Paging Dr. Tesla? Automaker to make house calls

By Associated Press


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Taking a cue from house-call services like Best Buy's Geek Squad, electric carmaker Tesla Motors is launching a maintenance plan where mechanics travel to owners' homes or offices to perform repairs and tune-ups.

Tesla, which makes the $109,000 Roadster electric car, said the plan is convenient for customers who won't have to bring their vehicle to a showroom, while cutting costs by making a large network of Tesla service locations unnecessary.

"You know how there's a Chevy dealer on every block or strip mall? We don't intend to have a footprint like this," spokeswoman Rachel Konrad said.

But the service won't be cheap. The carmaker will charge vehicle owners $1 for every roundtrip mile its technicians travel, from showroom to garage, with a minimum charge of $100 per trip.

For the Tesla driver in Manhattan, where the company opened a store over the summer, the cost won't be much. But for Roadster devotees in Honolulu, that's a charge of about $4,800 per trip — not including the cost of repair.

Still, Konrad said the maintenance cost will still be low because electric cars have fewer moving parts and require less "care and feeding" than vehicles powered by internal combustion.

The company said a recall of hundreds of Roadsters in May to address a steering problem was in part the inspiration for the plan. Rather than ask owners to bring the vehicle to a showroom — there are only four currently in the U.S. — it sent technicians to repair the cars at their homes and offices. The response was overwhelmingly positive, Konrad said.

The San Carlos, Calif.-based startup has so far sold about 700 Roadsters, its only vehicle on the market now. The company in June was approved for $465 million in loans from the U.S. Department of Energy to help it build next-generation electric cars.

It has plans to introduce an electric sedan, the Model S, which it hopes to price under $50,000 after government rebates when it goes on sale in 2011.

The new service plan will be standard for all new Tesla vehicles and current owners will have their warranties updated so they are covered by the new plan, Konrad said.

Related News

Cabinet Of Ministers Of Ukraine - Prime Minister: Our Goal In The Energy Sector Is To Synchronize Ukraine's Integrated Power System With Entso-e

Ukraine's EU Energy Integration aims for ENTSO-E synchronization, electricity market liberalization, EU Green Deal alignment, energy efficiency upgrades, hydrogen development, and streamlined grid connections to accelerate reform, market pricing, and sustainable growth.

 

Key Points

Ukraine's EU Energy Integration syncs with ENTSO-E, liberalizes power markets, and aligns with the EU Green Deal.

✅ ENTSO-E grid synchronization and cross-border trade readiness

✅ Electricity market liberalization and market-based pricing

✅ EU Green Deal alignment: efficiency, hydrogen, coal regions

 

Ukraine's goal in the energy sector is to ensure the maximum integration of energy markets with EU markets, and in line with the EU plan to dump Russian energy that is reshaping the region, synchronization of Ukraine's integrated energy system with ENTSO-E while leaning on electricity imports as needed to maintain stability. Prime Minister Denys Shmyhal emphasized in his statement at the Fourth Ukraine Reform Conference underway through July 7-8 in Vilnius, the Republic of Lithuania.

The Head of Government presented a plan of reforms in Ukraine until 2030. In particular, energy sector reform and environmental protection, according to the PM, include the liberalization of the electricity market, with recent amendments to the market law guiding implementation, the simplification of connection to the electrical grid system and the gradual transition to market electricity prices, alongside potential EU emergency price measures under discussion, and the monetization of subsidies for vulnerable groups.

"Ukraine shares and fully supports the EU's climate ambitions and aims to synchronize its policies in line with the EU Green Deal, including awareness of Hungary's energy alignment with Russia to ensure coherent regional planning. The interdepartmental working group has determined priority areas for cooperation with the European Union: energy efficiency, hydrogen, transformation of coal regions, waste management," said the Prime Minister.

