Driving for 4 dollars a week

By Toronto Star


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Have we reached a tipping point with gas at $1.35 a litre, and rising? Are consumers so fed up that they're finally adjusting their behaviour?

In the past, we complained but did nothing, preferring instead to condemn those evil oil companies and demand that the government keep gas prices artificially low.

This time it's different. The long-term trend toward high prices is clear. And the planned closure of a General Motors truck and SUV plant in Oshawa is a strong sign that the days of gas guzzlers are numbered.

I recently had the opportunity of test driving a vehicle that, in a variety of driving scenarios, uses considerably less gasoline than conventional cars. When booting around the city, it almost uses no gas at all. Instead, it relies mostly on electricity from the grid. Just plug into a wall socket overnight and you're ready to go in the morning.

Interested? You should be – it could be the kind of car sitting in your driveway 10 years, even five years, from now.

It's called a plug-in hybrid electric vehicle, or PHEV. The one I drove for six days was a 2004 Toyota Prius that had been retrofitted with a lithium-ion battery pack and a charging outlet on the back bumper.

Unlike a regular Prius, which has a smaller nickel-metal hydride battery that's recharged by the engine and by capturing braking energy, this Prius uses electricity from the grid to displace gasoline use.

Concord-based Hymotion did the retrofit, using batteries from Boston-area company A123 Systems, which is now Hymotion's parent company. It's the same battery technology being considered by General Motors for its Volt electric car, which is scheduled for commercial release in 2010, and a plug-in hybrid version of its Saturn Vue SUV.

For drives within the city, each trip ranging from 10 to 20 kilometres, I generally got fuel economy better than two litres per 100 kilometres. Sometimes it went much higher, and only once – during a long highway trip – was mileage more typical of a standard Prius.

Over the six days, I used 22.5 kilowatt-hours of electricity to keep the battery charged. Using Bullfrog Power, it cost me $3.83 for the power – with electricity, delivery, special charges and taxes all combined. With Bullfrog, when the car was in electric mode, it was truly emission-free.

"Downtown, these types of vehicles can make huge improvements," says Ricardo Bazzarella, founder of Hymotion. He says more people than ever are stopping him on the road and asking questions about the car. "People want to know more because gas prices have gotten so high and they're looking for alternatives."

I got stopped about four times, and found myself giving strangers 10-minute demonstrations while my kids sat patiently in the back seat.

Smog is another issue. The Ontario Medical Association recently announced that smog is responsible for an estimated 9,500 premature deaths in the province each year. Imagine if we all drove an emission-free electric car in downtown Toronto?

Hymotion/A123 is selling its plug-in retrofit kit for $10,000, aimed mostly at Prius drivers who need to replace their battery pack or are looking to push the fuel economy of their cars to the limit. The market is there. Toyota announced that Prius sales had surpassed one million since going on sale in the late 1990s.

Within the next few years, however, it's expected the major car manufacturers will have a number of their own plug-in models available for sale at prices affordable to the average driver.

Ric Fulop, an A123 co-founder and vice-president of business development, said they're not for people who generally drive more than 50 kilometres each day, at least not until the battery range improves – and they are improving. "But plug-in hybrids are very good for most commuters."

There are a few caveats. Like any vehicle, driving behaviour can dramatically affect performance. Aggressive drivers kick the car into gas mode more often, so get worse fuel economy. Same goes if you drive longer distances and on the highway. Efficiency also improves the more a person drives the vehicle, because they become more familiar with fuel-saving driving techniques. It should also be said that fuel economy, like most vehicles, is generally not as good in colder weather when you're cranking the heater and using defrost more often.

The Toronto Atmospheric Fund has observed all this first hand. The agency is overseeing a 10-car plug-in hybrid pilot project involving retrofitted cars from Toronto Hydro, the City of Toronto, York University, Bullfrog Power, Autoshare, Toronto & Region Conservation Authority and the ministries of environment and transportation.

Preliminary data from the first six months of the project – fall and winter months – haven't lived up to expectations. Average fuel economy for the test fleet has so far been 5.8 litres per 100 kilometre. Not bad, but nowhere near their potential.

Among the best performing is the city's car, which got average fuel economy of about 4 litres/100 km. The worst was Autoshare, at 7.8 litres/100 km. Autoshare's results make sense. More than 40 different people have been driving the car, and they tend to drive aggressively. This contrasts with the city's car, which is generally used by the same driver who has been trained to drive with discipline.

