LEDs help restaurant, hospitality industry save

By Electricity Forum


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
LEDs offer the foodservice sector advantages in food presentation and energy savings. Restaurant owners regularly invest hundreds of thousands of dollars in interior finishes and furnishings, and when the presentation of fine cuisine is crucial, the right lighting is important. For restaurateurs looking to control costs, accent their décor and focus on cuisine, LED lighting products offer the best option.

Welland Ontario based CRS Electronics launched two new LED (light emitting diode) general lighting products into the Canadian marketplace. The first is the CRS MR16 LED luminaire manufactured by CRS Electronics, the second an LED downlight (often used to replace Halogen units) from LLF based in Morrisville, North Carolina and now distributed by CRS in Canada. The launch took place at the 2008 Canadian Restaurant and Foodservices Association food and beverage show held recently at Exhibition Place in Toronto.

“After years of experience in LED product markets, CRS is excited be on the leading edge of the development of LED general lighting,” stated Scott Riesebosch, president of CRS Electronics. “We are excited about our new products and believe it is the right light for the restaurant and accommodations industry. They provide the correct light attributes for the sector, reduce bottom line costs associated with electricity bills and help the environment,” added Mr. Riesebosch.

A CRS MR16 satisfies food industry presentation needs with a Colour Rendering Index (CRI) of 95.2, while serving up an 87% reduction in energy use and a 95% reduction in relamping maintenance. Restaurateurs can replace Halogen MR16 track, pot lights and recessed can lights with CRS LEDÂ’s and achieve energy savings with a payback period of less than two years.

While energy efficiency is an obvious benefit of LED lighting, CRS Electronics has long realized the need to also address the quality of light and lighting effect. CRS has developed LED products that will satisfy the architect, interior designer and foodservice, office or retail planner.

“We were determined to provide a product that would be accepted within the design community, recognizing that there are specific light quality issues and requirements,” said Mr. Riesebosch. He also noted, “We are confident that we can blend acceptable lighting quality with energy efficiency and overall performance.”

As significant consumers of electricity, hotel, motel and convention centre operators will be interested in the experience of the Palace Pier (located on the Toronto waterfront) condominiums use of CRSÂ’s LED technology. The lighting needs of the common space corridors and hallways of the 44 floor Palace Pier condo are very similar to the 24/7 lighting needs of hotels. The retrofits project is expected to deliver energy reductions of between 80-87% and has payback of between 9-12 months.

LEDÂ’s are most commonly found in traffic signals, vehicle tail lights, exit signs, holiday lights and architectural displays. LED lighting reduces energy costs and lighting relamping. With a life expectancy of 40,000 hours, LED products are replaced less often. Lighting currently contributes to at least 20% of North American and global energy consumption and plays a significant role in restaurant and hotel overheads.

The CRS LED MR16 becomes the replacement for previous halogen technology while the recessed downlight replaces standard incandescent or CFL style recessed downlights. Both LED products contain no gases and no mercury, which are present in other lighting systems. The LED version of the MR16 consumes just 4.5 watts and is suitable for many applications, while the recessed downlight replaces a standard 60 watt incandescent downlight using less than 12 watts.

Last fall, the world-leading performance of the LR6 LED downlight was recognized as the grand prize winner in an award competition sponsored by the American Lighting Association and verified by tests in independent labs under the direction of the U.S. Department of Energy.

Related News

Ontario Extends Off-Peak Electricity Rates to Provide Relief for Families, Small Businesses and Farms

Ontario Off-Peak Electricity Rate Relief extends 8.5 cents/kWh pricing 24/7 for residential, small business, and farm customers, covering Time-Of-Use and tiered plans to stabilize utility bills during COVID-19 Stay-at-Home measures across Ontario.

