Netherlands records 40% increase in cogeneration

By Industrial Info Resources


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
According to a report issued this month by the Netherlands' official government statistical information bureau, the amount of electricity generated from combined heat and power (CHP) plants in the country increased 40% from 1998 through 2008.

In CHP plants — also known as cogeneration or cogen plants — heat generated from the combustion of fossil fuels such as coal, oil or gas is also used for other purposes such as space heating or as process heat for manufacturing. Recovering and reusing heat, which is otherwise wasted, can reduce the use of fossil fuels and emission of greenhouse gases. For example, during the 10-year period ending 2008, the total amount of electricity and heat produced increased 15%, while the amount of fossil fuels consumed rose only 10%.

In 1998, CHP plants produced about 49 billion kilowatt-hours (kWh) of electricity. By 2008, the figure had risen to 61 billion kWh. During the same period, the total amount of electricity generated in the Netherlands grew from 92 billion kWh to 108 billion kWh. In comparison, the amount of electricity produced from wind power systems increased significantly, from 600 million kWh in 1998 to 4.3 billion kWh.

The Netherlands has set very ambitious targets for energy production and the reduction in greenhouse gas emissions to be achieved by 2020. The government proposes to reduce greenhouse gas emissions by 30% from 1990 levels and produce 14% of its energy mix from renewable sources by 2020. With renewable sources accounting for only 2.4% of the current energy mix, achieving the latter target could prove difficult.

Another challenging target set by the Netherlands government is to improve annual energy efficiency 2% by 2020. This is the area in which CHP plants will help the Netherlands. The main advantage of a CHP plant is increased efficiency. On average, a coal-fired power plant has an efficiency of about 33%, while a natural-gas-fired plant can convert up to 65% of the fuel to usable energy. A typical CHP plant, however, can achieve efficiency ratings of between 75% and 90%.

It has been estimated that slightly more than 8% of the world's electricity is produced from CHP plants. As of 2008, global CHP power generating capacity was about 325,000 MW. Within Europe, approximately 11% of electricity is generated from CHP plants, with the highest CHP activity found in Denmark, Finland and the Netherlands.

One of the more interesting applications of CHP in the Netherlands is the Royal Pride Holland Commercial Greenhouse Cogeneration Plant (Middenmeer). This commercial tomato greenhouse, located about 50 kilometers north of Amsterdam, is one of the Netherlands' largest commercial greenhouses and uses cogeneration to produce an impressive 95% overall energy utilization. This is achieved by using waste heat from gas turbine generators to provide warmth to the 45-hectare greenhouse site. At the same time, carbon dioxide is captured from the exhaust gases and used to stimulate plant growth.

Related News

UK National Grid Commissions 2GW Substation

UK 2-GW Substation strengthens National Grid power transmission in Kent, enabling offshore wind integration, voltage regulation, and grid modernization to meet rising electricity demand and support the UK energy transition with resilient, reliable infrastructure.

 

Key Points

National Grid facility in Kent that steps voltage, regulates power, and connects offshore wind to strengthen UK grid.

✅ Adds 2 GW capacity to meet rising electricity demand

✅ Integrates offshore wind farms into transmission network

✅ Improves reliability, voltage control, and grid resilience

 

The United Kingdom has strengthened its national power grid with the commissioning of a major new 2-gigawatt capacity substation in Kent. This massive project, a key part of the National Grid's ongoing efforts to modernize and expand power transmission infrastructure, including plans to fast-track grid connections across critical projects, will play a critical role in supporting the UK's energy transition and growing electricity demands.


What is a Substation?

Substations are vital components of electricity grids. They serve as connection points, transforming high voltage electricity from power plants to lower voltages suitable for homes and businesses. They also help to regulate voltage levels, and, where appropriate, interface with expanding HVDC technology initiatives, ensuring stable electricity delivery.  Modern substations often act as hubs, supporting the integration of renewable power sources with the main electricity network.