According to Denys Shmyhal, Ukraine has supported the EU's climate ambitions to move towards climate-neutral development by 2050 within the framework of the European Green Deal and should become an integral part of it in order not only to combat the effects of climate change in synergy with the EU but, as the country prepares for winter energy challenges and strengthens resilience, within the economic strategy development aimed to enhance security and create new opportunities for Ukrainian business, with continued energy security support from partners bolstering implementation.

 

Related News

View more

Nuclear plant workers cite lack of precautions around virus

Millstone COVID-19 safety concerns center on a nuclear refueling outage in Connecticut, temporary workers, OSHA complaints, PPE shortages, and disinfecting protocols, as Dominion Energy addresses virus precautions, staffing, and cybersecurity for safe voting infrastructure.

 

Key Points

Employee and union claims about PPE, cleaning, and OSHA compliance during a refueling outage at the nuclear plant.

✅ 10 positive cases; 750 temporary workers during refueling outage

✅ Union cites PPE gaps, partitions, and disinfectant effectiveness

✅ Dominion Energy notes increased cleaning, communication, staffing

 

Workers at Connecticut's only nuclear power plant worry that managers are not taking enough precautions against the coronavirus, as some utilities weigh on-site staffing measures to maintain operations, after 750 temporary employees were brought in to help refuel one of the two active reactors.

Ten employees at the Millstone Power Station in Waterford have tested positive for the virus, and, amid a U.S. grid pandemic warning, the arrival of the temporary workers alarms some of the permanent employees, The Day newspaper reported Sunday.

"Speaking specifically for the guard force, there's a lot of frustration, there's a lot of concern, and I would say there's anger," said Millstone security officer Jim Foley.

Foley, vice president of the local chapter of the United Government Security Officers of America, noted broader labor concerns such as unpaid wages for Kentucky miners while saying security personnel have had to fight for personal protective equipment and for partitions at access points to separate staff from security.

Foley also has filed a complaint with the Occupational Safety and Health Administration saying Millstone staff are using ineffective cleaning materials and citing a lack of cleaning and sanitizing, as telework limits at the EPA drew scrutiny during the pandemic, he said.

Officials at Millstone, owned by Dominion Energy, have not heard internal criticism about the plant's virus precautions, Millstone spokesman Kenneth Holt said.

"We've actually gotten a lot of compliments from employees on the steps we've taken," he said. "We've stepped up communications with employees to let them know what's going on."

As another example of communication efforts, COVID-19 updates at Site C have been published to keep workers informed.

Millstone recently increased cleaning staff on the weekends, Holt said, and there is regular disinfecting at the plant.

Separately, utility resilience remains a concern, as extended outages for tornado survivors in Kentucky may last weeks, affecting essential services.

Responding to the complaint about ineffective cleaning materials, Holt said staff members early in the pandemic went to a Home Depot and got a bottle of disinfectant that wasn't approved by the federal government as effective against the coronavirus. An approved disinfectant was brought in the next day, he said.

The deaths of nearly 2,500 Connecticut residents have been linked to COVID-19, the disease caused by the virus. More than 29,000 state residents have tested positive. As of Sunday, hospitalizations had declined for 11 consecutive days, to over 1,480.

With more people working remotely, utilities have reported higher residential electricity use during the pandemic, affecting household bills.

For most people, the coronavirus causes mild or moderate symptoms, such as fever and cough, that clear up in two to three weeks. For some, especially older adults and people with existing health problems, it can cause more severe illness, including pneumonia, and death.

In other developments related to the coronavirus:

SAFE VOTING

Secretary of the State Denise Merrill released a plan Monday aimed at making voting safe during the Aug. 11 primary and Nov. 3 general election.

Merrill said her office is requiring all cities and towns in the state to submit plans for the two elections that include a list of cleaning and safety products to be used, a list of polling locations, staffing levels at each polling location, and the names of polling workers and moderators.

Municipalities will be eligible for grants to cover the extra costs of holding elections during a pandemic, including expenses for cleaning products and increased staffing.