 

Key Points

A province-wide 8.5 cents/kWh price applied 24/7 until Feb 22, 2021 for TOU and tiered users to reduce electricity bills

✅ 8.5 cents/kWh, applied 24/7 through Feb 22, 2021

✅ Available to TOU and tiered OEB-regulated customers

✅ Automatic on bills for homes, small businesses, farms

 

The Ontario government is once again extending electricity rate relief for families, small businesses and farms to support those spending more time at home while the province maintains the Stay-at-Home Order in the majority of public health regions. The government will continue to hold electricity prices to the off-peak rate of 8.5 cents per kilowatt-hour, compared with higher peak rates elsewhere in the day, until February 22, 2021. This lower rate is available 24 hours per day, seven days a week for Time-Of-Use and tiered customers.

"We know staying at home means using more electricity during the day when electricity prices are higher, that's why we are once again extending the off-peak electricity rate to provide households, small businesses and farms with stable and predictable electricity bills when they need it most," said Greg Rickford, Minister of Energy, Northern Development and Mines, Minister of Indigenous Affairs. "We thank Ontarians for continuing to follow regional Stay-at-Home orders to help stop the spread of COVID-19."

The off-peak rate came into effect January 1, 2021, providing families, farms and small businesses with immediate electricity rate relief, and for industrial and commercial companies, stable pricing initiatives have provided additional certainty. The off-peak rate will now be extended until the end of day February 22, 2021, for a total of 53 days of emergency rate relief. During this period, and alongside temporary disconnect moratoriums for residential customers, the off-peak price will continue to be automatically applied to electricity bills of all residential, small business, and farm customers who pay regulated rates set by the Ontario Energy Board and get a bill from a utility.

"We extend our thanks to the Ontario Energy Board and local distribution companies across the province, including Hydro One, for implementing this extended emergency rate relief and supporting Ontarians as they continue to work and learn from home," said Bill Walker, Associate Minister of Energy.

 

Related News

View more

Yet another Irish electricity provider is increasing its prices

Electric Ireland Electricity Price Increase stems from rising wholesale costs as energy suppliers adjust tariffs. Customers face higher electricity bills, while gas remains unchanged; switching provider could deliver savings during winter.

 

Key Points

A 4% increase in Electric Ireland electricity prices from 1 Feb 2018, driven by wholesale costs; gas unchanged.

✅ 4% electricity rise effective 1 Feb 2018

✅ Increase attributed to rising wholesale energy costs

✅ Switching supplier may reduce bills and boost savings

 

ELECTRIC IRELAND has announced that it will increase its household electricity prices by 4% from 1 February 2018.

This comes just a week after both Bord Gáis Energy and SSE Airtricity announced increases in their gas and electricity prices, while national efforts to secure electricity supplies continue in parallel.

Electric Ireland has said that the electricity price increase is unavoidable due to the rising wholesale cost of electricity, with EU electricity prices trending higher as well.

The electricity provider said it has no plans to increase residential gas prices at the moment.

Commenting on the latest announcement, Eoin Clarke, managing director of Switcher.ie, said: “This is the third largest energy supplier to announce a price increase in the last week, so the other suppliers are probably not far behind.

“The fact that the rise is not coming into effect until 1 February will be welcomed by Electric Ireland customers who are worried about the rising cost of energy as winter sets in,” he said.

However, any increase is still bad news, especially as a quarter of consumers (27%) say their energy bill already puts them under financial pressure, and EU energy inflation has disproportionately affected lower-income households.

According to Electric Ireland, this will amount to a €2.91 per month increase for an average electricity customer, amounting to €35 per year.

Meanwhile, SSE Airtricity’s change amounts to an increase of 90 cent per week or €46.80 per year for someone with average consumption on their 24hr SmartSaver standard tariff, far below the dramatic Spain electricity price surge seen recently.

Bord Gáis Energy said its announcement will increase a typical gas bill by €2.12 a month and a typical electricity bill by €4.77 a month, reflecting wider trends such as the Germany power price spike reported recently.

In a statement, Bord Gáis Energy said: “The changes, which will take effect from 1st November 2017, are due to significant increases in the wholesale cost of energy as well as higher costs associated with distributing energy on the gas and electricity networks.

