Energy security driving IndiaÂ’s low CO2 plan

By Reuters


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Worries over energy security will drive India's goal to slow the growth of its carbon emissions, the head of a government panel tasked with developing the country's low-carbon strategy said.

Reserves of fossil fuels such as coal were fast running out, making it imperative for India to improve efficiency and accelerate renewable energy sources to keep the economy growing at a projected 8 to 9 percent annually, Kirit Parikh said.

India, the world's fourth-largest carbon emitter, is under pressure to cut pollution in the fight against climate change. While per-capita emissions are still low, demand for electricity and fossil fuels is increasing as the middle class clamors for more cars, TVs and better housing.

"If the Indian economy is not concerned at all with climate change... and follows the business-as-usual path, the reality is even in business-as-usual we have to change from what we are today," Parikh told Reuters in an interview.

"These are your imperatives in any way from your energy security point of view because we are very short of oil, very short of gas.

"We need to find in the next 20, at the most 30 years, an alternative to coal-based power plants. That will be required in a business-as-usual scenario."

In India, any talk of a low-carbon economy was once seen as politically very risky, given the economic costs involved. But Prime Minister Manmohan Singh in January asked Parikh to begin charting a path to a greener economy.

The panel's preliminary report is due next month and the final submission in September.

Although India has announced a new climate plan which identifies renewable energy, such as solar power, as a key element, coal remains the backbone of energy supply in a country where almost half the 1.1 billion population has no access to electricity.

The country has 10 percent of the world's coal reserves, the biggest after the United States, Russia and China. Most of India's coal is inferior in quality and highly polluting.

About 70 million tons of coal is imported each year, mostly for making steel.

India plans to add 78.7 gigawatts of power generation during the five years ending March 2012, most of it from coal, which now accounts for about 60 percent of the nation's energy mix.

By comparison, renewables such as wind, solar and biomass contribute only 8.8 percent to generation and, though there are plans to scale up solar power generation to 20 gigawatts by 2022, it depends on international finance and technology.

A landmark nuclear deal with the United States might herald a new chapter in clean energy in India, but long planning and building periods for nuclear reactors and high cost are deterrents.

Parikh said given the dependence on coal, the only way forward was to enhance the efficiency of coal-based power plants by using technology such as super-critical boilers which would help cut coal use by about 20 percent.

"In 10 years' time, half of my plants should be more efficient. In another 10 years, 75 percent of the plants should be more efficient," he said.

India last year set a goal for slowing the growth of its emissions, saying it will try to rein in its "carbon intensity" — the amount of carbon dioxide emitted per unit of economic output — by between 20 and 25 percent by 2020, from 2005 levels.

Parikh said the target was achievable without a major shift in policy keeping in view the fact that India's energy intensity — the amount of energy used to produce one unit of GDP — has been coming down.

He said it was too early to estimate the economic cost of shifting to a low-carbon economy and the panel would initially only identify areas of opportunities such as in the power, transport and construction sectors.

Parikh said increasing energy efficiency was not enough because enhanced efficiency would lead to higher energy demands.

"... activities become more productive, larger value-adding takes place, incomes go up, people demand more, growth takes place and the total energy demand goes up," he said.

Related News

Canada's Electricity Exports at Risk Amid Growing U.S.-Canada Trade Tensions

US-Canada Electricity Tariff Dispute intensifies as proposed tariffs spur Canadian threats to restrict hydroelectric exports, risking cross-border energy supply, grid reliability, higher electricity prices, and clean energy goals in the Northeast and Midwest.

 

Key Points

Trade clash over tariffs and hydroelectric exports that threatens power supply, prices, and grid reliability.

✅ Potential export curbs on Canadian hydro to US markets

✅ Risks: higher prices, strained grids, reduced clean energy

✅ Diplomacy urged to avoid retaliatory trade measures

 

In early February 2025, escalating trade tensions between the United States and Canada have raised concerns about the future of electricity exports from Canada to the U.S. The potential imposition of tariffs by the U.S. has prompted Canadian officials to consider retaliatory measures, including restricting electricity exports and pursuing high-level talks such as Ford's Washington meeting with federal counterparts.

