Hydropower to become blue gold? Not likely

By Globe and Mail


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
This is a big week for Canada's made-in-Washington energy and climate policy. The U.S. Senate is likely to finalize comprehensive energy legislation that will have a significant impact on our economy and environment.

As a Globe editorial pointed out, there are some troubling protectionist measures contained in the current draft of the legislation.

One protectionist measure that has not received as much attention as of yet are the rules surrounding the proposed National Renewable Electricity Standard (RES) that will require all U.S. utilities to purchase 15 per cent of their electricity from renewable sources by 2020 (the exact percentage covered by the RES is something a moving target).

The move by the U.S. federal government towards a national RES is seen in some quarters as a significant opportunity for Canadian provinces such as British Columbia, Manitoba and most importantly Quebec that have significant hydro reserves.

Premier Jean Charest said earlier this year that "today the richest societies in the world are those which have oil. Tomorrow, the richest societies will be those that will have clean, renewable energy." He added that he wants Quebec to be the "Alberta of hydro-electricity."

The only problem? The proposed RES only recognizes a very limited amount of incremental "hydro" as "renewable energy" (ie - most hydro is NOT considered renewable energy under the act) and does not contemplate allowing imported hydro to qualify towards meeting the obligations of utilities under the RES.

The American Wind Energy Association is blunt about why they lobby to exclude Canadian hydro.

"It is necessary to exclude large hydropower from the RPS [Note: a "RPS" and a RES are for all meaningful purpose synonyms] for several reasons. Though hydro brings public benefits in terms of avoiding the air emissions and wastes associated with conventional power plants, hydro is technologically mature, is fully commercialized (representing a significant share of the electricity market), and has limited development potential. Most importantly, including hydro in the RPS would create several intractable practical problems: (a) output from the large base of Canadian hydro projects could potentially be rerouted into the U.S. market and "flood" that market, depressing prices to levels too low to support non-hydro renewables; (b) the large year-to-year fluctuations in hydro output would make it difficult to meet a fixed standard each year and at the same time provide a predictable market for renewables; and (c) many hydro facilities have more than one use and have been built with the aid of large government subsidies."

It's not that their arguments are wrong (though obviously hypocritical given the "large government subsidies" that the wind industry is almost entirely dependant on). They do lay out the challenge facing the Canadian industry.

Realizing the problem at hand, the Quebec Natural Resources Minister is off to Hartford to lobby east coast governors to consider hydro as renewable energy. His timing is a bit odd - I'm not sure why he is lobbying governors who have already rejected his argument when their climate change scheme is very quickly being surplanted by federal legislation.

In the past, Quebec and Ontario have mused about a NAFTA challenge of these restrictions. I'm not a trade lawyer but one problem I see with these challenges is that neither province has anything even close to "free trade" in electricity domestically (no province really does). How do we insist that our utilities have a right under NAFTA to have their "renewable" energy included in the U.S. scheme when no Canadian province would allow U.S. based generators to bid their renewable energy into any of our programs?

Which means that this is likely to be added to a long, and growing, list of political issues that Canada will need to muddle through until we struggle to develop a coherent policy of our own.

Related News

First US coal plant in years opens where no options exist

Alaska Coal-Fired CHP Plant opens near Usibelli mine, supplying electricity and district heat to UAF; remote location without gas pipelines, low wind and solar potential, and high heating demand shaped fuel choice.

 

Key Points

A 17 MW coal CHP at UAF producing power and campus heat, chosen for remoteness and lack of gas pipelines.

✅ 17 MW generator supplying electricity and district heat

✅ Near Usibelli mine; limited pipeline access shapes fuel

✅ Alternative options like LNG, wind, solar not cost-effective

 

One way to boost coal in the US: Find a spot near a mine with no access to oil or natural gas pipelines, where it’s not particularly windy and it’s dark much of the year.

That’s how the first coal-fired plant to open in the U.S. since 2015 bucked the trend in an industry that’s seen scores of facilities close in recent years. A 17-megawatt generator, built for $245 million, is set to open in April at the University of Alaska Fairbanks, just 100 miles from the state’s only coal mine.

“Geography really drove what options are available to us,” said Kari Burrell, the university’s vice chancellor for administrative services, in an interview. “We are not saying this is ideal by any means.”