Bazzarella says U.S. jurisdictions have had much better results. Ben Marans of the Toronto Atmospheric Fund expects the project's second leg will produce better numbers. "Overall, we are seeing good results that are showing an improvement in fuel efficiency as we go," he says.

If you drive mostly in the city and rarely take the car on long highway drives, this type of vehicle is for you. After my own six-day experience, I'm sold.

If your commute is from Barrie to downtown Toronto every day, you'll still get decent mileage. But so will a typical subcompact car that's much cheaper to purchase.

Related News

Canada's First Commercial Electric Flight

Canada's First Commercial Electric Flight accelerates sustainable aviation, showcasing electric aircraft, pilot training, battery propulsion, and noise reduction, aligning with net-zero goals and e-aviation innovation across commercial, regional, and training operations.

 

Key Points

Canada's electric flight advances sustainable aviation, proving e-aircraft viability and pilot training readiness.

✅ Battery-electric propulsion cuts emissions and noise

✅ New curricula prepare pilots for electric systems and procedures

✅ Supports net-zero goals through green aviation infrastructure

 

Canada, renowned for its vast landscapes and pioneering spirit, has achieved a significant milestone in aviation history with its first commercial electric flight. This groundbreaking achievement marks a pivotal moment in the transition towards sustainable aviation and an aviation revolution for the sector, highlighting Canada's commitment to reducing carbon emissions and embracing innovative technologies.

The inaugural commercial electric flight in Canada not only showcases the capabilities of electric aircraft, with examples like Harbour Air's prototype flight demonstrating feasibility, but also underscores the importance of pilot training in advancing e-aviation. As the aviation industry explores cleaner and greener alternatives to traditional fossil fuel-powered aircraft, pilot training plays a crucial role in preparing aviation professionals for the future of sustainable flight.

Electric aircraft, powered by batteries instead of conventional jet fuel, offer numerous environmental benefits, including lower greenhouse gas emissions and reduced noise pollution, though Canada's 2019 electricity mix still included some fossil generation that can affect lifecycle impacts. These advantages align with Canada's ambitious climate goals and commitment to achieving net-zero emissions by 2050. By investing in e-aviation, Canada aims to lead by example in the global effort to decarbonize the aviation sector and mitigate the impacts of climate change.

The success of Canada's first commercial electric flight is a testament to collaborative efforts between industry stakeholders, government support, and technological innovation. Electric aircraft manufacturers have made significant strides in developing reliable and efficient electric propulsion systems, with research investment helping advance prototypes and certification, paving the way for broader adoption of e-aviation across commercial and private sectors.

Pilot training programs tailored for electric aircraft are crucial in ensuring the safe and effective operation of these advanced technologies, as operators target first electric passenger flights across regional routes. Canadian aviation schools and training institutions are at the forefront of integrating e-aviation into their curriculum, equipping future pilots with the skills and knowledge needed to navigate electric aircraft systems and procedures.

Moreover, the introduction of commercial electric flights in Canada opens new opportunities for aviation enthusiasts, environmental advocates, and stakeholders interested in sustainable transportation solutions. The shift towards e-aviation represents a paradigm shift in how air travel is perceived and executed, emphasizing efficiency, environmental stewardship, and technological innovation.

Looking ahead, Canada's role in advancing e-aviation extends beyond pilot training to include research and development, infrastructure investment, and policy support. Collaborative initiatives with industry partners and international counterparts, including Canada-U.S. collaboration on electrification, will be essential in accelerating the adoption of electric aircraft and establishing a robust framework for sustainable aviation practices.

In conclusion, Canada's first commercial electric flight marks a significant milestone in the journey towards sustainable aviation. By pioneering e-aviation through pilot training and technological innovation, Canada sets a precedent for global leadership in reducing carbon emissions and shaping the future of air transportation. As electric aircraft become more prevalent in the skies, Canada's commitment to sustainability and ambitious EV goals at the national level will continue to drive progress towards a cleaner, greener future for aviation worldwide.

 

Related News

View more

Indian government takes steps to get nuclear back on track

India Nuclear Generation Shortfall highlights missed five-year plan targets due to uranium fuel scarcity, commissioning delays at Kudankulam, PFBR slippage, and PHWR equipment bottlenecks under IAEA safeguards and domestic supply constraints.

 

Key Points

A gap between planned and actual nuclear output due to fuel shortages, reactor delays, and first-of-a-kind hurdles.

