Scrubber construction program completed

By Business Wire


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The Dayton Power and Light Company (DP&L), a subsidiary of DPL Inc., recently brought the fourth and final scrubber on line at the 2,400 megawatt Stuart electric generating plant. This completes the DP&L-managed construction program, which included a total of five scrubbers at both Stuart and Killen stations.

“Starting up the final scrubber at Stuart marks an important milestone for DP&L, our customers and our shareholders,” said Paul Barbas, DPL president and chief executive officer. “This construction program is the largest environmental investment in our company’s history, and we completed it on time while breaking new ground in the U.S. for scrubber design. The end result is cleaner air at a very competitive cost.”

Scrubbers, technically referred to as flue gas desulfurization (FGD) units, remove almost all sulfur dioxide from power plant emissions. In addition, the FGD units, in conjunction with existing environmental controls, capture significant mercury and fine particulate emissions.

DP&L was the first utility in the United States to use the FGD technology commercially, which was developed by the Chiyoda Corporation. The system pumps flue gas through a limestone and water bath as opposed to the traditional method of spraying gases with a limestone mist. DP&LÂ’s early adoption of this type of system resulted in capital costs well below industry averages. In addition, the simple design will have lower operating and maintenance expense compared to traditional scrubber designs.

“The scrubbed unit at Killen has been operating for about a year now, and we are very pleased with its performance and reliability,” said Mr. Barbas. “It is removing more than 95% of the sulfur dioxide and having positive impacts on particulate reduction.”

DP&LÂ’s investment in the FGD units is approximately $600 million. On a DP&L system-wide basis, the scrubber at the Conesville generating plant is expected to be on line next spring as planned. Conesville is jointly owned with and operated by American Electric Power (AEP). By mid-2009, almost 90% of DP&LÂ’s generation output will be produced by units with environmentally friendly scrubbers.

Related News

Europe's Thirst for Electricity Spurs Nordic Grid Blockade

Nordic Power Grid Dispute highlights cross-border interconnector congestion, curtailed exports and imports, hydropower priorities, winter demand spikes, rising spot prices, and transmission grid security amid decarbonization efforts across Sweden, Norway, Finland, and Denmark.

 

Key Points

A clash over interconnectors and capacity cuts reshaping trade, prices, and reliability in the Nordic power market.

✅ Sweden cuts interconnector capacity to protect grid stability

✅ Norway prioritizes higher-priced exports via new cables

✅ Finland and Denmark seek EU action on capacity curtailments

 

A spat over electricity supplies is heating up in northern Europe. Sweden is blocking Norway from using its grids to transfer power from producers throughout the region. That’s angered Norway, which in turn has cut flows to its Nordic neighbor.

The dispute has built up around the use of cross-border power cables, which are a key part of Europe’s plans to decarbonize since they give adjacent countries access to low-carbon resources such as wind or hydropower. The electricity flows to wherever prices are higher, informed by how electricity is priced across Europe, without interference from grid operators -- but in the event of a supply squeeze, flows can be stopped.

Sweden moved to safeguard the security of its grid after Norway started increasing electricity exports through huge new cables to Germany and the U.K. Those exports at times have drawn energy away from Sweden, resulting in the country’s system operator cutting capacity at its Nordic borders, preventing exports but also hindering imports, which it relies on to handle demand spikes during winter.

“This is not a good situation in the long run,” Christian Holtz, a energy market consultant for Merlin & Metis AB.

Norway hit back last week by cutting flows to Sweden, this will prioritize better paying customers in Europe, amid Irish price spikes that highlight dispatchable shortages, giving them access to its vast hydro resources at the expense of its Nordic neighbors. 

By partially closing its borders Sweden can’t access imports either, which it relies on to handle demand spikes during the coldest days of the winter. 

In Denmark, unusual summer and autumn winds have at times delivered extraordinarily low electricity prices that ripple through regional markets.

The Swedish grid manager Svenska Kraftnat has reduced export capacity at cables across its borders by as much as half this year to keep operations secure. Finland and Denmark rely on imports too and the cuts will come at a cost for millions of homes and industries across the four nations already contending with record electricity rates this year. 

Finland and Denmark want the European Union to end the exemption to regulations that make such reductions possible in the first place, as Europe is losing nuclear power and facing tighter supply.