The new plant is arriving as coal fuels about 25 percent of electrical generation in the U.S., down from 45 percent a decade earlier, even as some forecasts point to a near-term increase in coal-fired generation in 2021. A near-record 18 coal plants closed in 2018, and 14 more are expected to follow this year, according to BloombergNEF.

The biggest bright spot for U.S. coal miners recently has been exports to overseas power plants. At home, one of the few growth areas has been in pizza ovens.

There are a handful of other U.S. coal power projects that have been proposed, including plans to build an 850 megawatt facility in Georgia and an 895 megawatt plant in Kansas, even as a Minnesota utility reports declining coal returns across parts of its portfolio. But Ashley Burke, a spokeswoman for the National Mining Association, said she’s unaware of any U.S. plants actively under development besides the one in Alaska.

 

Future of power

“The future of power in the U.S. does not include coal,” Tessie Petion, an analyst for HSBC Holdings Plc, said in a research note, a view echoed by regions such as Alberta retiring coal power early in their transition.

Fairbanks sits on the banks of the Chena River, amid the vast subarctic forests in the heart of Alaska. The oil and gas fields of the state’s North slope are 500 miles north. The nearest major port is in Anchorage, 350 miles south.

The university’s new plant is a combined heat and power generator, which will create steam both to generate electricity and heat campus buildings. Before opting for coal, the school looked into using liquid natural gas, wind and solar, bio-mass and a host of other options, as new projects in Southeast Alaska seek lower electricity costs across the region. None of them penciled out, said Mike Ruckhaus, a senior project manager at the university.

The project, financed with university and state-municipal bonds, replaces a coal plant that went into service in 1964. University spokeswoman Marmian Grimes said it’s worth noting that the new plant will emit fewer emissions.

The coal will come from Usibelli Coal Mine Inc., a family-owned business that produces between 1.2 and 2 million tons per year from a mine along the Alaska railroad, according to the company’s website.

While any new plant is good news for coal miners, Clarksons Platou Securities Inc. analyst Jeremy Sussman said this one is "an isolated situation."

“We think the best producers can hope for domestically is a slow down in plant closures,” he said, even as jurisdictions like Alberta close their last coal plant entirely.

 

Related News

View more

The Impact of AI on Corporate Electricity Bills

AI Energy Consumption strains corporate electricity bills as data centers and HPC workloads run nonstop, driving carbon emissions. Efficiency upgrades, renewable energy, and algorithm optimization help control costs and enhance sustainability across industries.

 

Key Points

AI Energy Consumption is the power used by AI compute and data centers, impacting costs and sustainability.

✅ Optimize cooling, hardware, and workloads to cut kWh per inference

✅ Integrate on-site solar, wind, or PPAs to offset data center power

✅ Tune models and algorithms to reduce compute and latency

 

Artificial Intelligence (AI) is revolutionizing industries with its promise of increased efficiency and productivity. However, as businesses integrate AI technologies into their operations, there's a significant and often overlooked impact: the strain on corporate electricity bills.

AI's Growing Energy Demand

The adoption of AI entails the deployment of high-performance computing systems, data centers, and sophisticated algorithms that require substantial energy consumption. These systems operate around the clock, processing massive amounts of data and performing complex computations, and, much like the impact on utilities seen with major EV rollouts, contributing to a notable increase in electricity usage for businesses.

Industries Affected

Various sectors, including finance, healthcare, manufacturing, and technology, rely on AI-driven applications for tasks ranging from data analysis and predictive modeling to customer service automation and supply chain optimization, while manufacturing is influenced by ongoing electric motor market growth that increases electrified processes.

Cost Implications

The rise in electricity consumption due to AI deployments translates into higher operational costs for businesses. Corporate entities must budget accordingly for increased electricity bills, which can impact profit margins and financial planning, especially in regions experiencing electricity price volatility in Europe amid market reforms. Managing these costs effectively becomes crucial to maintaining competitiveness and sustainability in the marketplace.

Sustainability Challenges

The environmental impact of heightened electricity consumption cannot be overlooked. Increased energy demand from AI technologies contributes to carbon emissions and environmental footprints, alongside rising e-mobility demand forecasts that pressure grids, posing challenges for businesses striving to meet sustainability goals and regulatory requirements.