✅ Fuel scarcity pre-2009-10 constrained unsafeguarded reactors.

✅ Kudankulam delays from protests, litigation, and remobilisation.

✅ FOAK PHWR equipment bottlenecks and PFBR slippage.

 

A lack of available domestically produced nuclear fuel and delays in constructing and commissioning nuclear power plants, including first-of-a-kind plants and the Prototype Fast Breeder Reactor (PFBR), meant that India failed to meet its nuclear generation targets under the governmental plans over the decade to 2017, even as global project milestones were being recorded elsewhere.

India's nuclear generation target under its 11th five-year plan, covering the period 2007-2012, was 163,395 million units (MUs) and the 12th five-year Plan (2012-17) was 241,748 MUs, Minister of state for the Department of Atomic Energy and the Prime Minister's Office Jitendra Singh told parliament on 6 February. Actual nuclear generation in those periods was 109,642 MUs and 183,488 MUs respectively, Singh said in a written answer to questions in the Lok Sabah.

Singh attributed the shortfall in generation to a lack of availability of the necessary quantities of domestically produced fuel during the three years before 2009-2010; delays to the commissioning of two 1000 MWe nuclear power plants at Kudankulam due to local protests and legal challenges; and delays in the completion of two indigenously designed pressurised heavy water reactors and the PFBR.

Kudankulam 1 and 2 are VVER-1000 pressurised water reactors (PWRs) supplied by Russia's Atomstroyexport under a Russian-financed contract. The units were built by Nuclear Power Corporation of India Ltd (NPCIL) and were commissioned and are operated by NPCIL under International Atomic Energy Agency (IAEA) safeguards, with supervision from Russian specialists, while China's nuclear program advanced on a steady development track in the same period. Construction of the units - the first PWRs to enter operation in India - began in 2002.

Singh said local protests resulted in the halt of commissioning work at Kudankulam for nine months from September 2011 to March 2012, when he said project commissioning had been at its peak. As a consequence, additional time was needed to remobilise the workforce and contractors, he said. Litigation by anti-nuclear groups, and compliance with supreme court directives, impacted commissioning in 2013, he said. Unit 1 entered commercial operation in December 2014 and unit 2 in April 2017.

Delays in the manufacture and supply by domestic industry of critical equipment for first-of-a-kind 700 MWe pressurised heavy water reactors -  Kakrapar units 3 and 4, and Rajasthan units 7 and 8 - has led to delays in the completion of those units, the minister said, as well as noting the delay in completion of the PFBR, which is being built at Kalpakkam by Bhavini. In answer to a separate question, Singh said the PFBR is in an "advance stage of integrated commissioning" and is "expected to approach first criticality by the year 2020."

Eight of India's operating nuclear power plants are not under IAEA safeguards and can therefore only use indigenously-sourced uranium. The other 14 units operate under IAEA safeguards and can use imported uranium. The Indian government has taken several measures to secure fuel supplies for reactors in operation and under construction, amid coal supply rationing pressures elsewhere in the power sector, concluding fuel supply contracts with several countries for existing and future reactors under IAEA Safeguards and by "augmentation" of fuel supplies from domestic sources, Singh said.

Kakrapar 3 and 4, with Kakrapar 3 criticality already reported, and Rajasthan 7 and 8 are all currently expected to enter service in 2022, according to World Nuclear Association information.

 

Joint venture discussions

In February 2016 the government amended the Atomic Energy Act to allow NPCIL to form joint venture companies with other public sector undertakings (PSUs) for involvement in nuclear power generation and possibly other aspects of the fuel cycle, reflecting green industrial strategies shaping future reactor waves globally. In answer to another question, Singh confirmed that NPCIL has entered into joint ventures with NTPC Limited (National Thermal Power Corporation, India's largest power company) and Indian Oil Corporation Limited. Two joint venture companies - Anushakti Vidhyut Nigam Limited and NPCIL-Indian Oil Nuclear Energy Corporation Limited - have been incorporated, and discussions on possible projects to be set up by the joint venture companies are in progress.

An exploratory discussion had also been held with Oil & Natural Gas Corporation, Singh said. Indian Railways - which has in the past been identified as a potential joint venture partner for NPCIL - had "conveyed that they were not contemplating entering into an MoU for setting up of nuclear power plants," Singh said.