Merrill also announced her office and the Connecticut National Guard will perform a high-level cybersecurity assessment of the election infrastructure of all 169 towns in the state to guard against malicious actors.

Merrill's office also will provide network upgrades to the election infrastructures of 20 towns that have had chronic problems with connecting to the elections system.

 

Related News

View more

British Columbia Fuels Up for the Future with $900 Million Hydrogen Project

H2 Gateway Hydrogen Network accelerates clean energy in B.C., building electrolysis plants and hydrogen fueling stations for zero-emission vehicles, heavy-duty trucks, and long-haul transit, supporting decarbonization, green hydrogen supply, and infrastructure investment.

 

Key Points

A $900M B.C. initiative by HTEC to build electrolysis plants and 20 hydrogen fueling stations for zero-emission transport.

✅ $900M project with HTEC, CIB, and B.C. government

✅ 3 electrolysis plants plus byproduct liquefaction in North Vancouver

✅ Up to 20 stations; 14 for heavy-duty vehicles in B.C. and Alberta

 

British Columbia is taking a significant step towards a cleaner future with a brand new $900 million project. This initiative, spearheaded by hydrogen company HTEC and supported by the CIB in B.C. and the B.C. government, aims to establish a comprehensive hydrogen network across the province. This network will encompass both hydrogen production plants and fueling stations, marking a major leap in developing hydrogen infrastructure in B.C.

The project, dubbed "H2 Gateway," boasts several key components. At its core lies the construction of three brand new electrolysis hydrogen production plants. These facilities will be strategically located in Burnaby, Nanaimo, and Prince George, ensuring a wide distribution of hydrogen fuel. An additional facility in North Vancouver will focus on liquefying byproduct hydrogen, maximizing resource efficiency.

The most visible aspect of H2 Gateway will undoubtedly be the network of hydrogen fueling stations. The project envisions up to 20 stations spread across British Columbia and Alberta, complementing the province's Electric Highway build-out, with 18 being situated within B.C. itself. This extensive network will significantly enhance the accessibility of hydrogen fuel, making it a more viable option for motorists. Notably, 14 of these stations will be designed to handle heavy-duty vehicles, catering to the transportation sector's clean energy needs.

The economic and environmental benefits of H2 Gateway are undeniable. The project is expected to generate nearly 300 jobs, aligning with recent grid job creation efforts, providing a much-needed boost to the B.C. economy. More importantly, the widespread adoption of hydrogen fuel promises significant reductions in greenhouse gas emissions. Hydrogen-powered vehicles produce zero tailpipe emissions, making them a crucial tool in combating climate change.

British Columbia's investment in hydrogen infrastructure aligns with a global trend. As countries strive to achieve ambitious climate goals, hydrogen is increasingly viewed as a promising clean energy source. Hydrogen fuel cells offer several advantages over traditional electric vehicles, and while B.C. leads the country in going electric, they boast longer driving ranges and shorter refueling times, making them particularly attractive for long-distance travel and heavy-duty applications.

While H2 Gateway represents a significant step forward, challenges remain. The production of clean hydrogen, often achieved through electrolysis using renewable energy sources, faces power supply challenges and requires substantial initial investment. Additionally, the number of hydrogen-powered vehicles on the road is still relatively low.

However, projects like H2 Gateway are crucial in overcoming these hurdles. By creating a robust hydrogen infrastructure, B.C. is sending a strong signal to the industry and, alongside BC Hydro's EV charging expansion across southern B.C., is building a comprehensive clean transportation network. This investment will not only benefit the environment but also incentivize the development and adoption of hydrogen-powered vehicles. As the technology matures and production costs decrease, hydrogen fuel has the potential to revolutionize transportation and play a key role in a sustainable future.

The road ahead for hydrogen may not be entirely smooth, but British Columbia's commitment to H2 Gateway demonstrates a clear vision. By investing in clean energy infrastructure, the province is not only positioning itself as a leader in the fight against climate change, with Canada and B.C. investing in green energy solutions to accelerate progress, but also paving the way for a more sustainable transportation landscape.