Why This Substation Is Important

The new 2-gigawatt capacity substation is significant for several reasons:

  • Expanding Capacity: It adds significant capacity to the UK's grid, enabling the transmission of large amounts of electricity to where it's needed. This capacity boost is crucial for supporting growing electricity demand as the UK shifts its energy mix towards renewable sources.
  • Integrating Renewables: The substation will aid in integrating substantial amounts of offshore wind power, as projects like the Scotland-England subsea link illustrate, helping the UK achieve its ambitious clean energy goals. Offshore wind farms are a booming source of renewable energy in the UK, and ensuring reliable connections to the grid is essential in maximizing their potential.
  • Future-Proofing the Grid: The newly commissioned substation helps bolster the reliability and resilience of the UK's power transmission network, where reducing losses with superconducting cables could further enhance efficiency. It will play a key role in securing electricity supplies as older power plants are decommissioned and renewable energy sources become more dominant.


A Landmark Project

The commissioning of this substation is a major achievement for the National Grid, amid an independent operator transition underway in the sector, and UK energy infrastructure upgrades. The sheer scale of the project required extensive planning and collaboration with various stakeholders, underscoring the complexity of upgrading the nation's power grid to meet future needs.


The Path Towards a Cleaner Grid

The new substation is not an isolated project. It is part of a broader, multi-year effort by the National Grid to modernize and expand the country's power grid.  This entails building new transmission lines and urban conduits such as London's newest electricity tunnel now in service, investing in storage technologies, and adapting infrastructure to accommodate the shift towards distributed energy generation, where power is generated closer to the point of use.


Beyond Substations

While projects like the new 2-gigawatt substation are crucial, ensuring a successful energy transition requires more than just infrastructure upgrades. Continued support for renewable energy development, highlighted by recent offshore wind power milestones that demonstrate grid-readiness, investment in emerging energy storage solutions, and smart grid technology that leverages data for effective grid management are all important components of building a cleaner and more resilient energy future for the UK.

 

Related News

View more

Hydro Quebec to increase hydropower capacity to more than 37,000 MW in 2021

Hydro Quebec transmission expansion aims to move surplus hydroelectric capacity from record reservoirs to the US grid via new interties, increasing exports to New England and New York amid rising winter peak demand.

 

Key Points

A plan to add capacity and intertie links to export surplus hydro power from Quebec's reservoirs to the US grid.

✅ 245 MW added in 2021; portfolio reaches 37,012 MW

✅ Reservoirs at unprecedented levels; export potential high

✅ Lacks US transmission; working on new interties

 

Hydro Quebec plans to add an incremental 245 MW of hydro-electric generation capacity in 2021 to its expansive portfolio in the north of the province, while Quebec authorized nearly 1,000 MW for industrial projects across the region, bringing the total capacity to 37,012 MW, an official said Friday

Quebec`s highest peak demand of 39,240 MW occurred on January 22, 2014.

A little over 75% of Quebec`s population heat their homes with electricity, Sutherland said, aligning with Hydro Quebec's strategy to wean the province off fossil fuels over time.

The province-owned company produced 205.1 TWh of power in 2017 and its net exports were 34.4 TWh that year, while Ontario chose not to renew a power deal in a separate development.

Sutherland said Hydro Quebec`s reservoirs are currently at "unprecedented levels" and the company could export more of its electricity to New England and New York, but faces transmission constraints that limit its ability to do so.

Hydro Quebec is working with US transmission developers, electric distribution companies, independent system operators and state government agencies to expand that transmission capacity in order to delivery more power from its hydro system to the US, Sutherland said.

Separately, NB Power signed three deals to bring more Quebec electricity into the province, reflecting growing regional demand.

The last major intertie connection between Quebec and the US was completed close to 30 years ago. The roughly 2,000 MW capacity transmission line that connects into the Boston area was completed in the late 1990s, according to Hydro Quebec spokeswoman Lynn St-Laurent.

 

Related News

View more

TransAlta Scraps Wind Farm as Alberta's Energy Future Blusters

Alberta Wind Energy Policy Changes highlight TransAlta's Riplinger cancellation amid UCP buffer zones for pristine viewscapes, regulatory uncertainty, and market redesign debates, reshaping Alberta's renewables investment climate and clean energy diversification plans.