Background of the Trade Dispute

In late November 2024, President-elect Donald Trump announced plans to impose a 25% tariff on all Canadian products, citing issues related to illegal immigration and drug trafficking. This proposal has been met with strong opposition from Canadian leaders, who view such tariffs as unjustified and detrimental to both economies, even as tariff threats boost support for Canadian energy projects among some stakeholders.

Canada's Response and Potential Retaliatory Measures

In response to the proposed tariffs, Canadian officials have discussed various countermeasures. Ontario Premier Doug Ford has threatened to cut electricity supplies to 1.5 million Americans and ban imports of U.S.-made beer and liquor. Other provinces, such as Quebec and Alberta, are also considering similar actions, though experts advise against cutting Quebec's energy exports due to reliability concerns.

Impact on U.S. Energy Supply

Canada is a significant supplier of electricity to the United States, particularly in regions like the Northeast and Midwest. A reduction or cessation of these exports could lead to energy shortages and increased electricity prices in affected U.S. states, with New York especially vulnerable according to regional assessments. For instance, Ontario exports substantial amounts of electricity to neighboring U.S. states, and any disruption could strain local energy grids.

Economic Implications

The imposition of tariffs and subsequent retaliatory measures could have far-reaching economic consequences. In Canada, industries such as agriculture, manufacturing, and energy could face significant challenges due to reduced access to the U.S. market, even as many Canadians support energy and mineral tariffs as leverage. Conversely, U.S. consumers might experience higher prices for goods and services that rely on Canadian imports, including energy products.

Environmental Considerations

Beyond economic factors, the trade dispute could impact environmental initiatives. Canada's hydroelectric power exports are a clean energy source that helps reduce carbon emissions in the U.S., where policymakers look to Canada for green power to meet targets. A reduction in these exports could lead to increased reliance on fossil fuels, potentially hindering environmental goals.

The escalating trade tensions between the United States and Canada, particularly concerning electricity exports, underscore the complex interdependence of the two nations. While the situation remains fluid, it highlights the need for diplomatic engagement to resolve disputes and maintain the stability of cross-border energy trade.

 

Related News

View more

Southern California Edison Faces Lawsuits Over Role in California Wildfires

SCE Wildfire Lawsuits allege utility equipment and power lines sparked deadly Los Angeles blazes; investigations, inverse condemnation, and stricter utility regulations focus on liability, vegetation management, and wildfire safety amid Santa Ana winds.

 

Key Points

Residents sue SCE, alleging power lines ignited LA wildfires; seeking compensation under inverse condemnation.

✅ Videos cited show sparking lines near alleged ignition points.

✅ SCE denies wrongdoing; probes and inspections ongoing.

✅ Inverse condemnation may apply regardless of negligence.

 

In the aftermath of devastating wildfires in Los Angeles, residents have initiated legal action, similar to other mega-fire lawsuits underway in California, against Southern California Edison (SCE), alleging that the utility's equipment was responsible for sparking one of the most destructive fires. The fires have resulted in significant loss of life and property, prompting investigations into the causes and accountability of the involved parties.

The Fires and Their Impact

In early January 2025, Los Angeles experienced severe wildfires that ravaged neighborhoods, leading to the loss of at least 29 lives and the destruction of approximately 155 square kilometers of land. Areas such as Pacific Palisades and Altadena were among the hardest hit. The fires were exacerbated by arid conditions and strong Santa Ana winds, which contributed to their rapid spread and intensity.

Allegations Against Southern California Edison

Residents have filed lawsuits against SCE, asserting that the utility's equipment, particularly power lines, ignited the fires. Some plaintiffs have presented videos they claim show sparking power lines in the vicinity of the fire's origin. These legal actions seek to hold SCE accountable for the damages incurred, including property loss, personal injury, and emotional distress.

SCE's Response and Legal Context

Southern California Edison has denied any wrongdoing, stating that it has not detected any anomalies in its equipment that could have led to the fires. The utility has pledged to cooperate fully with investigations to determine the causes of the fires. California's legal framework, particularly the doctrine of "inverse condemnation," allows property owners to seek compensation from utilities for damages caused by public services, even without proof of negligence. This legal principle has been central in previous cases involving utility companies and wildfire damages, and similar allegations have arisen in other jurisdictions, such as an alleged faulty transformer case, highlighting shared risks.

Historical Context and Precedents

This situation is not unprecedented. In 2018, Pacific Gas and Electric (PG&E) faced similar allegations when its equipment was implicated in the Camp Fire, the deadliest wildfire in California's history. PG&E's equipment was found to have ignited the fire, and the company later pleaded guilty in the Camp Fire, leading to extensive litigation and financial repercussions for the company, while its bankruptcy plan won support from wildfire victims during restructuring. The case highlighted the significant risks utilities face regarding wildfire safety and the importance of maintaining infrastructure to prevent such disasters.

Implications for California's Utility Regulations

The current lawsuits against SCE underscore the ongoing challenges California faces in balancing utility operations with wildfire prevention, as regulators face calls for action amid rising electricity bills. The state has implemented stricter regulations and oversight, and lawmakers have moved to crack down on utility spending to mitigate wildfire risks associated with utility infrastructure. Utilities are now required to invest in enhanced safety measures, including equipment inspections, vegetation management, and the implementation of advanced technologies to detect and prevent potential fire hazards. These regulatory changes aim to reduce the incidence of utility-related wildfires and protect communities from future disasters.

The legal actions against Southern California Edison reflect the complex interplay between utility operations, public safety, and environmental stewardship. As investigations continue, the outcomes of these lawsuits may influence future policies and practices concerning utility infrastructure and wildfire prevention in California. The state remains committed to enhancing safety measures to protect its residents and natural resources from the devastating effects of wildfires.

 

Related News

View more

Growing pot sucks up electricity and pumps out an astounding amount of carbon dioxide — it doesn't have to

Sustainable Cannabis Cultivation leverages greenhouse design, renewable energy, automation, and water recapture to cut electricity use, emissions, and pesticides, delivering premium yields with natural light, smart sensors, and efficient HVAC and irrigation control.

 

Key Points

A data-driven, low-impact method that cuts energy, water, and chemicals while preserving premium yields.

✅ 70-90% less electricity vs. conventional indoor grows

✅ Natural light, solar, and rainwater recapture reduce footprint

✅ Automation, sensors, and HVAC stabilize microclimates

 

In the seven months since the Trudeau government legalized recreational marijuana use, licensed producers across the country have been locked in a frenetic race to grow mass quantities of cannabis for the new market.

But amid the rush for scale, questions of sustainability have often taken a back seat, and in Canada, solar adoption has lagged in key sectors.

According to EQ Research LLC, a U.S.-based clean-energy consulting firm, cannabis facilities can need up to 150 kilowatt-hours of electricity per year per square foot. Such input is on par with data centres, which are themselves 50 to 200 times more energy-intensive than a typical office building, and achieving zero-emission electricity by 2035 would help mitigate the associated footprint.

At the Lawrence Berkley National Laboratory in California, a senior scientist estimated that one per cent of U.S. electricity use came from grow ops. The same research — published in 2012 — also found that the procedures for refining a kilogram of weed emit around 4,600 kilograms of carbon dioxide to the atmosphere, equivalent to operating three million cars for a year, though a shift to zero-emissions electricity by 2035 could substantially cut those emissions.

“All factors considered, a very large expenditure of energy and consequent ‘environmental imprint’ is associated with the indoor cultivation of marijuana,” wrote Ernie Small, a principal research scientist for Agriculture and Agri-Food Canada, in the 2018 edition of the Biodiversity Journal.

Those issues have left some turning to technology to try to reduce the industry’s footprint — and the economic costs that come with it — even as more energy sources make better projects for forward-looking developers.

“The core drawback of most greenhouse environments is that you’re just getting large rooms, which are harder to control,” says Dan Sutton, the chief executive officer of Tantalus Labs., a B.C.-based cannabis producer. “What we did was build a system specifically for cannabis.”

Sutton is referring to SunLab, the culmination of four years of construction, and at present the main site where his company nurtures rows of the flowering plant. The 120,000-square foot structure was engineered for one purpose: to prove the merits of a sustainable approach.

“We’re actually taking time-series data on 30 different environmental parameters — really simple ones like temperature and humidity — all the way down to pH of the soil and water flow,” says Sutton. “So if the temperature gets a little too cold, the system recognizes that and kicks on heaters, and if the system senses that the environment is too hot in the summertime, then it automatically vents.”

A lot is achieved without requiring much human intervention, he adds. Unlike conventional indoor operations, SunLab demands up to 90 per cent less electricity, avoids using pesticides, and draws from natural light and recaptured rainwater to feed its crops.

The liquid passes through a triple-filtration process before it is pumped into drip irrigation tubing. “That allows us to deliver a purity of water input that is cleaner than bottled water,” says Sutton.

As transpiration occurs, a state-of-the-art, high-capacity airflow suspended below the ceiling cycles air at seven-minute intervals, repeatedly cooling the air and preventing outbreaks of mould, while genetically modified “guardian” insects swoop in to eliminate predatory pests.

“When we first started, people never believed we would cultivate premium quality cannabis or cannabis that belongs on the top shelf, shoulder to shoulder with the best in the world and the best of indoor,” says Sutton.

Challenges still exist, but they pale in comparison to the obstacles that American companies with an interest in adopting greener solutions persistently face, and in provinces like Alberta, an Alberta renewable energy surge is reshaping the opportunity set.

Although cannabis is legal in a number of states, it remains illegal federally, which means access to capital and regulatory clarity south of the border can be difficult to come by.

“Right now getting a new project built is expensive to do because you can’t get traditional bank loans,” says Canndescent CEO Adrian Sedlin, speaking by phone from California.

In retrofitting the company’s farm to accommodate a sizeable solar field, he struggled to secure investors, even as a solar-powered cannabis facility in Edmonton showcased similar potential.

“We spent over a year and a half trying to get it financed,” says Sedlin. “Finding someone was the hard part.”

Decriminalizing the drug would ultimately increase the supply of capital and lower the costs for innovative designs, something Sedlin says would help incentivize producers to switch to more effective and ecologically sound techniques.

Some analysts argue that selling renewable energy in Alberta could become a major growth avenue that benefits energy-intensive industries like cannabis cultivation.

Canndescent, however, is already there.

“We’re now harnessing the sun to reduce our reliance on fossil fuels and going to sustainable, or replenishable, energy sources, while leveraging the best and most efficient water practices,” says Sedlin. “It’s the right thing to do.”

 

Related News

View more

Global Energy War Escalates: Price Hikes and Instability

Russia-Ukraine Energy War disrupts infrastructure, oil, gas, and electricity, triggering supply shocks, price spikes, and inflation. Global markets face volatility, import risks, and cybersecurity threats, underscoring energy security, grid resilience, and diversified supply.

 

Key Points

It is Russia's strategic targeting of Ukraine's energy system to disrupt supplies, raise prices, and hit global markets.

✅ Attacks weaponize energy to strain Ukraine and allies

✅ Supply shocks risk oil, gas, and electricity price spikes

✅ Urgent need for cybersecurity, grid resilience, diversification

 

Russia's targeting of Ukraine's energy infrastructure has unleashed an "energy war" that could lead to widespread price increases, supply disruptions, and ripple effects throughout the global energy market, felt across the continent, with warnings of Europe's energy nightmare taking shape.

This highlights the unprecedented scale and severity of the attacks on Ukrainian energy infrastructure. These attacks have disrupted power supplies, prompting increased electricity imports to keep the lights on, hindered oil and gas production, and damaged refineries, impacting Ukraine and the broader global energy system.


Energy as a Weapon

Experts claim that Russia's deliberate attacks on Ukraine's energy infrastructure represent a strategic escalation, amid energy ceasefire violations alleged by both sides, demonstrating the Kremlin's willingness to weaponize energy as part of its war effort. By crippling Ukraine's energy system, Russia aims to destabilize the country, inflict suffering on civilians, and undermine Western support for Ukraine.


Impacts on Global Oil and Gas Markets

The ongoing attacks on Ukraine's energy infrastructure could significantly impact global oil and gas markets, leading to supply shortages and dramatic price increases, even as European gas prices briefly returned to pre-war levels earlier this year, underscoring extreme volatility. Ukraine's oil and gas production, while not massive in global terms, is still significant, and its disruption feeds into existing anxieties about global energy supplies already affected by the war.


Ripple Effects Beyond Ukraine

The impacts of the "energy war" won't be limited to Ukraine or its immediate neighbours. Price increases for oil, gas, and electricity are expected worldwide, further fueling inflation and exacerbating the global cost of living crisis.  Additionally, supply disruptions could disproportionately affect developing nations and regions heavily dependent on energy imports, making targeted energy security support to Ukraine and other vulnerable importers vital.


Vulnerability of Energy Infrastructure

The attacks on Ukraine highlight the vulnerability of critical energy infrastructure worldwide, as the country prepares for winter under persistent threats. The potential for other state or non-state actors to use similar tactics raises concerns about security and long-term stability in the global energy sector.


Strengthening Resilience

Experts emphasize the urgent need for global cooperation in strengthening the resilience of energy infrastructure. Investments in cybersecurity, diverse energy sources, and decentralized grids are crucial for mitigating the risks of future attacks, with some arguing that stepping away from fossil fuels would improve US energy security over time. International cooperation will be key in identifying vulnerable areas and providing aid to nations whose infrastructure is under threat.


The Unpredictable Future of Energy

The "energy war" unleashed by Russia has injected a new level of uncertainty into the global energy market. In addition to short-term price fluctuations and supply issues, the conflict could accelerate the long-term transition towards renewable energy sources and reshape how nations approach energy security.

 

Related News

View more

The Cool Way Scientists Turned Falling Raindrops Into Electricity

Raindrop Triboelectric Energy Harvesting converts falling water into electricity using Teflon (PTFE) on indium tin oxide and an aluminum electrode, forming a transient water bridge; a low frequency nanogenerator for renewable, static electricity harvesting.

 

Key Points

A method using PTFE, ITO, and an aluminum electrode to turn raindrop impacts into low frequency electrical power.

✅ PTFE on ITO boosts charge transfer efficiency.

✅ Water bridge links electrodes for rapid discharge.

✅ Low frequency output suits continuous energy harvesting.

 

Scientists at the City University of Hong Kong have used a Teflon-coated surface and a phenomenon called triboelectricity to generate a charge from raindrops. “Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene [Teflon] film on an indium tin oxide substrate plus an aluminium electrode,” they explain in their new paper in Nature as a step toward cheap, abundant electricity in the long term.

Triboelectricity itself is an old concept. The word means “friction electricity”—from the Greek tribo, to rub or wear down, which is why a diatribe tires you out—and dates back a long, long time. Static electricity is the most famous kind of triboelectric, and related work has shown electricity from the night sky can be harvested as well in niche setups. In most naturally occurring kinds, scientists have studied triboelectric in order to avoid its effects, like explosions inside of grain silos or hospital workers touching off pure oxygen. (Blowing sand causes an electric field, and NASA even worries about static when astronauts eventually land on Mars.)

One of the most studied forms of intentional and useful triboelectric is in systems such as ocean wave generators where the natural friction of waves meets nanogenerators of triboelectric energy. These even already use Teflon, which has natural conductivity that makes it ideal for this job. But triboelectricity is chaotic, and harnessing it generally involves a bunch of complicated, intersecting variables that can vary with the hourly weather. Promises of static electricity charging devices have often been, well, so much hot, sandy wind.

The scientists at City University of Hong Kong used triboelectric ideas to turn falling raindrops into energy. They say previous versions of the same idea were not very efficient, with materials that didn’t allow for high-fidelity transfer of electrical charge. (Many sources of renewable energy aren’t yet as efficient to turn into power, both because of developing technology and because their renewability means even less efficient use could be better than, for example, fossil fuels, and advances in renewable energy storage could help.)

“[A]chieving a high density of electrical power generation is challenging,” the team explains in its paper. “Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply.” Diversifying how power is generated by water sources such as oceans and rivers is good for the existing infrastructure as well as new installations.

The research team found that as simulated raindrops fell on their device, the way the water accumulated and spread created a link between their two electrodes, one Teflon-coated and the other aluminum. This watery de facto wire link closes the loop and allows accumulated energy to move through the system. Because it’s a mechanical setup, it’s not limited to salty seawater, and because the medium is already water, its potential isn’t affected by ambient humidity either.

Raindrop energy is very low frequency, which means this tech joins many other existing pushes to harvest continuously available, low frequency natural energy, including underwater 'kites' that exploit steady currents. To make an interface that increases “instantaneous power density by several orders of magnitude over equivalent devices,” as the researchers say they’ve done here, could represent a major step toward feasibility in triboelectric generation.

 

Related News

View more

Duke solar solicitation nearly 6x over-subscribed

Duke Energy Carolinas Solar RFP draws 3.9 GW of utility-scale bids, oversubscribed in DEP and DEC, below avoided cost rates, minimal battery storage, strict PPA terms, and interconnection challenges across North and South Carolina.

 

Key Points

Utility-scale solar procurement in DEC and DEP, evaluated against avoided cost, with few storage bids and PPA terms.

✅ 3.9 GW bids for 680 MW; DEP most oversubscribed

✅ Most projects 7-80 MWac; few include battery storage

✅ Bids must price below 20-year avoided cost estimate

 

Last week the independent administrator for Duke’s 680 MW solar solicitation revealed data about the projects which have bid in response to the offer, showing a massive amount of interest in the opportunity.

Overall, 18 individuals submitted bids for projects in Duke Energy Carolinas (DEC) territory and 10 in Duke Energy Progress (DEP), with a total of more than 3.9 GW of proposals – more nearly 6x the available volume. DEP was relatively more over-subscribed, with 1.2 GWac of projects vying for only 80 MW of available capacity.

This is despite a requirement that such projects come in below the estimate of Duke’s avoided cost for the next 20 years, and amid changes in solar compensation that could affect project economics. Individual projects varied in capacity from 7-80 MWac, with most coming within the upper portion of that range.

These bids will be evaluated in the spring of 2019, and as Duke Energy Renewables continues to expand its portfolio, Duke Energy Communications Manager Randy Wheeless says he expects the plants to come online in a year or two.

 

Lack of storage

Despite recent trends in affordable batteries, of the 78 bids that came in only four included integrated battery storage. Tyler Norris, Cypress Creek Renewables’ market lead for North Carolina, says that this reflects that the methodology used is not properly valuing storage.

“The lack of storage in these bids is a missed opportunity for the state, and it reflects a poorly designed avoided cost rate structure that improperly values storage resources, commercially unreasonable PPA provisions, and unfavorable interconnection treatment toward independent storage,” Norris told pv magazine.

“We’re hopeful that these issues will be addressed in the second RFP tranche and in the current regulatory proceedings on avoided cost and state interconnection standards and grid upgrades across the region.”

 

Limited volume for North Carolina?

Another curious feature of the bids is that nearly the same volume of solar has been proposed for South Carolina as North Carolina – despite this solicitation being in response to a North Carolina law and ongoing legal disputes such as a church solar case that challenged the state’s monopoly model.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.