 

Related News

View more

Energy dashboard: how is electricity generated in Great Britain?

Great Britain electricity generation spans renewables and baseload: wind, solar, nuclear, gas, and biomass, supported by National Grid interconnectors, embedded energy estimates, and BMRS data for dynamic imports and exports across Europe.

 

Key Points

A diverse, weather-driven mix of renewables, gas, nuclear, and imports coordinated by National Grid.

✅ Baseload from nuclear and biomass; intermittent wind and solar

✅ Interconnectors trade zero carbon imports via subsea cables

✅ Data from BMRS and ESO covers embedded energy estimates

 

Great Britain has one of the most diverse ranges of electricity generation in Europe, with everything from windfarms off the coast of Scotland to a nuclear power station in Suffolk tasked with keeping the lights on. The increasing reliance on renewable energy sources, as part of the country’s green ambitions, also means there can be rapid shifts in the main source of electricity generation. On windy days, most electricity generation comes from record wind generation across onshore and offshore windfarms. When conditions are cold and still, gas-fired power stations known as peaking plants are called into action.

The electricity system in Great Britain relies on a combination of “baseload” power – from stable generators such as nuclear and biomass plants – and “intermittent” sources, such as wind and solar farms that need the right weather conditions to feed energy into the grid. National Grid also imports energy from overseas, through subsea cables known as interconnectors that link to France, Belgium, Norway and the Netherlands. They allow companies to trade excess power, such as renewable energy created by the sun, wind and water, between different countries. By 2030 it is hoped that 90% of the energy imported by interconnectors will be from zero carbon energy sources, though low-carbon electricity generation stalled in 2019 for the UK.

The technology behind Great Britain’s power generation has evolved significantly over the last century, and at times wind has been the main source of electricity. The first integrated national grid in the world was formed in 1935 linking seven regions of the UK. In the aftermath of industrialisation, coal provided the vast majority of power, before oil began to play an increasingly important part in the 1950s. In 1956, the world’s first commercial nuclear reactor, Calder Hall 1 at Windscale (later Sellafield), was opened by Queen Elizabeth II. Coal use fell significantly in the 1990s while the use of combined cycle gas turbines grew, and in 2016 wind generated more electricity than coal for the first time. Now a combination of gas, wind, nuclear and biomass provide the bulk of Great Britain’s energy, with smaller sources such as solar and hydroelectric power also used. From October 2024, coal will no longer be used to generate electricity, following coal-free power records set in recent years.

Energy generation data is fetched from the Balancing Mechanism Reporting Service public feed, provided by Elexon – which runs the wholesale energy market – and is updated every five minutes, covering periods when wind led the power mix as well.

Elexon’s data does not include embedded energy, which is unmetered and therefore invisible to Great Britain’s National Grid. Embedded energy comprises all solar energy and wind energy generated from non-metered turbines. To account for these figures we use embedded energy estimates from the National Grid electricity system operator, which are published every 30 minutes.

Import figures refer to the net flow of electricity from the interconnectors with Europe and with Northern Ireland. A positive value represents import into the GB transmission system, while a negative value represents an export.

Hydro figures combine renewable run-of-the-river hydropower and pumped storage.

Biomass figures include Elexon’s “other” category, which comprises coal-to-biomass conversions and biomass combined heat and power plants.

 

Related News

View more

Power Outages to Mitigate Wildfire Risks

Colorado Wildfire Power Shutoffs reduce ignition risk through PSPS, grid safety protocols, data-driven forecasts, and emergency coordination, protecting communities, natural resources, and infrastructure during extreme fire weather fueled by drought and climate change.

 

Key Points

Planned PSPS outages cut power in high-risk areas to prevent ignitions, protect residents, and boost wildfire resilience.