 

Key Points

UCP rules and market shifts reshaping wind siting, permits, and finance, increasing uncertainty and delays for new projects.

✅ 35-km buffer near pristine viewscapes limits wind siting

✅ TransAlta cancels 300 MW Riplinger project

✅ Market redesign uncertainty chills renewables investment

 

The winds of change are blowing through Alberta's energy landscape today, and they're not necessarily carrying good news for renewable energy development. TransAlta, a major Canadian energy company, recently announced the cancellation of a significant wind farm project, citing a confluence of factors that create uncertainty for the future of wind power in the province. This decision throws a spotlight on the ongoing debate between responsible development and fostering a clean energy future in Alberta.

The scrapped project, the Riplinger wind farm near Cardston, Alberta, was envisioned as a 300-megawatt facility capable of providing clean electricity to the province. However, TransAlta pointed to recent regulatory changes implemented by the United Conservative Party (UCP) government, following the end of the renewable energy moratorium in Alberta, as a key reason for the project's demise. These changes include the establishment of a 35-kilometer buffer zone around designated "pristine viewscapes," which significantly restricts potential wind farm locations.

John Kousinioris, CEO of TransAlta, expressed frustration with the lack of clarity surrounding the future of renewable energy policy in Alberta. He highlighted this, along with the aforementioned rule changes, as major factors in the project's cancellation. TransAlta has also placed three other power projects on hold, indicating a broader concern about the current investment climate for renewable energy in the province.

The news has been met with mixed reactions. While some residents living near the proposed wind farm site celebrate the decision due to concerns about potential impacts on tourism and the environment, others worry about the implications for Alberta's clean energy ambitions, including renewable energy job growth in the province. The province, a major energy producer in Canada, has traditionally relied heavily on fossil fuels, and this decision might be seen as a setback for its goals of diversifying its energy mix.

The Alberta government defends its changes to renewable energy policy, arguing that they are necessary to ensure responsible development and protect sensitive ecological areas. However, the TransAlta decision raises questions about the potential unintended consequences of these changes. Critics argue that the restrictions might discourage investment in renewable energy and the province's ability to sell clean power to wider markets altogether, hindering Alberta's progress towards a more sustainable future.

Adding to the uncertainty is the ongoing process of redesigning Alberta's energy market. The aim is to incorporate more renewable energy sources, including solar energy expansion across the grid, but the details of this redesign remain unclear. This lack of transparency makes it difficult for companies like TransAlta to make sound investment decisions, further dampening enthusiasm for renewable energy projects.

The future of wind energy development in Alberta remains to be seen. TransAlta's decision to scrap the Riplinger project is a significant development, and it will be interesting to observe how other companies respond to the changing regulatory landscape, as a Warren Buffett-linked developer pursues a $200 million wind project in Alberta. Striking a balance between responsible development, protecting the environment, and fostering a clean energy future will be a crucial challenge for Alberta moving forward.

This situation highlights the complex considerations involved in transitioning to a renewable energy future, where court rulings on wind projects can influence policy and investment decisions. While environmental concerns are paramount, ensuring a stable and predictable investment climate is equally important. Open communication and collaboration between industry, government, and stakeholders will be key to navigating these challenges and ensuring Alberta can harness the power of wind energy for a sustainable future.

 

Related News

View more

UK price cap on household energy bills expected to cost 89bn

UK Energy Price Guarantee Cost forecasts from Cornwall Insight suggest an £89bn bill, tied to wholesale gas prices, OBR projections, and fiscal policy, to shield households amid the cost of living crisis.

 

Key Points

It is the projected government spend to cap household bills, driven by wholesale gas prices and OBR market forecasts.

✅ Base case: £89bn over two years, per Cornwall Insight

✅ Range: £72bn to £140bn, volatile wholesale gas costs

✅ Excludes 6-month business support estimated at £22bn-£48bn

 

Liz Truss’s intervention to freeze energy prices for households for two years is expected to cost the government £89bn, according to the first major costing of the policy by the sector’s leading consultancy.

