Governor: Oregon could be electric car leader

By Associated Press


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Fresh from his Asian trade mission, Gov. Ted Kulongoski said that Oregon could be a prime market for the region's electric-only cars.

During his 10-day business trip, with stops in China and Japan, Kulongoski tried to woo the automakers into making Oregon one of their pilot sites as they introduce cars to the North American market.

While in Asia, the governor's office announced that Japanese automaker Nissan would supply electric cars for the state's fleet when they come to market in 2010.

No additional agreements were announced, though the governor said he spoke with other Asian automakers about how to make Oregon one of their first stops as they enter the market.

"This is now. It's doable," Kulongoski said. "I think Oregon is very well positioned."

Kulongoski pointed to Oregon's "environmental ethic" and "quality of life" as reasons that electric cars would do well in Oregon. He also mentioned several steps he'd like to make the state even more attractive.

Among those steps, the governor said, would be moving the current tax credits for those who buy hybrids to those who buy all-electric vehicles. He'd also like to expand residential energy tax credits to include the installation of home chargers. Finally, he said, Oregon could push to put charging stations in at rest stops along Interstate 5.

Already, the governor said, Portland is ahead of the curve in establishing charging stations. The same, he said, could be done in cities such as Eugene, Corvallis and Salem, where young people would likely take the lead in embracing the new technology.

What bringing electric cars to Oregon would mean for the state was still unclear, though the governor said it would help to attract green technology and industry. "It's more than just an environmental, it's about economics, it's about the future of the state," Kulongoski said, calling the industry a "tremendous opportunity for Oregon to diversify."

If Oregon were to be one of the first, Kulongoski said, the move would help further establish Oregon's credentials as a "green" leader.

Beyond simply converting Oregon into an electric-car market, Kulongoski said he also like to see the state as the location of future battery and car production sites for the companies he lobbied.

Related News

Investigation underway to determine cause of Atlanta Airport blackout

Atlanta Airport Power Outage disrupts Hartsfield-Jackson as an underground fire cripples switchgear redundancy, canceling flights during holiday travel; Georgia Power restores electricity overnight while utility crews probe causes and monitor system resilience.

 

Key Points

A major Hartsfield-Jackson blackout from an underground fire; power restored as switchgear redundancy is investigated.

✅ Underground fire near Plane Train tunnel damaged switchgear systems

✅ Over 1,100 flights canceled; holiday travel severely disrupted

✅ Georgia Power restored service; redundancy and root cause under review

 

Power has been restored at the world’s busiest airport after a massive outage Sunday afternoon left planes and passengers stranded for hours, forced airlines to cancel more than 1,100 flights and created a logistical nightmare during the already-busy holiday travel season.

An underground fire caused a complete power outage Sunday afternoon at Hartsfield-Jackson Atlanta International Airport, resulting in thousands of canceled flights at the world's busiest terminal and affecting travelers worldwide.

The massive outage didn’t just leave passengers stranded overnight Sunday, it also affected travelers with flights Monday morning schedules.

According to Paul Bowers, the president and CEO of Georgia Power,  “From our standpoint, we apologize for the inconvenience,” he said. The utility restored power to the airport shortly before midnight.

Utility Crews are monitoring the fixes that restored power and investigating what caused the fire and why it was able to damage redundant systems. Bowers said the fire occurred in a tunnel that runs along the path of the underground Plane Train tunnel near Concourse E.

Sixteen highly trained utility personnel worked in the passageway to reconnect the network.“Our investigation is going through the process of what do we do to ensure we have the redundancy going back at the airport, because right now we are a single source feed,” Bowers said.

“We will have that complete by the end of the week, and then we will turn to what caused the failure of the switchgear.”

Though the cause isn’t yet known, he said foul play is not suspected.“There are two things that could happen,” he said.

“There are inner workings of the switchgear that could create the heat that caused the fire, or the splicing going into that switchgear -- that the cable had a failure on that going into the switch gear.”

When asked if age of the system could have been a failure, Bowers said his company conducts regular inspections.“We constantly inspect,” he said. “We inspect on an annual basis to ensure the reliability of the network, and that redundancy is protection for the airport.”Bowers said he is not familiar with any similar fire or outage at the airport.