✅ PSPS triggered by forecasts, fuel moisture, and fire danger indices.

✅ Utilities coordinate alerts, timelines, and critical facility support.

✅ Paired with forest management, education, and rapid response.

 

Colorado, known for its stunning landscapes and outdoor recreation, has implemented proactive measures to reduce the risk of wildfires by strategically shutting off power in high-risk areas, similar to PG&E wildfire shutoffs implemented in California during extreme conditions. This approach, while disruptive, aims to safeguard communities, protect natural resources, and mitigate the devastating impacts of wildfires that have become increasingly prevalent in the region.

The decision to initiate power outages as a preventative measure against wildfires underscores Colorado's commitment to proactive fire management and public safety, aligning with utility disaster planning practices that strengthen grid readiness. With climate change contributing to hotter and drier conditions, the state faces heightened wildfire risks, necessitating innovative strategies to minimize ignition sources and limit fire spread.

Utility companies, in collaboration with state and local authorities, identify areas at high risk of wildfire based on factors such as weather forecasts, fuel moisture levels, and historical fire data. When conditions reach critical thresholds, planned power outages, also known as Public Safety Power Shutoffs (PSPS), are implemented to reduce the likelihood of electrical equipment sparking wildfires during periods of extreme fire danger, particularly during windstorm-driven outages that elevate ignition risks.

While power outages are a necessary precautionary measure, they can pose challenges for residents, businesses, and essential services that rely on uninterrupted electricity, as seen when a North Seattle outage affected thousands last year. To mitigate disruptions, utility companies communicate outage schedules in advance, provide updates during outages, and coordinate with emergency services to ensure the safety and well-being of affected communities.

The implementation of PSPS is part of a broader strategy to enhance wildfire resilience in Colorado. In addition to reducing ignition risks from power lines, the state invests in forest management practices, wildfire prevention education, and emergency response capabilities, including continuity planning seen in the U.S. grid COVID-19 response, to prepare for and respond to wildfires effectively.

Furthermore, Colorado's approach to wildfire prevention highlights the importance of community preparedness and collaboration, and utilities across the region adopt measures like FortisAlberta precautions to sustain critical services during emergencies. Residents are encouraged to create defensible space around their properties, develop emergency evacuation plans, and stay informed about wildfire risks and response protocols. Community engagement plays a crucial role in building resilience and fostering a collective effort to protect lives, property, and natural habitats from wildfires.

The effectiveness of Colorado's proactive measures in mitigating wildfire risks relies on a balanced approach that considers both short-term safety measures and long-term fire prevention strategies. By integrating technology, data-driven decision-making, and community partnerships, the state aims to reduce the frequency and severity of wildfires while enhancing overall resilience to wildfire impacts.

Looking ahead, Colorado continues to refine its wildfire management practices in response to evolving environmental conditions and community needs, drawing on examples of localized readiness such as PG&E winter storm preparation to inform response planning. This includes ongoing investments in fire detection and monitoring systems, research into fire behavior and prevention strategies, and collaboration with neighboring states and federal agencies to coordinate wildfire response efforts.

In conclusion, Colorado's decision to implement power outages as a preventative measure against wildfires demonstrates proactive leadership in wildfire risk reduction and public safety. By prioritizing early intervention and community engagement, the state strives to safeguard vulnerable areas, minimize the impact of wildfires, and foster resilience in the face of increasing wildfire threats. As Colorado continues to innovate and adapt its wildfire management strategies, its efforts serve as a model for other regions grappling with the challenges posed by climate change and wildfire risks.

 

Related News

View more

Report: Duke Energy to release climate report under investor pressure

Duke Energy zero-coal 2050 plan outlines a decarbonized energy mix, aligning with Paris goals, cutting greenhouse gas emissions, driven by investor pressure, shifting to natural gas, extending nuclear power, and phasing out coal.

 

Key Points

An investor-driven scenario to end coal by 2050, shift to natural gas, extend nuclear plants, and manage climate risk.