Mitigation Strategies

To address the escalating electricity bills associated with AI, businesses are exploring various mitigation strategies:

  1. Energy Efficiency Measures: Implementing energy-efficient practices, such as optimizing data center cooling systems, upgrading to energy-efficient hardware, and adopting smart energy management solutions, can help reduce electricity consumption.

  2. Renewable Energy Integration: Investing in renewable energy sources like solar or wind power and energy storage solutions to enhance flexibility can offset electricity costs and align with corporate sustainability initiatives.

  3. Algorithm Optimization: Fine-tuning AI algorithms to improve computational efficiency and reduce processing times can lower energy demands without compromising performance.

  4. Cost-Benefit Analysis: Conducting thorough cost-benefit analyses of AI deployments to assess energy consumption against operational benefits and potential rate impacts, informed by cases where EV adoption can benefit customers in broader electricity markets, helps businesses make informed decisions and prioritize energy-saving initiatives.

Future Outlook

As AI continues to evolve and permeate more aspects of business operations, the demand for electricity will likely intensify and may coincide with broader EV demand projections that increase grid loads. Balancing the benefits of AI-driven innovation with the challenges of increased energy consumption requires proactive energy management strategies and investments in sustainable technologies.

Conclusion

The integration of AI technologies presents significant opportunities for businesses to enhance productivity and competitiveness. However, the corresponding surge in electricity bills underscores the importance of proactive energy management and sustainability practices. By adopting energy-efficient measures, leveraging renewable energy sources, and optimizing AI deployments, businesses can mitigate cost impacts, reduce environmental footprints, and foster long-term operational resilience in an increasingly AI-driven economy.

 

Related News

View more

Britain's National Grid Drops China-Based Supplier Over Cybersecurity Fears

National Grid Cybersecurity Component Removal signals NCSC and GCHQ oversight of critical infrastructure, replacing NR Electric and Nari Technology grid control systems to mitigate supply chain risk, cyber threats, and blackout risk.

 

Key Points

A UK move to remove China-linked grid components after NCSC/GCHQ advice, reducing cyber and blackout risks.

✅ NCSC advice to remove NR Electric components

✅ GCHQ-linked review flags critical infrastructure risks

✅ Aims to cut blackout risk and supply chain exposure

 

Britain's National Grid has started removing components supplied by a unit of China-backed Nari Technology's from the electricity transmission network over cybersecurity fears, reflecting a wider push on protecting the power grid across critical sectors.

The decision came in April after the utility sought advice from the National Cyber Security Center (NCSC), a branch of the nation's signals intelligence agency, Government Communications Headquarters (GCHQ), amid campaigns like the Dragonfly campaign documented by Symantec, the newspaper quoted a Whitehall official as saying.

National Grid declined to comment citing "confidential contractual matters." "We take the security of our infrastructure very seriously and have effective controls in place to protect our employees and critical assets, while preparing for an independent operator transition in Great Britain, to ensure we can continue to reliably, safely and securely transmit electricity," it said in a statement.

The report said an employee at the Nari subsidiary, NR Electric Company-U.K., had said the company no longer had access to sites where the components were installed, at a time when utilities worldwide have faced control-room intrusions by state-linked hackers, and that National Grid did not disclose a reason for terminating the contracts.

It quoted another person it did not name as saying the decision was based on NR Electric Company-U.K.'s components that help control and balance the grid, respond to work-from-home demand shifts, and minimize the risk of blackouts.

It was unclear whether the components remained in the electricity transmission network, the report said, amid reports of U.S. power plant breaches that have heightened vigilance.

NR Electric Company-U.K., GCHQ and the Chinese Embassy in London did not immediately respond to requests for comment outside of business hours.

Britain's Department for Energy Security and Net Zero said that it did not comment on the individual business decisions taken by private organizations. "As a government department we work closely with the private sector to safeguard our national security, and to support efforts to fast-track grid connections across the network," it said in a statement.
 

 

Related News

View more

Electricity rates are about to change across Ontario

Ontario Electricity Rate Changes lower OEB Regulated Price Plan costs, adjust Time-of-Use winter hours and tiered thresholds, and modify the Ontario Electricity Rebate, affecting off-peak, mid-peak, and on-peak pricing for households and small businesses.

 

Key Points

OEB updates lowering RPP prices, shifting TOU hours, adjusting tiers, and modifying the Ontario Electricity Rebate.

✅ Winter TOU: Off-peak 7 p.m.-7 a.m.; weekends, holidays all day.

✅ Tiered pricing adds 400 kWh at lower rate for residential users.

✅ Ontario Electricity Rebate falls to 11.7% from 17% on Nov 1.

 

Electricity rates are about to change for consumers across Ontario.

On November 1, households and small businesses will see their electricity rates go down under the Ontario Energy Board's (OEB) Regulated Price Plan framework.

Customer's on the OEB's tiered pricing plan will also see their bills lowered on November 1, a shift from the 2021 increase when fixed pricing ended, as winter time-of-use hours and the seasonal change in the killowatt-hour threshold take effect.

Off-peak time-of-use hours will run from 7 p.m. to 7 a.m. during weekdays, including the ultra-low overnight rates option for some customers, and all day on weekends and holidays. On-peak hours will be from 7 a.m. to 11 a.m. and 5 p.m. to 7 p.m. on weekdays, and mid-peak hours from 11 a.m. to 5 p.m. on weekdays.

The winter-tier threshold provides residential customers with an extra 400 kilowatt-hours per month at a lower price during the colder weather, alongside the off-peak price freeze in effect.

The Ontario Electricity Rebate - a pre-tax credit that shows up at the bottom of electricity bills - will also see changes as a hydro rate change takes effect on November 1. Starting next month, the rebate will drop from 17 per cent to 11.7 per cent.

For a typical residential customer, the credit will decrease electricity bills by about $13.91 per month, according to the OEB.

Under the board's winter disconnection ban, electricity providers can't turn off a residential customer's power between November 15, 2022 and April 30, 2023 for failing to pay, and earlier pandemic relief included a fixed COVID-19 hydro rate for customers.

 

Related News

View more

27,000 Plus More Clean Energy Jobs Lost in May

U.S. Clean Energy Job Losses highlight COVID-19 impacts on renewable energy, solar, wind, and energy efficiency, with PPP fatigue, unemployment, and calls for Congressional stimulus, per Department of Labor data analyzed by E2.

 

Key Points

Pandemic-driven layoffs across renewable, solar, wind, and efficiency sectors, risking recovery without federal aid.

✅ Over 620,500 clean energy jobs lost in three months

✅ Energy efficiency, solar, and wind hit hardest nationwide

✅ Industry urges Congress for stimulus, tax credit relief

 

As Congress this week begins debating economic stimulus support for the energy industry, a new analysis of unemployment data shows the biggest part of America's energy economy - clean energy - lost another 27,000 jobs in May, bringing the total number of clean energy workers who have lost their jobs in the past three months to more than 620,500.

While May saw an improvement in new unemployment claims over March and April, the findings represent the sector's third straight month of significant job losses across solar, wind, energy efficiency, clean vehicles and other industries. With coronavirus cases once again rising in many states and companies beginning to run out of the Payroll Protection Program (PPP) funding that has helped small businesses keep workers employed, and as households confront pandemic power shut-offs that heighten energy insecurity, the report increases concerns the sector will be unable to resume its economy-leading jobs growth in the short- or long-term without a significant policy response.

Given the size and scope of the clean energy industry, such a sustained loss would cast a pall on the nation's overall economic recovery, as shifting electricity demand during COVID-19 complicates forecasts, according to the analysis of the Department of Labor's May unemployment data from E2 (Environmental Entrepreneurs), E4TheFuture and the American Council on Renewable Energy (ACORE).

Prior to COVID-19, clean energy - including energy efficiency, solar and wind generation, clean vehicles and related sectors - was among the U.S. economy's biggest and fastest-growing employment sectors, growing 10.4% since 2015 to nearly 3.4 million jobs at the end of 2019. That made clean energy by far the biggest employer of workers in all energy occupations, employing nearly three times as many people as the fossil fuel industry. For comparison, coal mining employs about 47,000 workers, even as clean energy projects in coal communities aim to revitalize local economies.

The latest monthly analysis for the groups by BW Research Partnership runs contrary to recent Bureau of Labor Statistics (BLS) reports, which indicated that a more robust economic rebound was underway, even as high fuel prices haven't spurred a green shift in adoption, while also acknowledging misclassifications and serious reporting difficulties in its own data.