The analysis from Cornwall Insight, seen exclusively by the Guardian, shows the prime minister’s plan to tackle the cost of living crisis could cost as much as £140bn in a worst-case scenario.

Truss announced in early September that the average annual bill for a typical household would be capped at £2,500 to protect consumers from the intensifying cost of living crisis amid high winter energy costs and a scheduled 80% rise in the cap to £3,549.

The ultimate cost of the policy is uncertain as it is highly dependent on the wholesale cost of gas, including UK natural gas prices which have soared since Russia’s invasion of Ukraine put a squeeze on already-volatile international markets. Ballpark projections had put the cost anywhere from £100bn to £150bn.

The Office for Budget Responsibility is expected to give its forecast for the bill when it provides its independent assessment of Kwasi Kwarteng’s medium-term fiscal plan, which the chancellor said on Tuesday would still happen on 23 November despite previous reports that it would be brought forward.

Cornwall Insight analysed projections of wholesale market moves to cost the intervention. In its base case scenario, analysts expect the policy to cost £89bn. That assumes the cost of supporting each household would be just over £1,000 in the first year, and about £2,000 in the second year.

The study’s authors said the wholesale price of gas would be influenced by energy demand, the severity of weather, “geo-political uncertainty” and prices for liquified natural gas as Europe seeks to refill storage facilities, which countries have rushed to fill up this winter but which could be relatively empty by next spring.

In the best-case outcome, the policy would cost £72bn, with some projections pointing to a 16% decrease in energy bills in April for households, while the “extreme high” outlook would see the government shell out £140bn to protect 29m UK households.

Gas prices are expected to push even higher if the Kremlin decides to completely cut off Russian gas exports into Europe.

Cornwall Insight’s projection does not include a separate six-month initiative to cap costs for companies, charities and public sector organisations, which is forecast to cost £22bn to £48bn.

The consultancy’s chief executive, Gareth Miller, said the £70bn range in its forecasts reflected “a febrile wholesale market continuing to be beset by geopolitical instability, sensitivity to demand, weather and infrastructure resilience”.

He said: “Fortune befriends the bold, but it also favours the prepared. The large uncertainties around commodity markets over the next two years means that the government could get lucky with costs coming out at the low end of the range, but the opposite could also be true.

“In each case, the government may find itself passengers to circumstances outside its control, having made policy that is a hostage to surprises, events and volatile factors. That’s a difficult position to be in.”

Privacy Notice: Newsletters may contain info about charities, online ads, and content funded by outside parties. For more information see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.
The government has faced criticism, as some British MPs urge tighter limits on prices, that the policy is effectively a “blank cheque” and is not targeted at the most vulnerable in society.

Concerns over how Truss and Kwarteng intend to fund a series of measures, including the price guarantee, have spooked financial markets.

The EU, which has outlined possible gas price cap strategies in recent proposals, said last week it planned to cap the revenues of low-carbon electricity generators at €180 a megawatt hour, which is less than half current market prices. Truss has so far resisted calls to extend a levy on North Sea oil and gas operators to electricity generators, who have benefited from a link between gas and electricity prices in Britain.

Truss hopes to strike voluntary long-term deals with generators including Centrica and EDF, alongside the government’s Energy Security Bill measures, to bring down wholesale prices.

The Financial Times reported on Tuesday that the government has threatened companies with legislation to cap their revenues if voluntary deals cannot be agreed.

 

Related News

View more

Cryptocurrency firm in Plattsburgh fights $1 million electric charge

Coinmint Plattsburgh Dispute spotlights cryptocurrency mining, hydropower electricity rates, a $1M security deposit, Public Service Commission rulings, municipal utility policies, and seasonal migration to Massena data centers as Bitcoin price volatility pressures operations.

 

Key Points

Legal and energy-cost dispute over crypto mining, a $1,019,503 deposit, and operations in Plattsburgh and Massena.

✅ PSC allows higher rates and requires large security deposits.

✅ Winter electricity spikes drove a $1M deposit calculation.

✅ Coinmint shifted capacity to Massena data centers.

 

A few years ago, there was a lot of buzz about the North Country becoming the next Silicon Valley of cryptocurrency, even as Maine debated a 145-mile line that could reshape regional power flows. One of the companies to flock here was Coinmint. The cryptomining company set up shop in Plattsburgh in 2017 and declared its intentions to be a good citizen.

Today, Coinmint is fighting a legal battle to avoid paying the city’s electric utility more than $1 million owed for a security deposit. In addition to that dispute, a local property manager says the firm was evicted from one of its Plattsburgh locations.

Companies like Coinmint chose to come to the North Country because of the relatively low electricity prices here, thanks in large part to the hydropower dam on the St. Lawrence River in Massena, and regionally, projects such as the disputed electricity corridor have drawn attention to transmission costs and access. Coinmint operates its North Country Data Center facilities in Plattsburgh and Massena. In both locations, racks of computer servers perform complex calculations to generate cryptocurrency, such as bitcoin.

When cryptomining began to take off in Plattsburgh, the cost of one bitcoin was skyrocketing. That brought hype around the possibility of big business and job creation in the North Country. But cryptomininers like Coinmint were using massive amounts of energy in the winter of 2017-2018, and that season, electric bills of everyday Plattsburgh residents spiked.

Many cryptomining firms operate in a state of flux, beholden to the price of Bitcoin and other cryptocurrencies, even as the end to the 'war on coal' declaration did little to change utilities' choices. When the price of one bitcoin hit $20,000 in 2017, it fell by 30% just days later. That’s one reason why the price of electricity is so critical for companies like Coinmint to turn a profit. 

Plattsburgh puts the brakes on “cryptocurrency mining”
In early 2018, Plattsburgh passed a moratorium on cryptocurrency mining operations, after residents complained of higher-than-usual electric bills.

“Your electric bill’s $100, then it’s at $130. Why? It’s because these guys that are mining the bitcoins are riding into town, taking advantage of a situation,” said resident Andrew Golt during a 2018 public hearing.

Coinmint aimed to assuage the worries of residents and other businesses. “At the end of the day we want to be a good citizen in whatever communities we’re in,” Coinmint spokesman Kyle Carlton told NCPR at that 2018 meeting.

“We’re open to working with those communities to figure out whatever solutions are going to work.”

The ban was lifted in Feb. 2019. However, since it didn’t apply to companies that were already mining cryptocurrency in Plattsburgh, Coinmint has operated in the city all along.

Coinmint challenges attempt to protect ratepayers
New rules passed by the New York Public Service Commission in March 2018 allow municipal power authorities including Plattsburgh’s to charge big energy users such as Coinmint higher electricity rates, amid customer backlash in other utility deals. The new rules also require them to put down a security deposit to ensure their bills get paid.

But Coinmint disputes that deposit charge. The company has been embroiled in a legal fight for nearly a year against Plattsburgh Municipal Lighting Department (PMLD) in an attempt to avoid paying the electric utility’s security deposit bill of $1,019,503. That bill is based on an estimate of what would cover two months of electricity use if a company were to leave town without paying its electric bills.

Coinmint would not discuss the dispute on the record with NCPR. Legal documents show the firm argues the deposit charge is inflated, based on a flawed calculation resulting in a charge hundreds of thousands of dollars higher than what it should be.

“Essentially they’re arguing that they should only have to put up some average of their monthly bills without accounting for the fact that winter bills are significantly higher than the average,” said Ken Podolny, an attorney representing the Plattsburgh utility.

The company took legal action in February 2019 against PMLD in the hopes New York’s energy regulator, the Public Service Commission, would agree with Coinmint that the deposit charge was too high. An informal commission hearing officer disagreed, and ruled in October the charge was calculated correctly.

Coinmint appealed the ruling in November and a hearing on the appeal could come as soon as February.

Less than a week after Coinmint lost its initial challenge of the deposit charge, the company made a splashy announcement trumpeting its plans to “migrate its Plattsburgh, New York infrastructure to its Massena, New York location for the 2019-2020 winter season.”

The announcement made no mention of the appeal or the recent ruling against Coinmint. The company attributed its new plan to “exceptionally-high” electricity rates in Plattsburgh, as hydropower transmission projects elsewhere in New England faced their own controversies. 

"We recognize some in the Plattsburgh community have blamed our operation for pushing rates higher for everyone so, while we disagree with that assessment, we hope this seasonal migration will have a positive impact on rates for all our neighbors,” said Coinmint cofounder Prieur Leary in the press statement.

“In the event that doesn't happen, we trust the community will look for the real answers for these high costs." Prieur Leary has since been removed from the corporate team page on the company’s website.

The company still operates in Plattsburgh at one of its locations in the city. As for staff, while at least two Coinmint employees have moved from Plattsburgh to Massena, where the company operates a data center inside a former Alcoa aluminum plant, it is unclear how many people in total have made the move.

Coinmint left its second Plattsburgh location in 2019. The company would not discuss that move on the record, yet the circumstances of the departure are murky.

The local property manager of the industrial park site told NCPR, “I have no comment on our evicted tenant Coinmint.” The property owner, California’s Karex Property Management Services, also would not comment regarding the situation, noting that “all staff have been told to not discuss anything regarding our past tenant Coinmint.”

Today, Bitcoin and other cryptocurrencies are worth a fraction of what they were back in 2017 when Coinmint came to the North Country, and now, amid a debate over Bitcoin's electricity use shaping market sentiment, the future of the entire industry here remains uncertain.

 

Related News

View more

New York State to investigate sites for offshore wind projects

NYSERDA Offshore Wind Data initiative funds geophysical and geotechnical surveys, seabed and soil studies on New York's shelf to accelerate siting, optimize foundation design, reduce costs, and advance clean energy deployment.

 

Key Points

State funding to support surveys and soil studies guiding offshore wind siting, design, and cost reduction.

✅ Up to $5.5M for geophysical and geotechnical data collection

✅ Focus on seabed soils, shelf geology, and foundation design inputs

✅ Accelerates siting, reduces risk, and lowers offshore wind costs

 

The New York State Energy Research and Development Authority (NYSERDA) is investing up to $5.5 million for the collection of geophysical and geotechnical data to determine future offshore wind development sites.

The funding is to look at seabed soil and geological data for the preliminary design and installation requirements for future offshore wind projects. Its part of N.Y. Gov. Andrew Cuomos plan to develop 9,000 megawatts of offshore wind energy by 2035.

Todays announcement is another step in Governor Cuomos steadfast march to achieving 9,000 megawatts of offshore wind by 2035, putting New York in a clear national leadership position when it comes to advancing this new industry through large-scale energy projects across the state. The surveys NYSERDA will be funding under this solicitation will expand the offshore wind industrys access to geophysical and geotechnical data that will provide the foundation for future offshore wind development in these areas, and accelerate project development while driving down costs, NYSERDA President and CEO Alicia Barton said.

NYSERDA will select one or more contractors to do the investigations, while recent DOE wind energy awards support complementary research, and develop a model for describing geophysical and geotechnical conditions. NYSERDA will also select a contractor to support project management and host the data that is collected. The submission deadline is Jan. 21, 2020.

Todays announcement builds on the data collected in a Geotechnical and Geophysical Desktop Study also released today, which includes information on the middle continental shelf off the shore of New York and New Jersey, where BOEM lease requests are shaping activity, creating a regional overview of the seafloor and sub-seafloor environment as it relates to offshore wind development.

Strong knowledge of environmental conditions and factors, including seabed soil conditions, are essential for the installation of offshore projects, such as Long Island proposals, but only a limited amount of soil sampling and testing has been undertaken to date.

The collection of geophysical and geotechnical data from areas off of New Yorks Atlantic coast is yet another demonstration of New Yorks leadership promoting the responsible development of offshore wind. The data generated by this initiative will ultimately lead to better projects, lower cost, and enhanced safety. New York is leading the way to a clean energy future, as the state finalizes renewable project contracts that expand capacity, and relying on data collection and sound science to get us there, New York Offshore Wind Alliance Director Joe Martens said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.