 

Related News

View more

How to Get Solar Power on a Rainy Day? Beam It From Space

Space solar power promises wireless energy from orbital solar satellites via microwave or laser power beaming, using photovoltaics and rectennas. NRL and AFRL advances hint at 24-7 renewable power delivery to Earth and airborne drones.

 

Key Points

Space solar power beams orbital solar energy to Earth via microwaves or lasers, enabling continuous wireless electricity.

✅ Harvests sunlight in orbit and transmits via microwaves or lasers

✅ Provides 24-7 renewable power, independent of weather or night

✅ Enables wireless power for remote sites, grids, and drones

 

Earlier this year, a small group of spectators gathered in David Taylor Model Basin, the Navy’s cavernous indoor wave pool in Maryland, to watch something they couldn’t see. At each end of the facility there was a 13-foot pole with a small cube perched on top. A powerful infrared laser beam shot out of one of the cubes, striking an array of photovoltaic cells inside the opposite cube. To the naked eye, however, it looked like a whole lot of nothing. The only evidence that anything was happening came from a small coffee maker nearby, which was churning out “laser lattes” using only the power generated by the system as ambitions for cheap abundant electricity gain momentum worldwide.

The laser setup managed to transmit 400 watts of power—enough for several small household appliances—through hundreds of meters of air without moving any mass. The Naval Research Lab, which ran the project, hopes to use the system to send power to drones during flight. But NRL electronics engineer Paul Jaffe has his sights set on an even more ambitious problem: beaming solar power to Earth from space. For decades the idea had been reserved for The Future, but a series of technological breakthroughs and a massive new government research program suggest that faraway day may have finally arrived as interest in space-based solar broadens across industry and government.

Since the idea for space solar power first cropped up in Isaac Asimov’s science fiction in the early 1940s, scientists and engineers have floated dozens of proposals to bring the concept to life, including inflatable solar arrays and robotic self-assembly. But the basic idea is always the same: A giant satellite in orbit harvests energy from the sun and converts it to microwaves or lasers for transmission to Earth, where it is converted into electricity. The sun never sets in space, so a space solar power system could supply renewable power to anywhere on the planet, day or night, as recent tests show we can generate electricity from the night sky as well, rain or shine.

Like fusion energy, space-based solar power seemed doomed to become a technology that was always 30 years away. Technical problems kept cropping up, cost estimates remained stratospheric, and as solar cells became cheaper and more efficient, and storage improved with cheap batteries, the case for space-based solar seemed to be shrinking.

That didn’t stop government research agencies from trying. In 1975, after partnering with the Department of Energy on a series of space solar power feasibility studies, NASA beamed 30 kilowatts of power over a mile using a giant microwave dish. Beamed energy is a crucial aspect of space solar power, but this test remains the most powerful demonstration of the technology to date. “The fact that it’s been almost 45 years since NASA’s demonstration, and it remains the high-water mark, speaks for itself,” Jaffe says. “Space solar wasn’t a national imperative, and so a lot of this technology didn’t meaningfully progress.”

John Mankins, a former physicist at NASA and director of Solar Space Technologies, witnessed how government bureaucracy killed space solar power development firsthand. In the late 1990s, Mankins authored a report for NASA that concluded it was again time to take space solar power seriously and led a project to do design studies on a satellite system. Despite some promising results, the agency ended up abandoning it.

In 2005, Mankins left NASA to work as a consultant, but he couldn’t shake the idea of space solar power. He did some modest space solar power experiments himself and even got a grant from NASA’s Innovative Advanced Concepts program in 2011. The result was SPS-ALPHA, which Mankins called “the first practical solar power satellite.” The idea, says Mankins, was “to build a large solar-powered satellite out of thousands of small pieces.” His modular design brought the cost of hardware down significantly, at least in principle.

Jaffe, who was just starting to work on hardware for space solar power at the Naval Research Lab, got excited about Mankins’ concept. At the time he was developing a “sandwich module” consisting of a small solar panel on one side and a microwave transmitter on the other. His electronic sandwich demonstrated all the elements of an actual space solar power system and, perhaps most important, it was modular. It could work beautifully with something like Mankins' concept, he figured. All they were missing was the financial support to bring the idea from the laboratory into space.

Jaffe invited Mankins to join a small team of researchers entering a Defense Department competition, in which they were planning to pitch a space solar power concept based on SPS-ALPHA. In 2016, the team presented the idea to top Defense officials and ended up winning four out of the seven award categories. Both Jaffe and Mankins described it as a crucial moment for reviving the US government’s interest in space solar power.