Bob Keefe, Executive Director at E2, said:

"May's almost 30,000 clean energy jobs loss is sadly an improvement in the rate of jobs shed but make no mistake: There remains huge uncertainty and volatility ahead. It will be very tough for clean energy to make up these continuing job losses without support from Congress. Lawmakers must act now. If they do, we can get hundreds of thousands of these workers back on the job today and build a better, cleaner, more equitable economy for tomorrow. And who doesn't want that?"

Pat Stanton, Policy Director at E4TheFuture, said:

"Most of the time, energy efficiency workers need to go inside homes, businesses and other buildings to get the job done. Since they couldn't do that during COVID lockdowns, they couldn't work. Now states are opening up. But utilities, contractors and building owners need to protect employees and occupants from possible exposure to the virus and need more clarity about potential liabilities."

Gregory Wetstone, President and CEO of ACORE, said:

"In May, we saw thousands of additional renewable energy workers join the ranks of the unemployed, further underscoring the damage COVID-19 is inflicting on our workforce. Since the pandemic began, nearly 100,000 renewable energy workers have lost their jobs. We need help from Congress to get American clean energy workers back to work. With commonsense measures like temporary refundability and a delay in the phasedown of renewable energy tax credits, Congress can help restore these good-paying jobs so the renewable sector can continue to provide the affordable, pollution-free power American consumers and businesses want and deserve."

Phil Jordan, Vice President and Principal at BW Research Partnership, said:

"We understand the challenges and limitations of data collection for BLS in the middle of a global pandemic. But any suggestion that a strong employment rebound is underway in the United States simply is not reflected in the clean energy sector right now. And with PPP expiring, that only increases uncertainty in the months ahead."

The report comes as both the Senate Committee on Energy and Natural Resources and the House Energy and Commerce Committee are considering clean energy stimulus to restart the U.S. economy, and amid assessments of mixed results from the climate law shaping expectations, and as lawmakers in both the House and Senate are increasing calls for supporting clean energy workers and businesses, including this bicameral letter signed by 57 members of Congress and another signed today by 180 House members.

Industries Hit Hardest

According to the analysis, energy efficiency lost more jobs than any other clean energy sector for the third consecutive month in May, shedding about 18,900 jobs. These workers include electricians, HVAC technicians who work with high-efficiency systems, and manufacturing employees who make Energy Star appliances, LED lighting systems and efficient building materials.

Renewable energy, including solar and wind, lost nearly 4,300 jobs in May.

Clean grid and storage and clean vehicles manufacturing -- including grid modernization, energy storage, car charging and electric and plug-in hybrid vehicle manufacturing -- lost a combined 3,200 jobs in May, as energy crisis impacts electricity, gas, and EVs in several ways.

The clean fuels sector lost more than 650 jobs in May.

States and Localities Hit Across Country

California continues to be the hardest hit state in terms of total job losses, losing 4,313 jobs in May and more than 109,700 since the COVID-19 crisis began. Florida was the second hardest hit state in May, losing an additional 2,563 clean energy jobs, while Georgia, Texas, Washington, and Michigan all suffered more than 1,000 job losses across the sector. An additional 12 states saw at least 500 clean energy unemployment filings, and reports like Pennsylvania's clean energy jobs analysis provide added context, according to the latest analysis.

For a full breakdown of clean energy job losses in each state, along with a list of the hardest hit counties and metro areas, see the full analysis here.

 

Related News

View more

Planning for our electricity future should be led by an independent body

Nova Scotia Integrated Resource Plan evaluates NSPI supply options, UARB oversight, Muskrat Falls imports, coal retirements, wind and biomass expansion, transmission upgrades, storage, and least-cost pathways to decarbonize the grid for ratepayers.

 

Key Points

A 25-year roadmap assessing supply, imports, costs, and emissions to guide least-cost decarbonization for Nova Scotia.

✅ Compares wind, biomass, gas, imports, and storage costs

✅ Addresses coal retirements, emissions caps, and reliability

✅ Recommends transmission upgrades and Muskrat Falls utilization

 

Maintaining a viable electricity network requires good long-term planning and, as a recent grid operations report notes, ongoing operational improvements. The existing stock of generating assets can become obsolete through aging, changes in fuel prices or environmental considerations. Future changes in demand must be anticipated.

Periodically, an integrated resource plan is created to predict how all this will add up during the ensuing 25 years. That process is currently underway and is led by Nova Scotia Power Inc. (NSPI) and will be submitted for approval to the Utilities and Review Board (UARB).

Coal-fired plants are still the largest single source of electricity in Nova Scotia. They need to be replaced with more environmentally friendly sources when they reach the end of their useful lives. Other sources include wind, hydroelectricity from rivers, biomass, as seen in increased biomass use by NS Power, natural gas and imports from other jurisdictions.

Imports are used sparingly today but will be an important source when the electricity from Muskrat Falls comes on stream. That project has big capacity. It can produce all the power needed in Newfoundland and Labrador (NL), where Quebec's power ambitions influence regional flows, plus the amount already committed to Nova Scotia, and still have a lot left over.

Some sources of electricity are more valuable than others. The daily amount of power from wind and solar cannot be controlled. Fuel-based sources and hydro can.

Utilities make their profits by providing the capital necessary to build infrastructure. Most of the money is borrowed but a portion, typically 30 per cent, usually comes from NSPI or a sister company. On that they receive a rate of return of nine per cent. Nova Scotia can borrow money today at less than two per cent.

The largest single investment of that type is the $1.577-billion Maritime Link connecting power from Newfoundland to Nova Scotia. It continues through to the New Brunswick border to facilitate exports to the United States. NSPI’s sister company, NSP Maritime Link Inc. (NSPML), is making nine per cent on $473 million of the cost.

There is little unexploited hydro capacity in Nova Scotia and there will not be any new coal-fired plants. Large-scale solar is not competitive in Nova Scotia’s climate. Nova Scotia’s needs would not accommodate the amount of nuclear capacity needed to be cost-effective, even as New Brunswick explores small reactors in its strategy.

So the candidates for future generating resources are wind, natural gas, biomass (though biomass criticism remains) and imports from other jurisdictions. Tidal is a promising opportunity but is still searching for a commercially viable technology. 

NSPI is commendably transparent about its process (irp.nspower.ca). At this stage there is little indication of the conclusions they are reaching but that will presumably appear in due course.

The mountains of detail might obscure the fact that NSPI is not an unbiased arbiter of choices for the future.

It is reported that they want to prematurely close the Trenton 5 coal plant in 2023-25. It is valued at $88.5 million. If it is closed early, ratepayers will still have to pay off the remaining value even though the plant will be idle. NSPI wants to plan a decommissioning of five of its other seven plants. There is a federal emissions constraint but retiring coal plants earlier than needed will cost ratepayers a lot.

Whenever those plants are closed, there will be a need for new sources of power. NSPI is proposing to plan for new investments in new transmission infrastructure to facilitate imports. Other possibilities would be additional wind farms, consistent with the shift to more wind and solar projects, thermal plants that burn natural gas or biomass, or storage for excess wind power that arrives before it can be used. The investment in storage could be anywhere from $20 million to $200 million.

These will add to the asset burden funded by ratepayers, even as industrial customers seek discounts while still paying for shuttered coal infrastructure.

External sources of new power will not provide NSPI the same opportunity: wind power by independent producers might be less expensive because they are willing to settle for less than nine per cent or because they are more efficient. Buying more power from Muskrat Falls will use transmission infrastructure we are already paying for. If a successful tidal technology is found, it will not be owned by NSPI or a sister company, which are no longer trying to perfect the technology.

This is not to suggest that NSPI would misrepresent the alternatives. But they can tilt the discussion in their favour. How tough will they be negotiating for additional Muskrat Falls power when it hurts their profits? Arguing for premature coal retirement on environmental grounds is fair game but whether the cost should be accepted is a political choice. 

NSPI is in a conflict of interest. We need a different process. An independent body should author the integrated resource plan. They should be fully informed about NSPI’s views.

They should communicate directly with Newfoundland and Labrador for Muskrat power, with independent wind producers, and with tidal power companies. The UARB cannot do any of these things.

The resulting plan should undergo the same UARB review that NSPI’s version would. This enhances the likelihood that Nova Scotians will get the least-cost alternative.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.