“The issue for us is to ensure the reliability is here and that it doesn’t happen again and to ensure that our network is resilient enough to withstand any kind of fire,” he said. He added that Georgia Power will seek to determine what can be done in the future to avoid a similar event, such as those experienced during regional outages in other communities.

 

Related News

View more

Parsing Ontario's electricity cost allocation

Ontario Global Adjustment and ICI balance hydro rates, renewable cost shift, and peak demand. Class A and Class B customers face demand response decisions amid pandemic occupancy uncertainty and volatile GA charges through 2022.

 

Key Points

A pricing model where GA costs and ICI peak allocation shape Class A/B bills, driven by renewables cost shifts.

✅ Renewable cost shift trims GA; larger Class A savings expected.

✅ Class A peak strategy returns; occupancy uncertainty persists.

✅ Class B faces volatile GA; limited levers beyond efficiency.

 

Ontario’s large commercial electricity customers can approach the looming annual decision about their billing structure for the 12 months beginning July 1 with the assurance of long-term relief on a portion of their costs, amid changes coming for electricity consumers that could affect planning. That’s to be weighed against uncertainties around energy demand and whether a locked-in cost allocation formula that looked favourable in pre-pandemic times will remain so until June 30, 2022.

“The biggest unknown is we just don’t know when the people are coming back,” Jon Douglas, director of sustainability with Menkes Property Management Services, reflected during a webinar sponsored by the Building Owners and Managers Association (BOMA) of Greater Toronto last week. “The occupancy in our office buildings this fall, and going into the new year, could really impact the outcome of the decision.”

After a year of operational upheaval and more modifications to provincial electricity pricing policies, BOMA Toronto’s regularly scheduled workshop ahead of the June 15 deadline for eligible customers to opt into the Industrial Conservation Initiative (ICI) program had a lot of ground to cover. Notably, beginning in January, all commercial customers have seen a reduction in the global adjustment (GA) component of their monthly hydro bills after the Ontario government shifted costs associated with contracted non-hydroelectric renewable supply to reduce the burden on industrial ratepayers from electricity rates to the general provincial account — a move that trims approximately $258 million per month from the total GA charged to industrial and commercial customers. However, they won’t garner the full benefit of that until 2022 since they’re currently repaying about $333 million in GA costs that were deferred in April, May and June of 2020.

Renewable cost shift pares the global adjustment
For now, Ontario government officials estimate the renewable cost shift equates to a 12 per cent discount relative to 2020 prices, even as typical bills may rise about 2% as fixed pricing ends in some cases. Once last year’s GA deferral is repaid at the end of 2021, they project the average Class A customer participating in the ICI program should realize a 16 per cent saving on the total hydro bill, while Class B customers paying the GA on a volumetric per kilowatt-hour (kWh) basis will see a slightly more moderate 15 per cent decrease.

“This is the biggest change to electricity pricing that’s happened since the introduction of ICI,” Tim Christie, director of electricity policy, economics and system planning for Ontario’s Ministry of Energy, Northern Development and Mines, told online workshop attendees. “The government is funding the out-of-market costs of renewables. It does tail off into the 2030s as those contracts (for wind, solar and biomass generation) expire, but over the next eight-ish years, it’s pretty steady at around just over $3 billion per year.”

Extrapolating from 2020 costs, he pegged average electricity costs at roughly 9.1 cents/kWh for Class A commercial customers and 13.2 cents/kWh for Class B, a point of concern for Ontario manufacturers facing high rates as well. However, energy management specialists suggest actual 2021 numbers haven’t proved that out.

“In commercial buildings, we’re averaging 10 to 12 cents for Class A in 2021, and we’re seeing more than that for about 14, 15 cents for Class B,” reported Scott Rouse, managing partner with the consulting firm, Energy@Work.

GA costs for Class B customers dropped nearly 30 per cent in the first four months of 2021 compared to the last four months of 2020, when they averaged 11.8 cents/kWh. Thus far, though, there have been significant month-to-month fluctuations, with a low of 5.04 cents/kWh in February and a high of 10.9 cents/kWh in April contributing to the four-month average of 8.3 cents/kWh.