✅ Eliminates coal from the generation mix by 2050

✅ Prioritizes natural gas transitions without CCS breakthroughs

✅ Extends nuclear plant licenses to limit carbon emissions

 

One of America’s largest utility companies, Duke Energy, is set to release a report later this month that sketches a drastically changed electricity mix in a carbon-constrained future.

The big picture: Duke is the latest energy company to commit to releasing a report about climate change in response to investor pressure, echoing shifts such as Europe's oil majors going electric across the sector, conveyed by non-binding but symbolically important shareholder resolutions. Duke provides electricity to more than seven million customers in the Carolinas, the Midwest and Florida.

Gritty details: The report is expected to find that coal, currently 33% of Duke’s mix, gone entirely from its portfolio by 2050 in a future scenario where the world has taken steps to cut greenhouse gas emissions, and where global coal-fired electricity use is falling markedly, to a level consistent with keeping global temperatures from rising two degrees Celsius. That’s the big ambition of the 2015 Paris climate deal, but the current commitments aren’t close to reaching that.

What they're saying: “What’s difficult about this is we are trying to overlay what we understand currently about technology,” Lynn Good, Duke CEO, told Axios in an interview on the sidelines of a major energy conference here.

She went on to say that this scenario of zero coal by 2050 doesn’t assume any breakthroughs in technology that captures carbon emissions from coal-fired power plants. “We don’t see that technology today, and we need to make economic decisions to get those units moving and replacing them with natural gas.”

Good also stressed the benefits of its several nuclear power plants, highlighting the role of sustaining U.S. nuclear power in decarbonization, which emit no carbon emissions. She said Duke isn’t considering investing in new nuclear plants, but plans to seek federal relicensing of current plants.

“If I turn them off, the resource that would replace them today is natural gas, so carbon will go up,” Good said. “Our objective is to continue to keep those plants as long as possible.”

What’s next: A spokesman said the other details of their 2050 scenario estimates will be available when the report is officially released by month’s end.

Axios reports that Duke Energy will release a report later this month that detail the utility's efforts to mitigate climate change risks and plan carbon-free electricity investments across its operations. The report includes a scenario that eliminates coal entirely from the company's power mix by 2050. Coal currently makes up about a third of Duke's generation.

Duke CEO Lynn Good told the news outlet the scenario ending coal-fired generation assumes no technological advances in emissions capture, seemingly leaving open the possibility.

Last year, a report by the Union of Concerned Scientists concluded one in four of the remaining operating coal-fired plants in the U.S. are slated for closure or conversion to natural gas, amid falling power-sector carbon emissions across the country. Duke's report is expected to be released by the end of the month.

Duke's report on its carbon plans comes at the behest of shareholders, a trend utility companies have seen growing among investors who are increasingly concerned about companies' sustainability and their financial exposure to climate policy.

Last year, a majority of shareholders of Pennsylvania utility PPL Corp. called on company management to publish a report on how climate change policies and technological innovations will affect the company's bottom line. Almost 60% of shareholders voted in favor of the non-binding proposal.

The vote, reportedly a first for the power sector, followed a similar decision by shareholders of Occidental Petroleum, which was supported by about 66% of shareholders.

Duke's Good told Axios that right now the utility does not see the coal technology on the horizon that would keep it operating plants. “We don't see that technology today, and we need to make economic decisions to get those units moving and replacing them with natural gas," Good said. However, it does not mean the utility is making near-term efforts to erase coal from its power mix. However, some utilities are taking those steps as they prepare for en energy landscape with more carbon regulations.

In addition to the 25% of coal plants heading for closure or conversion, the UCS report also said that another 17% of the nation’s operating coal plants are uneconomic compared with natural gas-fired generation, and could face retirement soon. But there is plenty of ongoing research into "clean coal" possibilities, and the federal government has expressed an interest in smaller, modular coal units.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified