India's first national spot power exchange goes live

By Industrial Info Resources


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The Indian Energy Exchange Limited (IEX), the country's first national power exchange, went live on June 27 at the Multi Commodities Exchange of India and received bids for 13,176 megawatt-hours of power on its opening day.

Market clearing prices ranged between (US) 16 cents per kilowatt-hours (kWh) and 20 cents per kWh. Clients based in Karnataka, Madhya Pradesh, Maharashtra, Tripura and West Bengal participated on the first day. More than 50 users and members have been identified to take part in Phase I of the operations at IEX.

IEX will function as a delivery-based spot exchange in which producers of electricity and distribution licensees can trade for small quantities of electric power and short periods of time without additional overloads. During the bid call period from 10 a.m. to noon, prospective buyers and sellers will submit bids and offers for hourly contracts for the next day.

The price of electricity will be determined by actual demand and supply on the basis of bids and offers placed during transaction hours, and matched trades will be settled at a uniform market clearing price. Transactions will be settled with actual delivery of electricity.

Power Grid Corporation of India Limited is responsible for scheduling and transmission of electricity through regional grids that form the interstate transmission system. IEX will also act as the counterparty for all settlements, thereby eliminating counterparty risk and guaranteeing security of payments.

By providing a common transparent platform for buyers and sellers of power, IEX will be instrumental in establishing an equilibrium price based on the intersection of demand and supply. The exchange will consider the nationwide mismatch in demand and supply to minimize price risks. The platform is targeted at encouraging power companies to develop additional merchant power capacities and attracting investments in the power sector.

The 100% neutral platform is open for membership to all power producers and traders dealing on behalf of potential users. IEX brings in transparency of trade, efficiency of cost, management of price risk, promotion of effective capacity utilization and increase in surplus power generation. It is a significant step in the power sector reforms being undertaken by the government.

IEX had received approval from the Central Electricity Regulatory Commission (CERC) in August 2007. It has been developed and promoted by Financial Technologies India Limited (Mumbai), the parent company of the Multi Commodities Exchange, and PTC India Limited (New Delhi), formerly Power Trading Corporation of India Limited. Financial Technologies developed the trading platform with NASDAQ OMX Group Incorporated, one of the world's largest exchange companies.

It has also partnered with OMX Technology, a part of the NASDAQ OMX Group, to provide technology support to IEX. Key stakeholders of the exchange include Tata Power, state-owned Rural Electrification Corporation Limited (New Delhi), Reliance Energy Limited, Lanco Infratech Limited, Infrastructure Development Finance Company and the Adani Group. In May, CERC gave its consent to a joint proposal from the National Commodities and Exchange Derivatives Exchange and the National Stock Exchange to set up Power Exchange India Limited, the country's second power exchange. It will give a final approval after the exchange has framed its rules and regulations for trading electricity.

Power Exchange India has an initial authorized capital of $6.25 million, which could be further enhanced. It will undertake scheduled, day-ahead power trading. The National Load Dispatch Center will clear all settled trades by undertaking scheduling and transmission of power, subject to availability of capacity.

The exchange will compensate the center for transmission and operation costs but will recover the cost of transmission losses from buyers and sellers trading on the exchange. National Thermal Power Corporation is also planning to establish a separate entity that will function as a power exchange, making it the third such exchange in the country.

CERC is looking to establish power exchanges in the country as market-based entities that will provide price discovery and management of price risk to all the stakeholders. There were initial objections to the emergence of several power exchanges in the country on the grounds that multiple exchanges could trigger market manipulations instead of providing competitive pricing. But CERC has rebuffed these objections and has also mandated that the exchanges be self-regulated to prevent malpractices like price manipulation.

Related News

U.S. renewable electricity surpassed coal in 2022

2022 US Renewable Power Milestone highlights EIA data: wind and solar outpaced coal and nuclear, hydropower contributed, with falling levelized costs, grid integration, battery storage, and transmission upgrades shaping affordable, reliable clean power growth.

 

Key Points

The year US renewables, led by wind and solar, generated more power than coal and nuclear, per EIA.

✅ Wind and solar rose; levelized costs fell 70%-90% over decade

✅ Renewables surpassed coal and nuclear in 2022 per EIA

✅ Grid needs storage and transmission to manage intermittency

 

Electricity generated from renewables surpassed coal in the United States for the first time in 2022, as wind and solar surpassed coal nationwide, the U.S. Energy Information Administration has announced.

Renewables also surpassed nuclear generation in 2022 after first doing so last year, and wind and solar together generated more electricity than nuclear for the first time in the United States.

Growth in wind and solar significantly drove the increase in renewable energy and contributed 14% of the electricity produced domestically in 2022, with solar producing about 4.7% of U.S. power overall. Hydropower contributed 6%, and biomass and geothermal sources generated less than 1%.

“I’m happy to see we’ve crossed that threshold, but that is only a step in what has to be a very rapid and much cheaper journey,” said Stephen Porder, a professor of ecology and assistant provost for sustainability at Brown University.

California produced 26% of the national utility-scale solar electricity followed by Texas with 16% and North Carolina with 8%.

The most wind generation occurred in Texas, which accounted for 26% of the U.S. total, while wind is now the most-used renewable electricity source nationwide, followed by Iowa (10%) and Oklahoma (9%).

“This booming growth is driven largely by economics,” said Gregory Wetstone, president and CEO of the American Council on Renewable Energy, as renewables became the second-most prevalent U.S. electricity source in 2020 nationwide. “Over the past decade, the levelized cost of wind energy declined by 70 percent, while the levelized cost of solar power has declined by an even more impressive 90 percent.”

“Renewable energy is now the most affordable source of new electricity in much of the country,” added Wetstone.

The Energy Information Administration projected that the wind share of the U.S. electricity generation mix will increase from 11% to 12% from 2022 to 2023 and that solar will grow from 4% to 5% during the period, and renewables hit a record 28% share in April according to recent data. The natural gas share is expected to remain at 39% from 2022 to 2023, and coal is projected to decline from 20% last year to 17% this year.

“Wind and solar are going to be the backbone of the growth in renewables, but whether or not they can provide 100% of the U.S. electricity without backup is something that engineers are debating,” said Brown University’s Porder.

Many decisions lie ahead, he said, as the proportion of renewables that supply the energy grid increases, with renewables projected to soon be one-fourth of U.S. electricity generation over the near term.

This presents challenges for engineers and policy-makers, Porder said, because existing energy grids were built to deliver power from a consistent source. Renewables such as solar and wind generate power intermittently. So battery storage, long-distance transmission and other steps will be needed to help address these challenges, he said.

 

Related News

View more

Buyer's Remorse: Questions about grid modernization affordability

Grid Modernization drives utilities to integrate DER, AMI, and battery storage while balancing reliability, safety, and affordability; regulators pursue cost-benefit analyses, new rate design, and policy actions to guide investment and protect customer-owned resources.

 

Key Points

Upgrading the grid to manage DER with digital tools, while maintaining reliability, safety, and customer affordability.

✅ Cost-benefit analyses guide prudent grid investments

✅ AMI and storage deployments enable DER visibility and control

✅ Rate design reforms support customer-owned resources

 

Utilities’ pursuit of a modern grid, including the digital grid concept, to maintain the reliability and safety pillars of electricity delivery has raised a lot of questions about the third pillar — affordability.

Utilities are seeing rising penetrations of emerging technologies, highlighted in recent grid edge trends reports, like distributed solar, behind-the-meter battery storage, and electric vehicles. These new distributed energy resources (DER) do not eliminate utilities' need to keep distribution systems safe and reliable.

But the need for modern tools to manage DER imposes costs on utilities, prompting calls to invest in smarter infrastructure even as some regulators, lawmakers and policymakers are concerned those costs could drive up electricity rates.

The result is an increasing number of legislative and regulatory grid modernization actions aimed at identifying what is necessary to serve the coming power sector transformation and address climate change risks across the grid.

 

The rise of grid modernization

Grid modernization, which is supported by both conservatives and distributed energy resources advocates, got a lot of attention last year. According to the 2017 review of grid modernization policy by the North Carolina Clean Energy Technology Center (NCCETC), 288 grid modernization policy actions were proposed, pending or enacted in 39 states.