“In 2020, system-wide GA very often averaged more than $1 billion per month,” Rouse said. “This February it dropped to $500 million, which was really quite surprising. So it is a very volatile cost.”

Although welcome, the renewable cost shift does alter the payback on energy-saving investments, particularly for demand response mechanisms like energy storage. When combined with pandemic-related uncertainty and a series of policy and program reversals alongside calls to clean up Ontario’s hydro policy in recent years, the industry’s appetite for some more capital-intensive technologies appears to be flagging.

“Volatility puts a pause on some of the innovation,” said Terry Flynn, general manager with BentallGreenOak and chair of BOMA Toronto’s energy committee. “It could be a leading edge, but it might be a bleeding edge that won’t bear any fruit because the way the commodity costs are structured will change.”

“There’s kind of a wait-and-see approach on some of these bigger investments,” Douglas concurred.

Industrial Conservation Initiative underpins commercial class divide
Turning to the ICI, Class A customers — defined as those with average monthly energy demand of at least 1 megawatt (MW) — encountered some unexpected changes to the program rules during 2020. Meanwhile, Class B customers — encompassing the vast share of commercial properties smaller than about 350,000 square feet — confront the persistent reality of electricity cost allocation that offloads the burden from larger players onto them.

Through the ICI, participating Class A customers pay a share of the global adjustment that’s prorated to their energy use during the five hours of the period from May 1 to April 30 when the highest overall system demand is recorded. This gives Class A customers the opportunity to lock in a favourable factor for calculating their share of monthly system-wide global adjustment costs if they can successful project and curtail energy loads during those five hours of peak demand. On the flipside, Class B customers pay the remainder of those system-wide costs, on a straightforward per-kWh basis, once Class A payments have been reconciled.

“Class B has sometimes been regarded as the forgotten middle child of the customer classes in Ontario where all the shifted costs in the system kind of pile up,” acknowledged Mark Olsheski, vice president, energy and environment, with Sussex Strategy Group. “Likewise, there can be big unpredictable and uncontrollable swings in the global adjustment rate from month to month and, outside of pure energy efficiency, there really is precious little opportunity or empowerment for a Class B customer to take actions to lower their bills.”

Nevertheless, COVID-19 presents a few extra hiccups for Class A customers this year. Conventionally, late May is when they receive notification of the cost allocation factor that would be used to determine their GA for the upcoming July 1 to June 30 period. This year, though, all current ICI participants will retain the factor they secured by responding to the five hours of peak demand during the 12 months from May 1, 2019 to April 30, 2020 after the Ontario government placed a temporary halt on the peak demand response aspect of the program last summer. Regardless, eligible ICI participants must formally opt into the program by June 15 or they will be billed as Class B customers.

Peak chasing resumes for summer 2021
Since peak demand hours conventionally occur from June to September, Class A customers will once again be studying forecasts intently and preparing to respond via Peak Perks as the heat wave season sets in. That should help alleviate some of the system stresses that arose last summer — prompting policy-makers to reject lobbying for a continued pause on peak demand response.

“The policy rationale was to allow consumers to focus on their operations when recovering from COVID as opposed to reducing peaks. The other issue was that we did not expect the peaks to be high last summer given COVID shutdowns,” Christie recounted. “But due to some hot weather, more people at home and also the lack of ICI response, we saw peaks we haven’t seen in many, many years come up last summer. So the peak hiatus has ended and this summer we’ll be back to responding to ICI as per normal.”

Among Class A customers, owners/managers of office and retail facilities generally have the most to lose from a billing formula tied to the energy demand of more densely occupied buildings in the summer of 2019. However, they could be much more competitively positioned for 2022-23 if their buildings remain below full occupancy and energy demand stays lower than usual this summer.

“Where we can improve is the IESO (Independent Electricity System Operator) and the LDCs (local distribution companies) need to help customers get their real-time data, especially in light of the phantom demand issue, interpret their bills and their Class A versus B scenarios much more easily and comprehensively,” urged Lee Hodgkinson, vice president, technical services, sustainability and ESG, with Dream Unlimited. “ I look for APIs (application programming interface) and direct data flow from the LDCs to the building owners so that we can access that data really easily.”