“Imports from our neighboring countries ensure adequacy at times of peak consumption,” said Reima Paivinen, head of operation at the Finland’s Fingrid. “The recent surge in electricity prices throughout Europe does not directly affect the adequacy of electricity, but prices may rise dramatically for short periods.”

Svenska Kraftnat says it’s not political -- it has no choice but to cut capacity until its old grids are expanded to handle the new direction of flows, a challenge mirrored by grid expansion woes in Germany that slow integration. That could take at least until 2030 to complete, it said earlier this year. At the same time, Norway halving available export capacity to about 1,200 megawatts will increase risk of shortages. 

“If we need more we will have to count on imports from other countries,” said Erik Ek, head of strategic operation at Svenska Kraftnat. “If that is not available, we will have to disconnect users the day it gets cold.”

 

Related News

View more

Brazil government considers emergency Coronavirus loans for power sector

Brazil Energy Emergency Loan Package aims to bolster utilities via BNDES as coronavirus curbs electricity demand. Aneel and the Mines and Energy Ministry weigh measures while Eletrobras privatization and auctions face delays.

 

Key Points

An emergency plan supporting Brazilian utilities via BNDES and banks during coronavirus demand slumps and payment risks.

✅ Modeled on 2014-2015 sector loans via BNDES and private banks

✅ Addresses cash flow from lower demand and bill nonpayment

✅ Auctions and Eletrobras privatization delayed amid outbreak

 

Brazil’s government is considering an emergency loan package for energy distributors struggling with lower energy use and facing lost revenues because of the coronavirus outbreak, echoing strains seen elsewhere such as Germany's utility troubles during the energy crisis, an industry group told Reuters.

Marcos Madureira, president of Brazilian energy distributors association Abradee, said the package being negotiated by companies and the government could involve loans from state development bank BNDES or a pool of banks, but that the value of the loans and other details was not yet settled.

Also, Brazil’s Mines and Energy Ministry is indefinitely postponing projects to auction off energy transmission and generation assets planned for this year because of the coronavirus, even as the need for electricity during COVID-19 remained critical, it said in the Official Gazette.

The coronavirus outbreak will also delay the privatization of state-owned utility Eletrobras, its chief executive officer said on Monday.

The potential loan package under discussion would resemble a similar measure in 2014 and 2015 that offered about 22 billion reais ($4.2 billion) in loans to the sector as Brazil was entering its deepest recession on record, and drawing comparisons to a proposed Texas market bailout after a winter storm, Madureira said.

Public and private banks including BNDES, Caixa Economica Federal, Itau Unibanco and Banco Bradesco participated in those loans.

Three sources involved in the discussions said on condition of anonymity that the Mines and Energy Ministry and energy regulator Aneel were considering the matter.

Aneel declined to comment. The Mines and Energy Ministry and BNDES did not immediately respond to requests for comment.

Energy distributors worry that reduced electricity demand during COVID-19 could result in deep revenue losses.

The coronavirus has led to widespread lockdowns of non-essential businesses in Brazil, while citizens are being told to stay home. That is causing lost income for many hourly and informal workers in Brazil, who could be unable to pay their electricity bills, raising risks of pandemic power shut-offs for vulnerable households.

The government sees a loan package as a way to stave off a potential chain of defaults in the sector, a move discussed alongside measures such as a Brazil tax strategy on energy prices, one of the sources said.

On a conference call with investors about the company’s latest earnings, Eletrobras CEO Wilson Ferreira Jr. said privatization would be delayed, without giving any more details on the projected time scale.

The largest investors in Brazil’s energy distribution sector include Italy’s Enel, Spain’s Iberdrola via its subsidiary Neoenergia and China’s State Grid via CPFL Energia, with Chinese interest also evidenced by CTG's bid for EDP, as well as local players Energisa e Equatorial Energia. 

 

Related News

View more

First Reactor Installed at the UK’s Latest Nuclear Power Station

Hinkley Point C Reactor Installation signals UK energy security, nuclear power expansion, and low-carbon baseload, featuring EPR technology in Somerset to cut emissions, support net-zero goals, and deliver reliable electricity for homes and businesses.

 

Key Points

First EPR unit fitted at Hinkley Point C, boosting low-carbon baseload, grid reliability, and UK energy security.

✅ Generates 3.2 GW across two EPRs for 7% of UK electricity.

✅ Provides low-carbon baseload to complement wind and solar.

✅ Creates jobs and strengthens supply chains during construction.

 

The United Kingdom has made a significant stride toward securing its energy future with the installation of the first reactor at its newest nuclear power station. This development marks an important milestone in the nation’s efforts to combat climate change, reduce carbon emissions, and ensure a stable and sustainable energy supply. As the world moves towards greener alternatives to fossil fuels, nuclear power remains a key part of the UK's green industrial revolution and low-carbon energy strategy.

The new power station, located at Hinkley Point C in Somerset, is set to be one of the most advanced nuclear facilities in the country. The installation of its reactor represents a crucial step in the construction of the plant, with earlier milestones like the reactor roof lifted into place underscoring steady progress, which is expected to provide reliable, low-carbon electricity for millions of homes and businesses across the UK. The completion of the first reactor is seen as a pivotal moment in the journey to bring the station online, with the second reactor expected to follow shortly after.

A Historic Milestone

Hinkley Point C will be the UK’s first nuclear power station built in over two decades. The plant, once fully operational, will play a key role in the country's energy transition. The reactors at Hinkley Point C are designed to be state-of-the-art, using advanced technology that is both safer and more efficient than older nuclear reactors. Each of the two reactors will have the capacity to generate 1.6 gigawatts of electricity, enough to power approximately six million homes. Together, they will contribute about 7% of the UK’s electricity needs, providing a steady, reliable source of energy even during periods of high demand.

The installation of the first reactor at Hinkley Point C is not just a technical achievement; it is also symbolic of the UK’s commitment to energy security and its goal to achieve net-zero carbon emissions by 2050, a target that industry leaders say multiple new stations will be needed to meet effectively. Nuclear power is a crucial part of this equation, as it provides a stable, baseload source of energy that does not rely on weather conditions, unlike wind or solar power.

Boosting the UK’s Energy Capacity

The addition of Hinkley Point C to the UK’s energy infrastructure is expected to significantly boost the country’s energy capacity and reduce its reliance on fossil fuels. The UK government has been focused on increasing the share of renewable energy in its mix, and nuclear power is seen as an essential complement to intermittent renewable sources, especially as wind and solar have surpassed nuclear in generation at times. Nuclear energy is considered a low-carbon, reliable energy source that can fill the gaps when renewable generation is insufficient, such as on cloudy or calm days when solar and wind energy output may be low.

With the aging of the UK’s existing nuclear fleet and the gradual phase-out of coal-fired power plants, Hinkley Point C will help ensure that the country does not face an energy shortage as it transitions to cleaner energy sources. The plant will help to bridge the gap between the current energy infrastructure and the future, enabling the UK to phase out coal while maintaining a steady, low-carbon energy supply.

Safety and Technological Innovation

The reactors at Hinkley Point C are being constructed using the latest in nuclear technology. They are based on the European Pressurized Reactor (EPR) design, which is known for its enhanced safety features and efficiency, and has been deployed in projects within China's nuclear program as well, making it a proven platform. These reactors are designed to withstand extreme conditions, including earthquakes and flooding, making them highly resilient. Additionally, the EPR technology ensures that the reactors have a low environmental impact, producing minimal waste and offering the potential for increased sustainability compared to older reactor designs.

One of the key innovations in the Hinkley Point C reactors is their advanced cooling system, which is designed to be more efficient and environmentally friendly than previous generations. This system ensures that the reactors operate at optimal temperatures while minimizing the environmental footprint of the plant.

Economic and Job Creation Benefits

The construction of Hinkley Point C has already provided a significant boost to the local economy. Thousands of jobs have been created, not only in the construction phase but also in the ongoing operation and maintenance of the facility. The plant is expected to create more than 25,000 jobs during its construction and around 900 permanent jobs once it is operational.

The project is also expected to have a positive impact on the wider UK economy. As a major infrastructure project, Hinkley Point C will provide long-term economic benefits, including boosting supply chains and providing opportunities for local businesses.

Challenges and the Road Ahead

Despite the progress, the construction of Hinkley Point C has not been without its challenges. The project has faced delays and cost overruns, with setbacks at Hinkley Point C documented by industry observers, and the total estimated cost now standing at around £22 billion. However, the successful installation of the first reactor is a step toward overcoming these hurdles and completing the project on schedule.

Looking ahead, Hinkley Point C’s successful operation could pave the way for future nuclear developments in the UK, including next-gen nuclear designs that aim to be smaller, cheaper, and safer. As the world grapples with the pressing need to reduce greenhouse gas emissions, nuclear energy may play an even more critical role in ensuring a clean, reliable energy future.

The installation of the first reactor at Hinkley Point C marks a crucial moment in the UK’s energy journey. As the country seeks to meet its carbon reduction targets and bolster its energy security, the new nuclear power station will be a cornerstone of its efforts. With its advanced technology, safety features, and potential to provide low-carbon energy for decades to come, Hinkley Point C offers a glimpse into the future of energy production in the UK and beyond.

 

Related News

View more

Electricity Prices in France Turn Negative

Negative Electricity Prices in France signal oversupply from wind and solar, stressing the wholesale market and grid. Better storage, demand response, and interconnections help balance renewables and stabilize prices today.

 

Key Points

They occur when renewable output exceeds demand, pushing power prices below zero as excess energy strains the grid.

✅ Driven by wind and solar surges with low demand

✅ Challenges thermal plants; erodes margins at negative prices

✅ Needs storage, demand response, and cross-border interties

 

France has recently experienced an unusual and unprecedented situation in its electricity market: negative electricity prices. This development, driven by a significant influx of renewable energy sources, highlights the evolving dynamics of energy markets as countries increasingly rely on clean energy technologies. The phenomenon of negative pricing reflects both the opportunities and renewable curtailment challenges associated with the integration of renewable energy into national grids.

Negative electricity prices occur when the supply of electricity exceeds demand to such an extent that producers are willing to pay consumers to take the excess energy off their hands. This situation typically arises during periods of high renewable energy generation coupled with low energy demand. In France, this has been driven primarily by a surge in wind and solar power production, which has overwhelmed the grid and created an oversupply of electricity.

The recent surge in renewable energy generation can be attributed to a combination of favorable weather conditions and increased capacity from new renewable energy installations. France has been investing heavily in wind and solar energy as part of its commitment to reducing greenhouse gas emissions and transitioning towards a more sustainable energy system, in line with renewables surpassing fossil fuels in Europe in recent years. While these investments are essential for achieving long-term climate goals, they have also led to challenges in managing energy supply and demand in the short term.

One of the key factors contributing to the negative prices is the variability of renewable energy sources. Wind and solar power are intermittent by nature, meaning their output can fluctuate significantly depending on weather conditions, with solar reshaping price patterns in Northern Europe as deployment grows. During times of high wind or intense sunshine, the electricity generated can far exceed the immediate demand, leading to an oversupply. When the grid is unable to store or export this excess energy, prices can drop below zero as producers seek to offload the surplus.

The impact of negative prices on the energy market is multifaceted. For consumers, negative prices can lead to lower energy costs as wholesale electricity prices fall during oversupply, and even potential credits or payments from energy providers. This can be a welcome relief for households and businesses facing high energy bills. However, negative prices can also create financial challenges for energy producers, particularly those relying on conventional power generation methods. Fossil fuel and nuclear power plants, which have higher operating costs, may struggle to compete when prices are negative, potentially affecting their profitability and operational stability.

The phenomenon also underscores the need for enhanced energy storage and grid management solutions. Excess energy generated from renewable sources needs to be stored or redirected to maintain grid stability and avoid negative pricing situations. Advances in battery storage technology, such as France's largest battery storage platform, and improvements in grid infrastructure are essential to addressing these challenges and optimizing the integration of renewable energy into the grid. By developing more efficient storage solutions and expanding grid capacity, France can better manage fluctuations in renewable energy production and reduce the likelihood of negative prices.

France's experience with negative electricity prices is part of a broader trend observed in other countries with high levels of renewable energy penetration. Similar situations have occurred in Germany, where solar plus storage is now cheaper than conventional power, the United States, and other regions where renewable energy capacity is rapidly expanding. These instances highlight the growing pains associated with transitioning to a cleaner energy system and the need for innovative solutions to balance supply and demand.

The French government and energy regulators are closely monitoring the situation and exploring measures to mitigate the impact of negative prices. Policy adjustments, market reforms, and investments in energy infrastructure are all potential strategies to address the challenges posed by high renewable energy generation. Additionally, encouraging the development of flexible demand response programs and enhancing grid interconnections with neighboring countries can help manage excess energy and stabilize prices.

In the long term, the rise of renewable energy and the occurrence of negative prices represent a positive development for the energy transition. They indicate progress towards cleaner energy sources and a more sustainable energy system. However, managing the associated challenges is crucial for ensuring that the transition is smooth and economically viable for all stakeholders involved.

In conclusion, the recent instance of negative electricity prices in France highlights the complexities of integrating renewable energy into the national grid. While the phenomenon reflects the success of France’s efforts to expand its renewable energy capacity, it also underscores the need for advanced grid management and storage solutions. As the country continues to navigate the transition to a more sustainable energy system, addressing these challenges will be essential for maintaining a stable and efficient energy market. The experience serves as a valuable lesson for other nations undergoing similar transitions and reinforces the importance of innovation and adaptability in the evolving energy landscape.

 

Related News

View more

California Public Utilities Commission sides with community energy program over SDG&E

CPUC Decision on San Diego Community Power directs SDG&E to use updated forecasts, stabilizing electricity rates for CCA customers and supporting clean energy in San Diego with accurate rate forecasting and reduced volatility.

 

Key Points

A CPUC ruling directing SDG&E to use updated forecasts to ensure accurate, stable CCA rates and limit volatility.

✅ Uses 2021 sales forecasts for rate setting

✅ Aims to prevent undercollection and bill spikes

✅ Levels changes across customer classes

 

The California Public Utilities Commission on Thursday sided with the soon-to-launch San Diego community energy program in a dispute it had with San Diego Gas & Electric.

San Diego Community Power — which will begin to purchase power for customers in San Diego, Chula Vista, La Mesa, Encinitas and Imperial Beach later this year — had complained to the commission that data SDG&E intended to use to calculate rates, including community choice exit fees that could make the new energy program less attractive to prospective customers.

SDG&E argued it was using numbers it was authorized to employ as part of a general rate case amid a potential rate structure revamp that is still being considered by the commission.

But in a 4-0 vote, the commission, or CPUC, sided with San Diego Community Power and directed SDG&E to use an updated forecast for energy sales.

"This was not an easy decision," said CPUC president Marybel Batjer at the meeting, held remotely due to COVID-19 restrictions. "In my mind, this outcome best accounts for the shifting realities ... in the San Diego area while minimizing the impact on ratepayers during these difficult financial times."

In filings to the commission, SDG&E predicted a rate decrease of 12.35 percent in the coming year. While that appears to be good news for customers, Californians still face soaring electricity prices statewide, Commissioner Martha Guzman Aceves said the data set SDG&E wanted to use would lead to an undercollection of $150 million to $260 million.

That would result in rates that would be "artificially low," Guzman Aceves said, and rates "would inevitably go up quite a bit after the undercollection was addressed."

San Diego Community Power, or SDCP, said the temporary reduction would make its rates less attractive than SDG&E's, especially amid SDG&E's minimum charge proposal affecting low-usage customers, just as it is about to begin serving customers. SDCP's board members wrote an open letter last month to the commission, accusing the utility of "willful manipulation of data."

Working with an administrative law judge at the CPUC, Guzman Aceves authored a proposal requiring SDG&E to use numbers based on 2021 forecasts, as regulators simultaneously weigh whether the state needs more power plants to ensure reliability. The utility argued that could result in an increase of "roughly 40 percent" for medium and large commercial and industrial customers this year.

To help reduce potential volatility, Guzman Aceves, SDCP and other community energy supporters called for using a formula that would average out changes in rates across customer classes amid debates over income-based utility charges statewide. That's what the commissioners OK'd Thursday.

"It is essential that customer commodity rates be as accurate as we can possibly get them to avoid undercollections," said Commissioner Genevieve Shiroma.

San Diego Community Power is one of 23 community choice aggregation, or CCA, energy programs that have launched in California in the past decade.

CCAs compete with traditional power companies amid California's evolving power competition landscape, in one important role — purchasing power for a given community. They were created to boost the use of cleaner energy sources, such as wind and solar, at rates equal to or lower than investor-owned utilities.

However, CCAs do not replace utilities because the incumbent power companies still perform all of the tasks outside of power purchasing, such as transmission and distribution of energy and customer billing.

When a CCA is formed, California rules stipulate the utility customers in that area are automatically enrolled in the CCA. If customers prefer to stay with their previous power company, they can opt out of joining the CCA.

The shift of customers from SDG&E to San Diego Community Power is expected to be large. The total number of accounts for SDCP is expected to be 770,000, which would make it the second-largest CCA in the state. That's why SDCP considered Thursday's CPUC decision to be so important.

"At a time when customers are choosing between sticking with San Diego Gas & Electric and migrating to a CCA, we want them to have accurate bill information," said Commissioner Clifford Rechtschaffen.

"SDCP is very happy with today's CPUC decision, and that the commissioners shared our goal of limiting rate volatility for businesses and families in the region," said SDCP interim CEO Bill Carnahan. "This is definitely a win for accurate rate forecasting, and our mutual customers, and we look forward to working with SDG&E on next steps."

In an email, SDG&E spokeswoman Helen Gao said, "We are committed to continuing to work collaboratively with local Community Choice Aggregation programs to support their successful launch in 2021 and ensure that our mutual customers receive excellent customer service."

San Diego Community Power's case before the CPUC was joined by the California Community Choice Association, a trade group advocating for CCAs, and the Clean Energy Alliance — the North County-based CCA representing Del Mar, Solana Beach and Carlsbad that is scheduled to launch this summer.

SDCP will begin its rollout this year, folding in about 71,000 municipal, commercial and industrial accounts. The bulk of its roughly 700,000 residential accounts is expected to come in January 2022.

 

Related News

View more

Is tidal energy the surge remote coastal communities need?

BC Tidal Energy Micro-Grids harness predictable tidal currents to replace diesel in remote Indigenous coastal communities, integrating marine renewables, storage, and demand management for resilient off-grid power along Vancouver Island and Haida Gwaii.

 

Key Points

Community-run tidal turbines and storage deliver reliable, diesel-free electricity to remote B.C. coastal communities.

✅ Predictable power from tidal currents reduces diesel dependence

✅ Integrates storage, demand management, and microgrid controls

✅ Local jobs via marine supply chains and community ownership

 

Many remote West Coast communities are reliant on diesel for electricity generation, which poses a number of negative economic and environmental effects.

But some sites along B.C.’s extensive coastline are ideal for tidal energy micro-grids that may well be the answer for off-grid communities to generate clean power, suggested experts at a COAST (Centre for Ocean Applied Sustainable Technologies) virtual event Wednesday.

There are 40 isolated coastal communities, many Indigenous communities, and 32 of them are primarily reliant on diesel for electricity generation, said Ben Whitby, program manager at PRIMED, a marine renewable energy research lab at the University of Victoria (UVic).

Besides being a costly and unreliable source of energy, there are environmental and community health considerations associated with shipping diesel to remote communities and running generators, Whitby said.

“It's not purely an economic question,” he said.

“You've got the emissions associated with diesel generation. There's also the risks of transporting diesel … and sometimes in a lot of remote communities on Vancouver Island, when deliveries of diesel don't come through, they end up with no power for three or four days at a time.”

The Heiltsuk First Nation, which suffered a 110,000-litre diesel spill in its territorial waters in 2016, is an unfortunate case study for the potential environmental, social, and cultural risks remote coastal communities face from the transport of fossil fuels along the rough shoreline.

A U.S. barge hauling fuel for coastal communities in Alaska ran aground in Gale Pass, fouling a sacred and primary Heiltsuk food-harvesting area.

There are a number of potential tidal energy sites near off-grid communities along the mainland, on both sides of Vancouver Island, and in the Haida Gwaii region, Whitby said.

Tidal energy exploits the natural ebb and flow of the coast’s tidal water using technologies like underwater kite turbines to capture currents, and is a highly predictable source of renewable energy, he said.

Micro-grids are self-reliant energy systems drawing on renewables from ocean, wave power resources, wind, solar, small hydro, and geothermal sources.

The community, rather than a public utility like BC Hydro, is responsible for demand management, storage, and generation with the power systems running independently or alongside backup fuel generators — offering the operators a measure of energy sovereignty.

Depending on proximity, cost, and renewable solutions, tidal energy isn’t necessarily the solution for every community, Whitby noted, adding that in comparison to hydro, tidal energy is still more expensive.

However, the best candidates for tidal energy are small, off-grid communities largely dependent on costly fossil fuels, Whitby said.

“That's really why the focus in B.C. is at a smaller scale,” he said.

“The time it would take (these communities) to recoup any capital investment is a lot shorter.

“And the cost is actually on a par because they're already paying a significant amount of money for that diesel-generated power.”

Lisa Kalynchuk, vice-president of research and innovation at UVic, said she was excited by the possibilities associated with tidal power, not only in B.C., but for all of Canada’s coasts.

“Canada has approximately 40,000 megawatts available on our three coastlines,” Kalynchuk said.

“Of course, not all this power can be realized, but it does exist, so that leads us to the hard part — tapping into this available energy and delivering it to those remote communities that need it.”

Challenges to establishing tidal power include the added cost and complexity of construction in remote communities, the storage of intermittent power for later use, the economic model, though B.C.’s streamlined regulatory process may ease approvals, the costs associated with tidal power installations, and financing for small communities, she said.

But smaller tidal energy projects can potentially set a track record for more nascent marine renewables, as groups like Marine Renewables Canada pivot to offshore wind development, at a lower cost and without facing the same social or regulatory resistance a large-scale project might face.

A successful tidal energy demo project was set up using a MAVI tidal turbine in Blind Channel to power a private resort on West Thurlow Island, part of the outer Discovery Islands chain wedged between Vancouver Island and the mainland, Whitby said.

The channel’s strong tidal currents, which routinely reach six knots and are close to the marina, proved a good site to test the small-scale turbine and associated micro-grid system that could be replicated to power remote communities, he said.

The mooring system, cable, and turbine were installed fairly rapidly and ran through the summer of 2017. The system is no longer active as provincial and federal funding for the project came to an end.

“But as a proof of concept, we think it was very successful,” Whitby said, adding micro-grid tidal power is still in the early stages of development.

Ideally, the project will be revived with new funding, so it can continue to act as a test site for marine renewable energy and to showcase the system to remote coastal communities that might want to consider tidal power, he said.

In addition to harnessing a local, renewable energy source and increasing energy independence, tidal energy micro-grids can fuel employment and new business opportunities, said Whitby.

The Blind Channel project was installed using the local supply chain out of nearby Campbell River, he said.

“Most of the vessels and support came from that area, so it was all really locally sourced.”

Funding from senior levels of government would likely need to be provided to set up a permanent tidal energy demonstration site, with recent tidal energy investments in Nova Scotia offering a model, or to help a community do case studies and finance a project, Whitby said.

Both the federal and provincial governments have established funding streams to transition remote communities away from relying on diesel.

But remote community projects funded federally or provincially to date have focused on more established renewables, such as hydro, solar, biomass, or wind.

The goal of B.C.’s Remote Community Energy Strategy, part of the CleanBC plan and aligned with zero-emissions electricity by 2035 targets across Canada, is to reduce diesel use for electricity 80 per cent by 2030 by targeting 22 of the largest diesel locations in the province, many of which fall along the coast.

The province has announced a number of significant investments to shift Indigenous coastal communities away from diesel-generated electricity, but they predominantly involve solar or hydro projects.

A situation that’s not likely to change, as the funding application guide in 2020 deemed tidal projects as ineligible for cash.

Yet, the potential for establishing tidal energy micro-grids in B.C. is good, Kalynchuk said, noting UVic is a hub for significant research expertise and several local companies, including ocean and river power innovators working in the region, are employing and developing related service technologies to install and maintain the systems.

“It also addresses our growing need to find alternative sources of energy in the face of the current climate crisis,” she said.

“The path forward is complex and layered, but one essential component in combating climate change is a move away from fossil fuels to other sources of energy that are renewable and environmentally friendly.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified