IEEE begins work on new power switchgear standards
PISCATAWAY, NEW JERSEY - The IEEE has launched work on a new standard, IEEE PC37.20.8 "Standard for Metal-Enclosed Low-Voltage (3200V and Below) Direct Current Power Circuit Breaker Switchgear for Traction Power Applications."
The intent of the project is to identify specific requirements of metal-enclosed low-voltage direct current power circuit breaker switchgear used in traction power applications.
IEEE has also approved work to begin on revisions to three existing switchgear standards. The first, IEEE PC37.10, "Guide for Investigation, Analysis and Reporting of Power Circuit Breaker Failures," will combine the existing C37.10 standard with IEEE 1325, "IEEE Recommended Practice for Reporting Field Failure Data for Power Circuit Breakers," which will then be withdrawn.
The next two revisions, IEEE PC37.013, "Standard for AC High Voltage (Rated Above 1000 V) Generator Circuit Breakers for Use With Generators Rated 10 MVA or More," and IEEE PC37.016, "Standard for AC High Voltage Circuit Switchers Rated 15.5kV through 245kV," will each be revised in coordination with the International Electrotechnical Commission (IEC) as part of our harmonization efforts between IEEE and the IEC.
IEEE has also approved a new switchgear standard, IEEE C37.16, "Standard for Preferred Ratings, Related Requirements, and Application Recommendations for Low-Voltage AC (635V and Below) and DC (3200V and Below) Power Circuit Breakers." The standard defines the preferred ratings for low-voltage AC (635V and below) power circuit breakers, general-purpose DC (325V and below) power circuit breakers, heavy duty low-voltage DC (3200V and below) power circuit breakers, and fused (integrally or non-integrally) low-voltage AC (600V and below) power circuit breakers.
IEEE has also reaffirmed two existing standards: IEEE C37.26, "IEEE Guide for Methods of Power Factor Measurement for Low-Voltage Inductive Test Circuits"; and IEEE C37.40, "IEEE Standard Service Conditions and Definitions for High-Voltage Fuses, Distribution Enclosed Single-Pole Air Switches, Fuse Disconnecting Switches, and Accessories."
Related News
The Netherlands Outpaces Canada in Solar Power Generation
OTTAWA - When it comes to harnessing solar power, the Netherlands stands as a shining example of efficient and widespread adoption, far surpassing Canada in solar energy generation per capita. Despite Canada's vast landmass and abundance of sunlight, the Netherlands has managed to outpace its North American counterpart in solar energy production. This article explores the factors behind the Netherlands' success in solar power generation and compares it to Canada's approach.
Solar Power Capacity and Policy Support
The Netherlands has rapidly expanded its solar power capacity in recent years, driven by a combination of favorable policies, technological advancements, and public…