These numbers from NCCETC's first annual review of policy activity set a benchmark against which future years' activity can be measured.

The most common type of state actions, by far, were those that focused on the deployment of advanced metering infrastructure (AMI) and battery energy storage. Those are two of the 2017 trends identified in NCCETC’s 50 States of Grid Modernization report. But deployment of those technologies, while foundational to an updated grid, only begins to prepare distribution systems for the coming power sector transformation.

Bigger advances, including the newest energy system management tools, are being held back by 2017’s other policy actions requiring more deliberation and fact-finding, even as grid vulnerability report cards underscore the risks that modernization seeks to mitigate.

Utilities’ proposals to more fully prepare their grids to deliver 21st century technologies are being met with questions about completeness and cost.

Utilities are being asked to address these questions in comprehensive, public utility commission-led cost-benefit analyses and studies. This is also one of NCCETC’s top 2017 policy action trends for grid modernization. The outcome to date appears to be an increased, but still incomplete, understanding of what is needed to build a 21st century grid.

Among the top objectives of those driving the policy actions are resolving questions about private sector participation in grid modernizaton buildouts and developing new rate designs to protect and support customer-owned distributed energy resources. Actions on those topics are also on NCCETC’s list of 2017 policy trends.

Altogether, the trend list is dominated by actions that do not lead to completion of grid modernization but to more work on it.

 

Related News

View more

Ontario Sets Electricity Rates at Off-Peak Price until February 7

Ontario Off-Peak Electricity Rate offers 8.2 cents per kWh for 24 hours, supporting Time-of-Use and Tiered Regulated Price Plan customers, including residential, small business, and farms, under Ontario Energy Board guidelines during temporary relief.

 

Key Points

A temporary 8.2 cents per kWh all-day price for RPP customers, covering TOU and Tiered users across Ontario.

✅ Applies 24 hours daily at 8.2 cents per kWh for 21 days

✅ Covers residential, small business, and farm RPP customers

✅ Valid for TOU and Tiered plans set by the Ontario Energy Board

 

 The Ontario government has announced electricity relief with electricity prices set at the off-peak price of 8.2 cents per kilowatt-hour, 24 hours per day for 21 days starting January 18, 2022, until the end of day February 7, 2022, for all Regulated Price Plan customers. The off-peak rate will apply automatically to residential, small businesses and farms who pay Time-of-Use or Tiered prices set by the Ontario Energy Board.

This rate relief includes extended off-peak rates to support small businesses, as well as workers and families spending more time at home while the province is in Modified Step Two of the Roadmap to Reopen.

As part of our mandate, we set the rates that your utility charges for the electricity you use in your home or small business. These rates appear on the Electricity line of your bill, and we administer protections such as disconnection moratoriums for residential customers. We also set the Delivery rates that cover the cost to deliver electricity to most residential and small business customers.

 

Types of electricity rates

For residential and small business customers that buy electricity from their utility, there are two different types of rates (also called prices here), and Ontario also provides stable electricity pricing for larger users. The Ontario Energy Board sets both once a year on November 1:

Time-of-Use (TOU)

With TOU prices, the price depends on when you use electricity, including options like ultra-low overnight pricing that encourage off-peak use.

There are three TOU price periods:

  • Off-peak, when demand for electricity is lowest and new offerings like the Ultra-Low Overnight plan can encourage shifting usage. Ontario households use most of their electricity – nearly two thirds of it – during off-peak hours.
  • Mid-peak, when demand for electricity is moderate. These periods are during the daytime, but not the busiest times of day, and utilities like BC Hydro are exploring similar TOU structures as well.
  • On-peak, when demand for electricity is generally higher. These are the busier times of day – generally when people are cooking, starting up their computers and running heaters or air conditioners.

 

Related News

View more

Solar + Wind = 10% of US Electricity Generation in 1st Half of 2018

US Electricity Generation H1 2018 saw wind and solar gains but hydro declines, as natural gas led the grid mix and coal fell; renewables' share, GWh, emissions, and capacity additions shaped the power sector.

 

Key Points

It is the H1 2018 US power mix, where natural gas led, coal declined, and wind and solar grew while hydro fell.

✅ Natural gas reached 32% of generation, highest share

✅ Coal fell; renewables roughly tied nuclear at ~20%

✅ Wind and solar up; hydro output down vs 2017

 

To complement our revival of US electricity capacity reports, here’s a revival of our reports on US electricity generation.

As with the fresh new capacity report, things are not looking too bright when it comes to electricity generation. There’s still a lot of grey — in the bar charts below, in the skies near fossil fuel power plants, and in the human and planetary outlook based on how slowly we are cutting fossil fuel electricity generation.

As you can see in the charts above, wind and solar energy generation increased notably from the first half of 2017 to the first half of 2018, and the EIA expected larger summer solar and wind generation in subsequent months, reinforcing that momentum.

A large positive when it comes to the environment and human health is that coal generation dropped a great deal year over year — by even more than renewables increased, though the EIA later noted an increase in coal-fired generation in a subsequent year, complicating the trend. However, on the down side, natural gas soared as it became the #1 source of electricity generation in the United States (32% of US electricity). Furthermore, coal was still solidly in the #2 position (27% of US electricity). Renewables and nuclear were essentially in a tie at 19.8% of generation, with renewables just a tad above nuclear.

Actually, combined with an increase in nuclear power generation, natural gas electricity production increased so much that the renewable energy share of electricity generation actually dropped in the first half of 2018 versus the first half of 2017, even amid declining electricity use in some periods. It was 19.8% this year and 20% last year.

Again, solar and wind saw a significant growth in its market share, from 9% to 9.9%, but hydro brought the whole category down due to a decrease from 9% to 8%.

The visuals above are probably the best way to examine it all. The H1 2018 chart was still dominated by fossil fuels, which together accounted for approximately 60% of electricity generation, even though by 2021 non-fossil sources supplied about 40% of U.S. electricity, highlighting the longer-term shift. In H1 2017, the figure was 59.7%. Furthermore, if you switch to the “Change H1 2018 vs H1 2017 (GWh)” chart, you can watch a giant grey bar representing natural gas take over the top of the chart. It almost looks like it’s part of the border of the chart. The biggest glimmer of positivity in that chart is seeing the decline in coal at the bottom.

What will the second half of the year bring? Well, the gigantic US electricity generation market shifts slowly, even as monthly figures can swing, as January generation jumped 9.3% year over year according to the EIA, reminding us about volatility. There is so much base capacity, and power plants last so long, that it takes a special kind of magic to create a rapid transition to renewable energy. As you know from reading this quarter’s US renewable energy capacity report, only 43% of new US power capacity in the first half of the year was from renewables. The majority of it was from natural gas. Along with other portions of the calculation, that means that electricity generation from natural gas is likely to increase more than electricity generation from renewables.

Jump into the numbers below and let us know if you have any more thoughts.


 

 

Related News

View more

Maryland’s renewable energy facilities break pollution rules, say groups calling for enforcement

Maryland Renewable Energy Violations highlight RPS compliance gaps as facilities selling renewable energy certificates, including waste-to-energy, biomass, and paper mills, face emissions and permit issues, prompting PSC and Attorney General scrutiny of environmental standards.

 

Key Points

Alleged RPS noncompliance by REC-eligible plants, prompting PSC review and potential decertification under Maryland law.

✅ Complaint targets waste-to-energy, biomass plants, and paper mills

✅ Facilities risk loss of REC certification for environmental violations

✅ PSC may investigate nonreporting; AG reviewing evidence

 

Many facilities that supply Maryland with renewable energy have exceeded pollution limits or otherwise broken environmental rules, violating a state law, according to a complaint sent by environmental groups to state energy and law enforcement officials.

Maryland law says that any company that contributes to a state renewable energy goal — half the state’s energy portfolio must come from renewable sources by 2030 — must “substantially comply” with rules on air and water quality and waste management. The complaint says more than two dozen power generators, including paper mills and trash incinerators, have records of formal or informal enforcement actions by environmental authorities.

For years, environmental groups have criticized Maryland policy that counts power plants that produce planet-warming carbon dioxide and health-threatening pollution as “renewable” energy generation, and similar tensions have emerged in California’s reliance on fossil fuels despite ambitious targets, but lawmakers concerned about protecting industrial jobs have resisted reforms. The renewable label qualifies the companies for subsidies drawn from energy bills across the state.

In a complaint filed this week, the groups asked the attorney general and Public Service Commission to step in.

“We’re subsidizing companies to produce dirty energy, but we’re also using ratepayer money to support companies that in many instances are paying environmental fines or just flouting the law,” said Timothy Whitehouse, executive director of Public Employees for Environmental Responsibility. “There’s no one to hold them to account in Maryland.”

A spokeswoman for Attorney General Brian Frosh said his office would review the complaint, which was signed by Whitehouse and Mike Ewall, executive director of the Energy Justice Network.

Public Service Commission officials said the facilities must notify them if found out of compliance with environmental rules, while at the federal level FERC action on aggregated DERs is shaping market participation, and the commission can then revoke certification under the state renewable energy program. In a statement, commission officials said they would launch an investigation if any facility had failed to notify them of any environmental violations, and encouraged anyone with evidence of such a transgression to file a complaint.

Companies named in the document accused the groups of painting an inaccurate picture.

“This complaint is based on misleading arguments designed to halt waste-to-energy practices that have clear environmental benefits recognized by the global scientific community,” said Jim Connolly, vice president of environment, health and safety for Wheelabrator, which owns a Baltimore trash incinerator.

Maryland launched its renewable energy program in 2004, diversifying the state’s energy portfolio with more environmentally friendly sources of power, even as regional debates over a Maine-Québec transmission line highlight cross-border impacts. Under the program, separate from the electricity they generate and sell to the grid, renewable power facilities can sell what are known as renewable energy certificates. Utilities such as Baltimore Gas and Electric Co. are required to buy a growing number of the certificates each year, essentially subsidizing the renewable energy facilities with money from ratepayer bills.

A dozen types of power generation qualify to sell the certificates: Solar, wind, geothermal and hydroelectric plants, as well as “biomass” facilities that burn wood and other organic matter, waste-to-energy plants that burn household trash and paper mills that burn a byproduct known as black liquor.

The complaint focuses on waste incinerators, biomass plants and paper mills, all of which environmental groups have cast as counter to the renewable energy program’s environmental goals, even as ACORE criticized a coal and nuclear subsidy proposal in federal proceedings.

“By subsidizing these corporations, Maryland is diverting the hard-earned income of Maryland ratepayers to wealthy corporations with poor environmental compliance records and undermining the state’s transition to clean renewable energy,” Whitehouse and Ewall wrote.

For example, they note that the Wheelabrator plant in Southwest Baltimore has been fined for exceeding mercury limits in the past. That occurred in 2011, when the plant settled with state regulators for violations in 2010 and 2009.

Connolly said there is “no question” the facility complies with Maryland’s renewable energy law.

Incinerators in Montgomery County and in Fairfax County, Virginia, that are owned by Covanta and sell the energy certificates in Maryland have been cited for accidental fires inside both facilities. The Maryland incinerator violated emissions rules in 2014, the same year that New Jersey forbade the Virginia facility from selling energy certificates into that state’s renewable energy program over concerns it wasn’t following ash testing regulations.

James Regan, a spokesman for Covanta, said both facilities “have excellent compliance records and they operate well below their permitted limits.” He said the Virginia facility is complying with ash testing requirements, and that both facilities emit far lower levels of pollutants such as particulate matter than vehicles do.

“It’s clear to us there’s a lot of misleading and wrong information in this document," Regan said.

The Environmental Protection Agency endorsed waste-to-energy facilities under former President Barack Obama because, while burning household trash emits carbon dioxide, scientists said that still had a smaller impact on global warming than sending trash to landfills, even as industry groups have backed the EPA in a legal challenge to the ACE rule as regulatory approaches shifted.

Environmentalists and community groups say the facilities still are harmful because they emit high levels of pollutants such as mercury, nitrogen oxides and lead. The concerns prompted Baltimore City Council to pass an ordinance in February that tightened emissions limits on the Wheelabrator facility, even as the new EPA pollution limits for coal and gas plants are being proposed, so dramatically that the company said it would no longer be able to operate once the rules go into effect in 2022.

The complaint does not mention the century-old Luke paper mill in Western Maryland that long faced criticism for its participation in the renewable energy program, but which owner Verso Co. closed this year.

It does say several of paper company WestRock’s mills in North Carolina and Virginia have faced both formal and informal EPA enforcement actions for violation of the Clean Water Act, including evolving EPA wastewater limits for power plants and other facilities, and the Clean Air Act. A WestRock spokesperson could not be reached for comment.

The complaint also says a large biomass facility in South Boston, Virginia, owned by the Northern Virginia Electric Cooperative has a record of noncompliance with the Clean Air Act over three years.

John Rainey, the plant’s operations director, said it “experienced some small exceedances to its permit limits,” but that it addressed the issues with Virginia environmental officials and has installed new technology.

All those plants have sold credits in Maryland.

Whitehouse said the environmental groups’ goal is to clean up Maryland’s renewable energy program. They did not file a lawsuit because he said there was no clear cause of action to take the state to court, but said he hopes the complaint nonetheless spurs action.

“It’s not acceptable in a clean energy program that we’re subsidizing some of the most dirty sources of energy,” he said. “Those sources aren’t even in compliance with the law, and no one seems to care.”

 

Related News

View more

City of Vancouver named Clean Energy Champion for Bloedel upgrades

BC Hydro Clean Energy Champions highlights Vancouver's Bloedel Conservatory electrification with a massive heat pump, clean electricity, LED lighting, deep energy efficiency, and 90% greenhouse gas reductions advancing climate action across buildings and industry.

 

Key Points

A BC Hydro program honoring clean electricity adoption in homes, transport, and industry to replace fossil fuels.

✅ Vancouver's Bloedel Conservatory cut GHGs by 90% with a heat pump

✅ LEDs and electrification boost efficiency, comfort, and reliability

✅ Nominations open for residents, businesses, and Indigenous groups

 

The City of Vancouver has been selected as BC Hydro’s first Clean Energy Champion for energy efficient upgrades made at the Bloedel Conservatory that cut greenhouse gas emissions by 90 per cent, a meaningful step given concerns about 2050 greenhouse gas targets in B.C.

BC Hydro’s Clean Energy Champions program is officially being launched today to recognize residents, businesses, municipalities, Indigenous and community groups across B.C. that have made the choice to switch from using fossil fuels to using clean electricity in three primary areas: homes and buildings, transportation, and industry, even as drought challenges power generation in B.C. The City of Vancouver is being recognized as the first champion for demonstrating its commitment to using clean energy, including power from projects like Site C's electricity, to fight climate change at its landmark Bloedel Conservatory.

Earlier this year, the City of Vancouver installed a large air source heat pump at Bloedel Conservatory – more than 50 times the size of a heat pump used in a typical B.C. home – that uses electricity instead of natural gas to heat and cool the dome's interior, which is home to more than 500 exotic plants and flowers, and 100 exotic birds, aligning with citywide debates such as Vancouver’s reversal on gas appliances policy. It is the biggest heat pump the City of Vancouver has ever installed, with 210 tonnes of cooling capacity.

A heat pump that provides cooling in the summer and heating in the winter, helping reduce reliance on wasteful air conditioning that can drive up energy bills, is ideal for the conservatory, as its dome is completely made of glass, which can be challenging for temperature regulation. While the dome experiences a lot of heat loss in the colder months, its need for cooling in warmer weather is even greater to ensure the safety of the wildlife and plants that call it home.

The clean energy upgrades do not end there though. All lighting in the building has been upgraded to energy-efficient LEDs, reflecting conservation themes highlighted by 2018 Earth Hour electricity use discussions, and outside colour-changing LEDs now surround the perimeter and light up the dome at night.

BC Hydro is calling for nominations from B.C. residents, businesses, municipalities or Indigenous and community groups that have taken steps to lower their carbon footprint and adopt new clean energy technologies, and continues to support customers through programs like its winter payment plan during colder months. If you or someone you know is a Clean Energy Champion, nominate them at bchydro.com/cleanenergychampions.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.