“In percentage terms, the increase represents 3.4% in a typical customer’s gas bill and an increase of 5.9% in a typical customer’s electricity bill.”

Clark said that if customers haven’t switched electricity provider in over a year that they should review the deals available at the moment.

“The market is highly competitive so there are huge savings to be made by switching,” he said.

“All suppliers use the same cables to supply electricity to your home, so you don’t need to worry about any loss in service, and you could save up to 324 by switching from typical standard tariffs to the cheapest deals on the market.”

 

Related News

View more

Electrification Of Vehicles Prompts BC Hydro's First Call For Power In 15 Years

BC Hydro Clean Power Call 2024 seeks utility-scale renewable energy, including wind and solar, to meet rising electricity demand, advance clean goals, expand grid, and support Indigenous participation through competitive procurement and equity opportunities.

 

Key Points

BC Hydro's 2024 bid to add zero-emission wind and solar to meet rising demand and support Indigenous equity.

✅ Competitive procurement for utility-scale wind and solar

✅ Targets 3,000 GWh new greenfield by fiscal 2029

✅ Encourages Indigenous ownership and equity stakes

 

The Government of British Columbia (the Government or Province) has announced that BC Hydro would be moving forward with a call for new sources of 100 percent clean, renewable emission-free electricity, notably including wind and solar, even as nuclear power remains a divisive option among residents. The call, expected to launch in spring 2024, is BC Hydro's first call for power in 15 years and will seek power from larger scale projects.

Over the past decade, British Columbia has experienced a growing economy and population as well as a move by the housing, business and transportation sectors towards electrification, with industrial demand from LNG facilities also influencing load growth. As the Government highlighted in their recent announcement, the number of registered light-duty electric vehicles in British Columbia increased from 5,000 in 2016 to more than 100,000 in 2023. Zero-emission vehicles represented 18.1 percent of new light-duty passenger vehicles sold in British Columbia in 2022, the highest percentage for any province or territory.

Ultimately, the Province now expects electricity demand in British Columbia to increase by 15 percent by 2030. BC Hydro elaborated on the growing need for electricity in their recent Signposts Update to the British Columbia Utilities Commission (BCUC), and noted additions such as new generating stations coming online to support capacity. BC Hydro implemented its Signposts Update process to monitor whether the "Near-term actions" established in its 2021 Integrated Resource Plan continue to be appropriate and align with the changing circumstances in electricity demand. Those actions outline how BC Hydro will meet the electricity needs of its customers over the next 20 years. The original Near-term actions focused on demand-side management and not incremental electricity production.

In its Update, BC Hydro emphasized that increased use of electricity and decreased supply, along with episodes of importing out-of-province fossil power during tight periods, has advanced the forecast of the province's need for additional renewable energy by three years. Accordingly, BC Hydro has updated its 2021 Integrated Resource Plan to, among other things:

accelerate the timing of several Near-term actions on energy efficiency, demand response, industrial load curtailment, electricity purchase agreement renewals and utility-scale batteries; and
add new Near-term actions for BC Hydro to acquire an additional 3,000 GWh per year of new clean, renewable energy from greenfield facilities in the province able to achieve commercial operation as early as fiscal 2029, as well as approximately 700 GWh per year of new clean, renewable energy from existing facilities prior to fiscal 2029.
The Province's predictions align with Canada Energy Regulator's (CER) "Canada's Energy Future 2023" flagship report (Report) released on June 20, 2023. The Report, which looks at Canadians' possible energy futures, includes two long-term scenarios modelled on Canada reaching net-zero by 2050. Under either scenario, the electricity sector is predicted to serve as the cornerstone of the net-zero energy system, with examples such as Hydro-Quebec's decarbonization strategy illustrating this shift as it transforms and expands to accommodate increasing electricity use.

Key Details of the Call
Though not finalized, the call for power will be a competitive process, with the exact details to be designed by BC Hydro and the Province, incorporating input from the recently-formed BC Hydro Task Force made up of Indigenous communities, industry and stakeholders. This is a shift from previous calls for power, which operated as a continuous-intake program with a standing offer at a fixed rate, after projects like the Siwash Creek project were left in limbo.

Drawing on advice from Indigenous and external energy experts, the Province seeks to advance Indigenous ownership and equity interest opportunities in the electricity sector, potentially with minimum requirements for Indigenous participation in new projects to be a condition of the competitive process. The Province has also committed $140 million to the B.C. Indigenous Clean Energy Initiative (BCICEI) to support Indigenous-led power projects and their ability to respond to future electricity demand, facilitating their ability to compete in the call for power, despite their smaller size.

BC Hydro expects to initiate the call in spring 2024, with the goal of acquiring new sources of electricity as early as 2028, even as clean electricity affordability features prominently in Ontario's election discourse.

 

Related News

View more

Rising Solar and Wind Curtailments in California

California Renewable Energy Curtailment highlights grid congestion, midday solar peaks, limited battery storage, and market constraints, with WEIM participation and demand response programs proposed to balance supply-demand and reduce wasted solar and wind generation.

 

Key Points

It is the deliberate reduction of solar and wind output when grid limits or low demand prevent full integration.

✅ Grid congestion restricts transmission capacity

✅ Midday solar peaks exceed demand, causing surplus

✅ Storage, WEIM, and demand response mitigate curtailment

 

California has long been a leader in renewable energy adoption, achieving a near-100% renewable milestone in recent years, particularly in solar and wind power. However, as the state continues to expand its renewable energy capacity, it faces a growing challenge: the curtailment of excess solar and wind energy. Curtailment refers to the deliberate reduction of power output from renewable sources when the supply exceeds demand or when the grid cannot accommodate the additional electricity.

Increasing Curtailment Trends

Recent data from the U.S. Energy Information Administration (EIA) highlights a concerning upward trend in curtailments in California. In 2024, the state curtailed a total of 3,102 gigawatt-hours (GWh) of electricity generated from solar and wind sources, surpassing the 2023 total of 2,660 GWh. This represents a 32.4% increase from the previous year. Specifically, 2,892 GWh were from solar, and 210 GWh were from wind, marking increases of 31.2% and 51.1%, respectively, compared to the first nine months of 2023.

Causes of Increased Curtailment

Several factors contribute to the rising levels of curtailment:

  1. Grid Congestion: California's transmission infrastructure has struggled to keep pace with the rapid growth of renewable energy sources. This congestion limits the ability to transport electricity from generation sites to demand centers, leading to curtailment.

  2. Midday Solar Peaks: Amid California's solar boom, solar energy production typically peaks during the midday when electricity demand is lower. This mismatch between supply and demand results in excess energy that cannot be utilized, necessitating curtailment.

  3. Limited Energy Storage: While battery storage technologies are advancing, California's current storage capacity is insufficient to absorb and store excess renewable energy for later use. This limitation exacerbates curtailment issues.

  4. Regulatory and Market Constraints: Existing market structures and regulatory frameworks may not fully accommodate the rapid influx of renewable energy, leading to inefficiencies and increased curtailment.

Economic and Environmental Implications

Curtailment has significant economic and environmental consequences. For renewable energy producers, curtailed energy represents lost revenue and undermines the economic viability of new projects. Environmentally, curtailment means that clean, renewable energy is wasted, and the grid may rely more heavily on fossil fuels to meet demand, counteracting the benefits of renewable energy adoption.

Mitigation Strategies

To address the rising curtailment levels, California is exploring several strategies aligned with broader decarbonization goals across the U.S.:

  • Grid Modernization: Investing in and upgrading transmission infrastructure to alleviate congestion and improve the integration of renewable energy sources.

  • Energy Storage Expansion: Increasing the deployment of battery storage systems to store excess energy during peak production times and release it during periods of high demand.

  • Market Reforms: Participating in the Western Energy Imbalance Market (WEIM), a real-time energy market that allows for the balancing of supply and demand across a broader region, helping to reduce curtailment.

  • Demand Response Programs: Implementing programs that encourage consumers to adjust their energy usage patterns, such as shifting electricity use to times when renewable energy is abundant.

Looking Ahead

As California continues to expand its renewable energy capacity, addressing curtailment will be crucial to ensuring the effectiveness and sustainability of its energy transition. By investing in grid infrastructure, energy storage, and market reforms, the state can reduce curtailment levels and make better use of its renewable energy resources, while managing challenges like wildfire smoke impacts on solar output. These efforts will not only enhance the economic viability of renewable energy projects but also contribute to California's 100% clean energy targets by maximizing the use of clean energy and reducing reliance on fossil fuels.

While California's renewable energy sector faces challenges related to curtailment, proactive measures and strategic investments can mitigate these issues, as scientists continue to improve solar and wind power through innovation, paving the way for a more sustainable and efficient energy future.

 

Related News

View more

US nuclear innovation act becomes law

NEIMA advances NRC regulatory modernization, creating a licensing framework for advanced reactors, improving uranium permitting, capping reactor fees, and mandating DOE planning for excess uranium, boosting transparency, accountability, and innovation across the US nuclear sector.

 

Key Points

NEIMA is a US law modernizing NRC rules and enabling advanced reactor licensing while reforming fees.

✅ Modernizes NRC licensing for advanced reactors

✅ Caps annual reactor fees and boosts transparency

✅ Streamlines uranium permitting; directs DOE plans

 

Bipartisan legislation modernising US nuclear regulation and supporting the establishment of a licensing framework for next-generation advanced reactors has been signed by US President Donald Trump, whose order boosting U.S. uranium and nuclear energy underscored the administration's focus on the sector.

The Nuclear Energy Innovation and Modernisation Act (NEIMA) became law on 14 January.

As well as directing the Nuclear Regulatory Commission (NRC) to modify the licensing process for commercial advanced nuclear reactor facilities, the bill establishes new transparency and accountability measures to the regulator's budget and fee programmes, and caps fees for existing reactors. It also directs the NRC to look at ways of improving the efficiency of uranium licensing, including investigating the safety and feasibility of extending uranium recovery licences from ten to 20 years' duration, and directs the Department of Energy, which oversees nuclear cleanup and related projects, to issue at least every ten years a long-term plan detailing the management of its excess uranium inventories.

Maria Korsnick, president and CEO of the US Nuclear Energy Institute, described NEIMA as a "significant, positive step" toward the reform of the NRC's fee collection process. "This legislation establishes a more equitable and transparent funding structure which will benefit all operating reactors and future licensees," she said. "The bill also reaffirms Congress’s support for nuclear innovation by working to establish an efficient and stable regulatory structure that is prepared to license the advanced reactors of the future."

Marilyn Kray, president-elect of the American Nuclear Society, said the passage of the legislation was a "big win" for the nation and its nuclear community. "By reforming outdated laws, NRC will now be able to invest more freely in advanced nuclear R&D and licensing activities. This in turn will accelerate deployment of cutting-edge American nuclear systems and better prepare the next generation of nuclear engineers and technologists," she said.

The bill was introduced in 2017 by Senator John Barrasso of Wyoming. It was approved by Congress on 21 December by 361 votes to 10, having been passed by the Senate the previous day, even as later Biden's climate law developments produced mixed results.

NEIMA is one of several bipartisan bills that support advanced nuclear innovation considered by the 115th US Congress, which ended on 2 January. These are: the Nuclear Energy Innovation Capabilities Act (NEICA); the Nuclear Energy Leadership Act; the Nuclear Utilisation of Keynote Energy Act; the Advanced Nuclear Fuel Availability Act, a focus sharpened by the U.S. ban on Russian uranium in the fuel market; and legislation to expedite so-called part 810 approvals, which are needed for the export of technology, equipment and components. NEICA, which supports the deployment of advanced reactors and also directs the DOE to develop a reactor-based fast neutron source for the testing of advanced reactor fuels and materials, was signed into law in October.

 

Related News

View more

Massive power line will send Canadian hydropower to New York

Twin States Clean Energy Link connects New England to Hydro-Quebec via a 1,200 MW transmission line, DOE-backed capacity, underground segments, existing corridors, boosting renewable energy reliability across Vermont and New Hampshire with cross-border grid flexibility.

 

Key Points

DOE-backed 1,200 MW line linking Hydro-Quebec to New England, adding clean capacity with underground routes.

✅ 1,200 MW cross-border capacity for the New England grid

✅ Uses existing corridors; underground in VT and northern NH

✅ DOE capacity contract lowers risk and spurs investment

 

A proposal to build a new transmission line to connect New England with Canadian hydropower is one step closer to reality.

The U.S. Department of Energy announced Monday that it has selected the Twin States Clean Energy Link as one of three transmission projects that will be part of its $1.3 billion cross-border transmission initiative to add capacity to the grid.

WBUR is a nonprofit news organization. Our coverage relies on your financial support. If you value articles like the one you're reading right now, give today.

Twin States is a proposal from National Grid, a utility company that serves Massachusetts, New York, and Rhode Island, and also owns transmission in England and Wales as the region advances projects like the Scotland-to-England subsea link that expand renewable flows, and the non-profit Citizens Energy Corporation.

The transmission line would connect New England with power from Hydro-Quebec, moving into the United States from Canada in Northern Vermont and crossing into New Hampshire near Dalton. It would run through parts of Grafton, Merrimack, and Hillsborough counties, routing through a substation in Dunbarton and ending at a proposed new substation in Londonderry. (Here's a map of the Twin States proposal.)

The federal funding will allow the U.S. Department of Energy to purchase capacity on the planned transmission line, which officials say reduces the risk for other investors and can help encourage others to purchase capacity.

The project has gotten support from local officials in Vermont and New Hampshire, but there are still hurdles to cross. The contract negotiation process is beginning, National Grid said, and the proposal still needs approvals from regulators before construction could begin.

First Nations communities in Canada have opposed transmission lines connecting Hydro-Quebec with New England in the past, and the company has faced scrutiny from environmental groups.

What would Twin States look like?
Transmission projects, like the failed Northern Pass proposal, have been controversial in New England, though the Great Northern Transmission Line progressed in Minnesota.

But Reihaneh Irani-Famili, vice president of capital delivery, project management and construction at National Grid, said this one is different because the developers listened to community concerns before planning the project.

“They did not want new corridors of infrastructure, so we made sure that we're using existing right of way,” she said. “They did not want the visual impact and some of the newer corridors of infrastructure, we're making sure we're undergrounding portions of the line.”

In Vermont and northern New Hampshire, the transmission lines would be buried underground along state roads. South of Littleton, they would be located within existing transmission corridors.

The developers say the lines could provide 1,200 megawatts of transmission capacity. The project would have the ability to carry electricity from hydro facilities in Quebec to New England, and would also be able to bring electricity from New England into Quebec, a step toward broader macrogrid connectivity across regions.

“Those hydro dams become giant green batteries for the region, and they hold that water until we need the electrons,” Irani-Famili said. “So if you think about our energy system not as one that sees borders, but one that sees resources, this is connecting the Quebec resources to the New England resources and helping all of us get into that cleaner energy future with a lot less build than we otherwise would have.”

Irani-Famili says the transmission line could help facilitate more clean energy resources like offshore wind coming online. In a report released last week by New Hampshire’s Department of Energy, authors said importing Canadian hydropower could be one of the most cost-effective ways to move away from fossil fuels on the electric grid.

National Grid estimates the project will help save energy customers $8.3 billion in its first 12 years. The developers are constructing a $260 million “community benefits plan” that would take some profits from the transmission line and give that money back to communities that host the transmission lines and environmental justice communities in New England.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.