They might be right. In October, the Air Force Research Lab announced a $100 million program to develop hardware for a solar power satellite. It’s an important first step toward the first demonstration of space solar power in orbit, and Mankins says it could help solve what he sees as space solar power’s biggest problem: public perception. The technology has always seemed like a pie-in-the-sky idea, and the cost of setting up a solar array on Earth is plummeting, as proposals like a tenfold U.S. solar expansion signal rapid growth; but space solar power has unique benefits, chief among them the availability of solar energy around the clock regardless of the weather or time of day.

It can also provide renewable energy to remote locations, such as forward operating bases for the military, which has deployed its first floating solar array to bolster resilience. And at a time when wildfires have forced the utility PG&E to kill power for thousands of California residents on multiple occasions, having a way to provide renewable energy through the clouds and smoke doesn’t seem like such a bad idea. (Ironically enough, PG&E entered a first-of-its-kind agreement to buy space solar power from a company called Solaren back in 2009; the system was supposed to start operating in 2016 but never came to fruition.)

“If space solar power does work, it is hard to overstate what the geopolitical implications would be,” Jaffe says. “With GPS, we sort of take it for granted that no matter where we are on this planet, we can get precise navigation information. If the same thing could be done for energy, especially as peer-to-peer energy sharing matures, it would be revolutionary.”

Indeed, there seems to be an emerging race to become the first to harness this technology. Earlier this year China announced its intention to become the first country to build a solar power station in space, and for more than a decade Japan has considered the development of a space solar power station to be a national priority. Now that the US military has joined in with a $100 million hardware development program, it may only be a matter of time before there’s a solar farm in the solar system.

 

Related News

View more

New York and New England Need More Clean Energy. Is Hydropower From Canada the Best Way to Get it?

Canadian Hydropower Transmission delivers HVDC clean energy via New England Clean Energy Connect and Champlain Hudson Power Express, linking HydroQuébec to Maine and New York grids for renewable energy, decarbonization, and lower wholesale electricity rates.

 

Key Points

HVDC delivery of HydroQuébec power to New England and New York via NECEC and CHPE, cutting emissions and costs.

✅ 1,200 MW via NECEC; 1,000 MW via CHPE.

✅ HVDC routes: 145-mile NECEC and 333-mile CHPE.

✅ Debates: land impacts, climate justice, wholesale rates.

 

As the sole residents of unorganized territory T5 R7 deep within Maine's North Woods, Duane Hanson and his wife, Sally Kwan, have watched the land around them—known for its natural beauty, diverse wildlife and recreational fishing—transformed by decades of development. 

But what troubles them most is what could happen in the next few months. State and corporate officials are pushing for construction of a 53-mile-long power line corridor cutting right through the woods and abutting the wild lands surrounding Hanson's property. 

If its proponents succeed, Hanson fears the corridor may represent the beginning of the end of his ability to live "off the land" away from the noise of technology-obsessed modern society. Soon, that noise may be in his backyard. 

"I moved here to be in the pristine wilderness," said Hanson.
 
With his life in what he considers the last "wild" place left on the East Coast on the line, the stakes have never felt higher to Hanson—and many across New England, as well.

The corridor is part of the New England Clean Energy Connect, one of two major and highly controversial transmission line projects meant to deliver Canadian hydropower from the government-owned utility HydroQuébec, in a province that has closed the door on nuclear power, to New England electricity consumers. 

As New England states rush to green their electric grids and combat the accelerating climate crisis, the simultaneous push from Canada to expand the market for hydroelectric power from its vast water resources, including Manitoba's clean energy, has offered these states a critical lifeline at just the right moment. 

The other big hydropower transmission line project will deliver 1,000 megawatts of power, or enough to serve approximately one million residential customers, to the New York City metropolitan area, which includes the city, Long Island, and parts of the Hudson Valley, New Jersey, Connecticut and Pennsylvania. 

The 333-mile-long Champlain Hudson Power Express project will consist of two high voltage direct current cables running underground and underwater from Canada, beneath Lake Champlain and the Hudson River, to Astoria, Queens. 

There, the Champlain Hudson project will interconnect to a sector of the New York electricity grid where city and corporate officials say the hydropower supplied can help reduce the fossil fuels that currently comprise significantly more of the base load than in other parts of the state. Though New York has yet to finalize a contract with HydroQuébec over its hydropower purchase, developers plan to start construction on the $2.2 billion project in 2021 and say it will be operational in 2025. 

The New England project consists of 145 miles of new HVDC transmission line that will run largely above ground from the Canadian border, through Maine to Massachusetts. The $1 billion project, funded by Massachusetts electricity consumers, is expected to deliver 1,200 megawatts of clean energy to the New England energy grid, becoming the region's largest clean energy source. 

Central Maine Power, which will construct the Maine transmission corridor, says the project will decrease wholesale electric rates and create thousands of jobs. Company officials expect to receive all necessary permits and begin construction by the year's end, with the project completed and in service by 2020. 

With only months until developers start making both projects on-the-ground realities, they have seized public attention within, and beyond, their regions. 

Hanson is one among many concerned New England and New York residents who've joined the ranks of environmental activists in a contentious battle with public and corporate officials over the place of Canadian hydropower in their states' clean energy futures. 

Officials and transmission line proponents say importing Canadian hydropower offers an immediate and feasible way to help decarbonize electricity portfolios in New York and New England and to address existing transmission constraints that limit cross-border flows today, supporting their broader efforts to combat climate change. 

But some environmental activists say hydropower has a significant carbon footprint of its own. They fear the projects will make states look "greener" at the expense of the local environment, Indigenous communities, and ultimately, the climate. 

"We're talking about the most environmentally and economically just pathway" to decarbonization, said Annel Hernandez, associate director of the NYC Environmental Justice Alliance. "Canadian hydro is not going to provide that." 

To that end, environmental groups opposing Canadian hydropower say New York and New England should seize the moment to expedite local development of wind and solar power. 

Paul Gallay, president of the nonprofit environmental organization Riverkeeper—which withdrew its initial support for the Champlain Hudson Power Express last November— believes New York has the capacity to develop enough in-state renewable energy sources to meet its clean energy goals, without the new transmission line. 

Yet New York City's analysis shows clearly that Canadian hydropower is critical for its clean energy strategy, said Dan Zarrilli, director of OneNYC and New York City's chief climate policy adviser. 

"We need every bit of clean energy we can get our hands on," he said, to meet the city's goal of carbon neutrality by 2050 and help achieve the state's clean energy mandates. 

Removing Canadian hydropower from the equation, said Zarilli, would commit the city to the "unacceptable outcome" of burning more gas. The city's marginalized communities would likely suffer most from the resulting air pollution and associated health impacts. 

While the two camps debate Canadian hydropower's carbon footprint and what climate justice requires, this much is clear: When it comes to pursuing a zero-carbon future, there are no easy answers. 

Hydropower's Carbon Footprint
Many people take for granted that because hydropower production doesn't involve burning fossil fuels, it's a carbon-neutral endeavor. But that's not always the case, depending on where hydropower is sourced. 

Large-scale hydropower projects often involve the creation of hydroelectric dams and reservoirs, and, in some cases, repowering existing dams to generate clean electricity. The release and flow of water from the reservoir through the dam provides the energy necessary to generate hydropower, which long-distance power lines, or transmission lines, carry to its intended destination—in this case, New England and New York. 

The initial process of flooding land to create a hydroelectric reservoir can have a sizable carbon footprint, especially in heavily vegetated areas. It causes the vegetation and soil underwater to decompose, releasing carbon dioxide and methane—a greenhouse gas 84 times more potent over a 20-year period than carbon dioxide. 

Hydropower accounts for 60 percent of Canada's electricity generation, and HydroQuébec has planned to increase capacity to 37,000 MW in 2021, with the nation second only to China in the percentage of the world's total hydroelectricity it generates. By contrast, hydropower only accounts for seven percent of U.S. utility-scale electricity generation, making it a foreign concept to many Americans. 

As New England works to introduce substantial amounts of Canadian hydropower to its electricity grid, hydropower proponents are promoting it as a prime source for clean electricity, and new NB Power agreements are expanding regional transfers within Canada as well. 

Last fall, Central Maine Power formed its own political action committee, Clean Energy Matters, to advance the New England hydropower project. Together with HydroQuébec, the Maine utility has spent nearly $17 million campaigning for the project this year. 

 

Related News

View more

China power cuts: What is causing the country's blackouts?

China Energy Crisis drives electricity shortages, power cuts, and blackouts as coal prices surge, carbon-neutrality rules tighten, and manufacturing hubs ration energy, disrupting supply chains and industrial output ahead of winter demand peaks.

 

Key Points

A power shortfall from costly coal, price caps, and emissions targets, causing blackouts and industrial rationing.

✅ Coal prices soar while electricity tariffs are capped

✅ Factories in northeast hubs face rationing and downtime

✅ Supply chains risk delays ahead of winter demand

 

China is struggling with a severe shortage of electricity which has left millions of homes and businesses hit by power cuts.

Blackouts are not that unusual in the country but this year a number of factors have contributed to a perfect storm for electricity suppliers, including surging electricity demand globally.

The problem is particularly serious in China's north eastern industrial hubs as winter approaches - and is something that could have implications for the rest of the world.

Why has China been hit by power shortages?
The country has in the past struggled to balance electricity supplies with demand, which has often left many of China's provinces at risk of power outages.

During times of peak power consumption in the summer and winter the problem becomes particularly acute.

But this year a number of factors have come together to make the issue especially serious.

As the world starts to reopen after the pandemic, demand for Chinese goods is surging and the factories making them need a lot more power, highlighting China's electricity appetite in recent months.

Rules imposed by Beijing as it attempts to make the country carbon neutral by 2060 have seen coal production slow, even as the country still relies on coal for more than half of its power and as low-emissions generation is set to cover most global demand growth.

And as electricity demand has risen, the price of coal has been pushed up.

But with the government strictly controlling electricity prices, coal-fired power plants are unwilling to operate at a loss, with many drastically reducing their output instead.

Who is being affected by the blackouts?
Homes and businesses have been affected by power cuts as electricity has been rationed in several provinces and regions.

A coal-burning power plant can be seen behind a factory in China"s Inner Mongolia Autonomous Region

The state-run Global Times newspaper said there had been outages in four provinces - Guangdong in the south and Heilongjiang, Jilin and Liaoning in the north east. There are also reports of power cuts in other parts of the country.

Companies in major manufacturing areas have been called on to reduce energy usage during periods of peak demand or limit the number of days that they operate.

Energy-intensive industries such as steel-making, aluminium smelting, cement manufacturing and fertiliser production are among the businesses hardest hit by the outages.

What has the impact been on China's economy?
Official figures have shown that in September 2021, Chinese factory activity shrunk to the lowest it had been since February 2020, when power demand dropped as coronavirus lockdowns crippled the economy.

Concerns over the power cuts have contributed to global investment banks cutting their forecasts for the country's economic growth.

Goldman Sachs has estimated that as much as 44% of the country's industrial activity has been affected by power shortages. It now expects the world's second largest economy to expand by 7.8% this year, down from its previous prediction of 8.2%.

Globally, the outages could affect supply chains, including solar supply chains as the end-of-the-year shopping season approaches.

Since economies have reopened, retailers around the world have already been facing widespread disruption amid a surge in demand for imports.

China's economic planner, the National Development and Reform Commission (NDRC), has outlined a number of measures to resolve the problem, with energy supplies in the northeast of the country as its main priority this winter.

The measures include working closely with generating firms to increase output, ensuring full supplies of coal and promoting the rationing of electricity.

The China Electricity Council, which represents generating firms, has also said that coal-fired power companies were now "expanding their procurement channels at any cost" in order to guarantee winter heat and electricity supplies.

However, finding new sources of coal imports may not be straightforward.

Russia is already focused on its customers in Europe, Indonesian output has been hit by heavy rains and nearby Mongolia is facing a shortage of road haulage capacity,

Are energy shortages around the world connected?
Power cuts in China, UK petrol stations running out of fuel, energy bills jumping in Europe, near-blackouts in Japan and soaring crude oil, natural gas and coal prices on wholesale markets - it would be tempting to assume the world is suddenly in the grip of a global energy drought.

However, it is not quite as simple as that - there are some distinctly different issues around the world.

For example, in the UK petrol stations have run dry as motorists rushed to fill up their vehicles over concerns that a shortage of tanker drivers would mean fuel would soon become scarce.

Meanwhile, mainland Europe's rising energy bills and record electricity prices are due to a number of local factors, including low stockpiles of natural gas, weak output from the region's windmills and solar farms and maintenance work that has put generating operations out of action.
 

 

Related News

View more

Clorox accelerates goal of achieving 100% renewable electricity in the U.S. and Canada to 2021

Clorox Enel 70 MW VPPA accelerates renewable energy, sourcing Texas solar from the Roadrunner project to support 100% renewable electricity, Scope 2 reductions, and grid decarbonization through a virtual power purchase agreement starting in 2021.

 

Key Points

A 12-year virtual power purchase agreement for 70 MW of Texas solar to advance Clorox's 100% renewable electricity goal.

✅ 12-year contract supporting 100% renewable electricity by 2021

✅ Supplies 70 MW from Enel's Roadrunner solar project in Texas

✅ Cuts Scope 2 emissions via grid-delivered virtual PPA

 

The Clorox Company and a wholly owned subsidiary of Enel Green Power North America announced today the signing of a 12-year, 70 megawatt (MW) virtual power purchase agreement (VPPA) for the purchase of renewable energy, aligned with carbon-free electricity investments across the power sector beginning in 2021. Representing about half of Clorox's 100% renewable electricity goal in its operations in the U.S. and Canada, this agreement is expected to help Clorox accelerate achieving its goal in 2021, four years ahead of the company's original plan.

"Climate change and rising greenhouse gas emissions pose a real threat to the health of our planet and ultimately the long-term well-being of people globally. That's why we've taken action for more than 10 years to measure and reduce the carbon footprint of our operations," said Benno Dorer, chair and CEO, The Clorox Company. "Our agreement with Enel helps to expand U.S. renewable energy infrastructure, reflecting our view that companies like Clorox play an important role in addressing global climate change, as landmark policies like the U.S. climate deal further accelerate the transition. We believe this agreement will significantly contribute toward Clorox achieving our goal of 100% renewable electricity in our operations in the U.S. and Canada in 2021, four years earlier than originally planned. Our commitment to climate stewardship is an important pillar of our new IGNITE strategy and part of our overall efforts to drive Good Growth – growth that's profitable, sustainable and responsible."

The 70MW VPPA between Clorox and Enel Green Power North America for the purchase of renewable energy delivered to the electricity grid is for the second phase of Enel's Roadrunner solar project to be built in Texas, and complement global clean energy collaborations such as Canada-Germany hydrogen cooperation announced recently. Roadrunner is a 497-direct current megawatt (MWdc) solar project that is being built in two phases. The first phase, currently under construction, comprises around 252 MWdc and is expected to be completed by the end of 2019, while the remaining 245 MWdc of capacity is expected to be completed by the end of 2020. Once fully operational, the solar plant could generate up to 1.2 terawatt-hours (TWh) of electricity annually, while avoiding an estimated 800,000 metric tons of carbon dioxide emissions per year.

Based on the U.S. Environmental Protection Agency Greenhouse Gas Equivalencies Calculator[i], this VPPA is estimated to avoid approximately 140,000 metric tons of CO2 emissions each year. This is equivalent to the annual impact that 165,000 acres of U.S. forest can have in removing CO2 from the atmosphere, and illustrates why cleaning up Canada's electricity is central to emissions reductions in the power sector, or the carbon impact of the electricity needed to power more than 24,000 U.S. homes annually.

"We are proud to support Clorox on their path towards 100% renewable electricity in its operations in the U.S. and Canada by helping them achieve about half their goal through this agreement," said Georgios Papadimitriou, head of Enel Green Power North America. "This agreement with Clorox reinforces the continued significance of renewable energy as a fundamental part of any company's sustainability strategy."

Schneider Electric Energy & Sustainability Services advised Clorox on this power purchase agreement and, amid heightened investor attention exemplified by the Duke Energy climate report, supported the company in its project selection, analysis, negotiations and deal execution.

 

Clorox Commits to Scope 1, 2 and 3 Science-Based Targets

For more than 10 years, Clorox has consistently achieved its goals to reduce greenhouse gas emissions in its operations. Clorox is focused on setting emissions reduction targets in line with climate science. As a participant in the Science Based Targets Initiative, Clorox has committed to setting and achieving science-based greenhouse gas emissions reduction targets in its operations (Scopes 1 and 2) and across its value chain (Scope 3), and consistent with national pathways such as Canada's net-zero 2050 target pursued by policymakers. The targets are considered "science-based" if they are in line with what the latest climate science says is necessary to meet the goals of the 2015 Paris Agreement – a global environmental accord to address climate change and its negative impacts.

Clorox's climate stewardship goals are part of its new integrated corporate strategy called IGNITE, which includes several other environmental, social and governance (ESG) goals and reflects lessons from Canada's electricity progress in scaling clean power. More comprehensive information about Clorox's IGNITE ESG goals can be found here. Information on Clorox's 2020 ESG strategy can be found in its fiscal year 2019 annual report.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.