Given Class A’s historic advantages, few eligible ICI participants are expected to migrate out to Class B. From a sustainability perspective, there’s perhaps more cause to question how the ICI’s 1-MW threshold encourages strategies to move in the other direction.

“You could jack up demand in some buildings and get them into Class A basically by firing up the chillers on the weekend and then pouring cooling outside to get rid of it,” Douglas noted. “That has nothing to do with climate change strategy or sustainability, but it’s a cost- saving strategy, and, sometimes, when you look at the math, it’s hundreds of thousands of dollars you can save.”

Brian Hewson, vice president, consumer protection and industry performance with the Ontario Energy Board (OEB), confirmed the OEB is currently scrutinizing the discrepancy that leaves Class B as the only consumer group with no flexibility to curtail energy load during higher-priced periods, and will be providing advice to the Ministry of Energy. In the interim, that status does, at least, simplify tactics.

“Just reduce your kWh and it doesn’t matter what time of day because you’re paying that fixed rate for 24 hours a day. So if you can curb your demand at night, you get a big bang for your dollar,” Rouse advised.

“We do talk about rates a lot, but if you’re not using it, you’re not paying for it,” Flynn agreed. “A lot of our focus is still on really to try to reduce the number of kilowatts that we use. That seems to be the best thing to do.”

 

Related News

View more

Government of Canada Invests in the Future of Work in Today's Rapidly Changing Electricity Sector

EHRC National Occupational Standards accelerate workforce readiness for smart grids, renewable energy, digitalization, and automation, aligning skills, reskilling, upskilling across the electricity sector with a career portal, labour market insights, and emerging jobs.

 

Key Points

Industry benchmarks from EHRC defining skills, training, and competencies for Canada's evolving electricity workforce.

✅ Aligns skills to smart grids, renewable energy, and automation

✅ Supports reskilling, upskilling, and career pathways

✅ Informs employers with labour market intelligence

 

Smart grids, renewable electricity generation, automation, carbon capture and storage, and electric vehicles are transforming the traditional electricity industry. Technological innovation is reshaping and reinventing the skills and occupations required to support the electrical grid of the 21st century, even as pandemic-related grid warnings underscore resilience needs.

Canada has been a global leader in embracing and capitalizing on drivers of disruption and will continue to navigate the rapidly changing landscape of electricity by rethinking and reshaping traditional occupational standards and skills profiles.

In an effort to proactively address the needs of our current and future labour market, building on regional efforts like Nova Scotia energy training to enhance participation, Electricity Human Resources Canada (EHRC) is pleased to announce the launch of funding for the new National Occupational Standards (NOS) and Career Portal project. This project will explore the transformational impact of technology, digitalization and innovation on the changing nature of work in the sector.

Through this research a total of 15 National Occupational Standards and Essential Skills Profiles will be revised or developed to better prepare jobseekers, including young Canadians interested in electricity to transition into the electricity sector. Occupations to be covered include:

  • Electrical Engineering Technician/ Technologist
  • Power Protection and Control Technician/ Technologist
  • Power Systems Operator
  • Solar Photovoltaic Installer
  • Power Station Operator
  • Wind Turbine Technician
  • Geothermal Heat Pump Installer
  • Solar Thermal Installer
  • Utilities Project Manager
  • Heat Pump Designer
  • Small System Designer (Solar)
  • Energy Storage Technician
  • Smart Grid Specialist
  • 2 additional occupations TBD

The labour market intelligence gathered during the research will examine current occupations or job functions facing change or requiring re-skilling or up-skilling, including specialized courses such as arc flash training in Vancouver that bolster safety competencies, as well as entirely emerging occupations that will require specialized skills.

This project is funded in part by the Government of Canada’ Sectoral Initiative Program and supports its goal to address current and future skills shortages through the development and distribution of sector-specific labour market information.

“Canada’s workforce must evolve with the changing economy. This is critical to building the middle class and ensuring continued economic growth. Our government is committed to an evidence-based approach and is focused on helping workers to gain valuable work experience and the skills they need for a fair chance at success. By collaborating with partners like Electricity Human Resources Canada, we can ensure that we are empowering workers today, and planning for the jobs of tomorrow.” – The Honourable Patty Hajdu, Minister of Employment, Workforce Development and Labour

“By encouraging the adoption of new technologies and putting in place the appropriate support for workers, Canada can minimize both skills shortages and technological unemployment. A long-term strategic and national approach to human resource planning and training is therefore critical to ensuring that we continue to maintain the level of growth, reliability, safety and productivity in the system – with a workforce that is truly inclusive and diverse.” – Michelle Branigan, CEO, EHRC.

“The accelerated pace of change in our sector, including advancements in technology and innovation will also have a huge impact on our workforce. We need to anticipate what those impacts will be so employers, employees and job seekers alike can respond to the changing structure of the sector and future job opportunities.” – Jim Kellett, Board Chair, EHRC.

About Electricity Human Resources Canada

EHRC helps to build a better workforce by strengthening the ability of the Canadian electricity industry to meet current and future needs for a highly skilled, safety-focused, diverse and productive workforce by addressing the electrical safety knowledge gap that can lead to injuries.

 

Related News

View more

In North Carolina, unpaid electric and water bills are driving families and cities to the financial brink

North Carolina Utility Arrears Crisis strains households and municipal budgets as COVID-19 cuts jobs; unpaid utility bills mount, shutoffs loom, and emergency aid, unemployment benefits, and CARES Act relief lag behind rising arrears across cities.

 

Key Points

A COVID-19 driven spike in unpaid utility bills, threatening households and municipal budgets as federal aid lapses.

✅ 1 million families behind on power, water, sewage bills

✅ $218M arrears accrued April to June, double last year

✅ Municipal utilities face shutoffs, budget shortfalls

 

As many as 1 million families in North Carolina have fallen behind on their electric, water and sewage bills, a sign of energy insecurity threatening residents and their cities with severe financial hardship unless federal lawmakers act to approve more emergency aid.

The trouble stems from the widespread economic havoc wrought by the coronavirus, which has left millions of workers out of a job and struggling to cover their monthly costs as some states moved to suspend utility shut-offs to provide relief. Together, they’ve been late or missed a total of $218 million in utility payments between April 1 and the end of June, according to data released recently by the state, nearly double the amount in arrears at this time last year.

In some cases, cities that own or operate their own utilities have been forced to absorb these losses, as some utilities reconnected customers to prevent harm, creating a dire situation in which the government’s attempt to save people from the financial brink instead has pushed municipal coffers to their own breaking point.

In Elizabeth City, N.C., for example, about 2,500 residents haven’t paid their electric bills on time, according to Richard Olson, the city manager. The late payments at one point proved so problematic that Olson said he calculated Elizabeth City wouldn’t have enough money to pay for its expenses in July. In response, city leaders requested and obtained a waiver from a statewide order, similar to New York’s disconnection moratorium, issued in March, that protects people from being penalized for their past-due utility bills.

The predicament has presented unique budget challenges throughout North Carolina, while illustrating the consequences of a cash crunch plaguing the entire country, where proposals such as a Texas electricity market bailout surfaced following severe grid stress. State and federal leaders have extended a range of coronavirus relief programs since March to try to help people through the pandemic. But the money is limited and restricted — and it’s not clear whether more help from Congress is on the way — creating a crisis in which the nation’s economic woes are outpacing some of the aid programs adopted to combat them.

“We are entering a phase where the utilities [may] be able to shut off power, but what was propping up people’s economic lives, the unemployment benefits and Cares Act support, won’t be there,” said Paul Meyer, the executive director of the North Carolina League of Municipalities.

White House, GOP in disarray over coronavirus spending plan as deadline nears on expiring emergency aid

The future of that safety-net support — and other federal aid — hangs in the balance as lawmakers returned to work this week in their final sprint ahead of the August recess. The White House and congressional leaders are split over the contours of the next coronavirus relief package, including the need to extend more aid to cities and states as some utilities have waived fees to help customers, and reauthorize an extra $600 in weekly unemployment payments that were approved as part of the Cares Act in March.

Outside Washington, workers, businesses and government officials nationwide have pleaded with federal lawmakers to renew or expand those programs. Last week, Roy Cooper, the Democratic governor of North Carolina, urged Congress to act swiftly and adopt a wide array of new federal spending, including proposals for DOE nuclear cleanup funding, stressing in a letter that the “actions you take in the next few weeks are vital to our ability to emerge from this crisis. ”

 

Related News

View more

GM president: Electric cars won't go mainstream until we fix these problems

Electric Vehicle Adoption Barriers include range anxiety, charging infrastructure, and cost parity; consumer demand, tax credits, lithium-ion batteries, and performance benefits are accelerating EV uptake, pushing SUVs and self-driving tech toward mainstream mobility.

 

Key Points

They are the key hurdles to mainstream EV uptake: range anxiety, sparse charging networks, and high upfront costs.

✅ Range targets of 300+ miles reduce anxiety and match ICE convenience

✅ Expanded home, work, and public charging speeds adoption

✅ Falling battery costs and incentives drive price parity

 

The automotive industry is hurtling toward a future that will change transportation the same way electricity changed how we light the world. Electric and self-driving vehicles will alter the automotive landscape forever — it's only a question of how soon, and whether the age of electric cars arrives ahead of schedule.

Like any revolution, this one will be created by market demand.
Beyond the environmental benefit, electric vehicle owners enjoy the performance, quiet operation, robust acceleration, style and interior space. And EV owners like not having to buy gasoline. We believe the majority of these customers will stay loyal to electric cars, and U.S. EV sales are soaring into 2024 as this loyalty grows.

But what about non-EV owners? Will they want to buy electric, and is it time to buy an electric car for them yet? About 25 years ago, when we first considered getting into the electric vehicle business with a small car that had about 70 miles of range, the answer was no. But today, the results are far more encouraging.

We recently held consumer clinics in Los Angeles and Chicago and presented people with six SUV choices: three gasoline and three electric. When we asked for their first choice to purchase, 40% of the Chicago respondents chose an electric SUV, and 45% in LA did the same. This is despite a several thousand-dollar premium on the price of the electric models, and despite that EV sales still lag gas cars nationally today, consumer interest was strong (but also before crucial government tax credits that we believe will continue to drive people toward electric vehicles and help fuel market demand).

They had concerns, to be sure. Most people said they want vehicles that can match gasoline-powered vehicles in range, ease of ownership and cost. The sooner we can break down these three critical barriers, the sooner electric cars will become mainstream.

Range
Range is the single biggest barrier to EV acceptance. Just as demand for gas mileage doesn't go down when there are more gas stations, demand for better range won't ease even as charging infrastructure improves. People will still want to drive as long as possible between charges.

Most consumers surveyed during our clinics said they want at least 300 miles of range. And if you look at the market today, which is driven by early adapters, electric cars have hit an inflection point in demand, and the numbers bear that out. The vast majority of electric vehicles sold — almost 90% — are six models with the highest range of 238 miles or more — three Tesla models, the Chevrolet Bolt EV, the Hyundai Kona and the Kia Niro, according to IHS Markit data.

Lithium-ion batteries, which power virtually all electric cars on the road today, are rapidly improving, increasing range with each generation. At GM, we recently announced that our 2020 Chevrolet Bolt EV will have a range of 259 miles, a 21-mile improvement over the previous model. Range will continue to improve across the industry, and range anxiety will dissipate.

Charging infrastructure
Our research also shows that, among those who have considered buying an electric vehicle, but haven't, the lack of charging stations is the number one reason why.

For EVs to gain widespread acceptance, manufacturers, charging companies, industry groups and governments at all levels must work together to make public charging available in as many locations as possible. For example, we are seeing increased partnership activity between manufacturers and charging station companies, as well as construction companies that build large infrastructure projects, as the American EV boom approaches, with the goal of adding thousands of additional public charging stations in the United States.

Private charging stations are just as important. Nearly 80% of electric vehicle owners charge their vehicles at home, and almost 15% at work, with the rest at public stations, our research shows. Therefore, continuing to make charging easy and seamless is vital. To that end, more partnerships with companies that will install the chargers in consumers' homes conveniently and affordably will be a boon for both buyers and sellers.

Cost
Another benefit to EV ownership is a lower cost of operation. Most EV owners report that their average cost of operation is about one-third of what a gasoline-powered car owner pays. But the purchase price is typically significantly higher, and that's where we should see change as each generation of battery technology improves efficiency and reduces cost.

Looking forward, we think electric vehicle propulsion systems will achieve cost parity with internal combustion engines within a decade or sooner, and will only get better after that, driving sticker prices down and widening the appeal to the average consumer. That will be driven by a number of factors, including improvements with each generation of batteries and vehicles, as well as expected increased regulatory costs on gasoline and diesel engines.

Removing these barriers will lead to what I consider the ultimate key to widespread EV adoption — the emergence of the EV as a consumer's primary vehicle — not a single-purpose or secondary vehicle. That will happen when we as an industry are able to offer the utility, cost parity and convenience of today's internal combustion-based cars and trucks.

To get the electric vehicle to first-string status, manufacturers simply must make it as good or better than the cars, trucks and crossovers most people are used to driving today. And we must deliver on our promise of making affordable, appealing EVs in the widest range of sizes and body styles possible. When we do that, electric vehicle adoption and acceptance will be widespread, and it can happen sooner than most people think.

Mark Reuss is president of GM. The opinions expressed in this commentary are his own.

 

Related News

View more

Electricity exports to New York from Quebec will happen as early as 2025: Hydro-Quebec

Hertel-New York Interconnection delivers Hydro-Quebec renewable energy via a cross-border transmission line to New York City by 2025, supplying 1,250 MW through underground and underwater routes under a 25-year contract.

 

Key Points

A cross-border line delivering 1,250 MW of Hydro-Quebec hydropower to New York City via underground routes.

✅ 1,250 MW clean power to NYC by 2025

✅ 56.1 km underground, 1.6 km underwater in Quebec

✅ 25-year contract; Mohawk partnership revenue

 

Hydro-Quebec announced Thursday it has chosen the route for the Hertel-New York interconnection line, which will begin construction in the spring of 2023 in Quebec.

The project will deliver 1,250 megawatts of Quebec hydroelectricity to New York City starting in 2025, even as a recent electricity shortage report warns about rising demand at home.

It's a 25-year contract for Hydro-Quebec, the largest export contract for the province-owned company, and comes as hydrogen production investments gain traction in Eastern Canada.

The Crown corporation has not disclosed potential revenues from the project, but Premier François Legault mentioned on social media last September that a deal in principle worth more than $20 billion over 25 years was in the works.

The route includes a 56.1-kilometre underground and a 1.6-kilometre underwater section, similar to the Lake Erie Connector project planned under Lake Erie.

Eight municipalities in the Montérégie region will be affected: La Prairie, Saint-Philippe, Saint-Jacques-le-Mineur, Saint-Édouard, Saint-Patrice-de-Sherrington, Saint-Cyprien-de-Napierville, Saint-Bernard-de-Lacolle and Lacolle.

Across the country, new renewables such as wind projects in Yukon are receiving federal support, reflecting broader grid decarbonization.

The last part of the route will run along Fairbanks Creek to the Richelieu River, where it will connect with the American network.

Further south, there will be a 545-kilometre link between the Canada-U.S. border and New York City, while a separate Maine transmission approval advances a New England pathway for Quebec power.

Hydro-Quebec is holding two consultations on the project, on Dec. 8 in Lacolle and Dec. 9 in Saint-Jacques-le-Mineur.

Elsewhere in Atlantic Canada, EV-to-grid integration pilots are underway to test how vehicles can support the power system.

Once the route is in service, the Quebec line will be subject to a partnership between Hydro-Quebec and the Mohawk Council of Kahnawake, which will benefit from economic remunerations for 40 years.

To enhance reliability, grid-scale battery storage projects are also expanding in Ontario.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified