California utility pressing for Arizona link

By Arizona Daily Star


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
A major California utility trying to shore up its sources of electricity isn't giving up its fight to build a major transmission line despite Arizona regulators' attempt to short-circuit the project.

The 230-mile, high-voltage line would make it easier for Southern California Edison, a utility serving most of Southern California, to import electricity available from natural gas-fueled generating plants in Arizona.

However, the Arizona Corporation Commission rejected the project on May 30, saying its environmental features and potential economic benefits were one-sided in favor of California at Arizona's expense.

Since then, Edison has unsuccessfully asked the commission to reconsider its denial and then filed a lawsuit that contends, among other things, that the commission's rejection of the project illegally interferes with interstate commerce.

Edison and the Arizona commission recently agreed to put the lawsuit on hold until next March while the utility considers unspecified alternatives, though one Arizona commissioner told The Associated Press in an interview that he wasn't impressed by what he'd heard so far.

Looming in the background is the possibility that Edison could try to circumvent the Arizona regulators' denial by seeking federal approval of the project as part of a critical energy corridor.

The continued wrangling over the proposed power line comes as California utilities strain the meet their customers' demand for electricity, a situation aggravated last week by high temperatures.

California's electricity grid manager declared a minor power emergency as the state's operating energy reserves dipped below 7 percent, a step that triggered conservation efforts by state agencies and a call for residents to conserve power use during hot afternoon hours.

Known as Devers-Palo Verde No. 2, the line would cross the desert of Southwestern Arizona and southeastern California, largely paralleling an existing line and linking a power switching yard 40 miles from Phoenix with a substation 10 miles from Palm Springs.

Edison spokesman Paul Klein said the legal hold put on the lawsuit gives Edison time to "pursue other options" that he declined to discuss.

However, Corporation Commission member Bill Mundell said Edison officials have suggested adding an interconnection point somewhere along the line so that it would be more helpful to Arizona's use of the Western power grid.

"That was the only one of substance that they mentioned," Mundell said. "I'll certainly listen to their proposal with an open mind but there needs to be additional benefits."

Mundell, who during the May 30 meeting said he didn't want Arizona to be "an energy farm for California," contends California hasn't done enough to build new plants to meet the energy needs of itself and the region.

Mundell and other Arizona commissioners contend building the line would mean lower electricity prices for California utility customers but higher ones for Arizonans.

An Aug. 14 letter signed by all five Arizona commissioners to members of the state's congressional delegation says the U.S. Department of Energy's expected designation of a high-priority electricity corridor in Arizona, California and Nevada "certainly" will lead to Edison's asking federal officials to authorize the line.

"Our worst nightmare has come true," Mundell said, referring to the Arizona commission's earlier concerns about how the Energy Policy Act of 2005 could be implemented.

Klein, the Edison spokesman, declined to discuss whether the company intends to seek federal authorization for the line.

"At this point we're just looking at all of our options," he said.

Related News

U.S Bans Russian Uranium to Bolster Domestic Industry

U.S. Russian Uranium Import Ban reshapes nuclear fuel supply, bolstering energy security, domestic enrichment, and sanctions policy while diversifying reactor-grade uranium sources and supply chains through allies, waivers, and funding to sustain utilities and reliability.

 

Key Points

A U.S. law halting Russian uranium imports to boost energy security diversify nuclear fuel and revive U.S. enrichment.

✅ Cuts Russian revenue; reduces geopolitical risk.

✅ Funds U.S. enrichment; supports reactor fuel supply.

✅ Enables waivers to prevent utility shutdowns.

 

In a move aimed at reducing reliance on Russia and fostering domestic energy security for the long term, the United States has banned imports of Russian uranium, a critical component of nuclear fuel. This decision, signed into law by President Biden in May 2024, marks a significant shift in the U.S. nuclear fuel supply chain and has far-reaching economic and geopolitical implications.

For decades, Russia has been a major supplier of enriched uranium, a processed form of uranium used to power nuclear reactors. The U.S. relies on Russia for roughly a quarter of its enriched uranium needs, feeding the nation's network of 94 nuclear reactors operated by utilities which generate nearly 20% of the country's electricity. This dependence has come under scrutiny in recent years, particularly following Russia's invasion of Ukraine.

The ban on Russian uranium is a multifaceted response. First and foremost, it aims to cripple a key revenue stream for the Russian government. Uranium exports are a significant source of income for Russia, and by severing this economic tie, the U.S. hopes to weaken Russia's financial capacity to wage war.

Second, the ban serves as a national energy security measure. Relying on a potentially hostile nation for such a critical resource creates vulnerabilities. The possibility of Russia disrupting uranium supplies, either through political pressure or in the event of a wider conflict, is a major concern. Diversifying the U.S. nuclear fuel supply chain mitigates this risk.

Third, the ban is intended to revitalize the domestic uranium mining and enrichment industry, building on earlier initiatives such as Trump's uranium order announced previously. The U.S. has historically been a major uranium producer, but environmental concerns and competition from cheaper foreign sources led to a decline in domestic production. The ban, coupled with $2.7 billion in federal funding allocated to expand domestic uranium enrichment capacity, aims to reverse this trend.

The transition away from Russian uranium won't be immediate. The law includes a grace period until mid-August 2024, and waivers can be granted to utilities facing potential shutdowns if alternative suppliers aren't readily available. Finding new sources of enriched uranium will require forging partnerships with other uranium-producing nations like Kazakhstan, Canada on minerals cooperation, and Australia.

The long-term success of this strategy hinges on several factors. First, successfully ramping up domestic uranium production will require overcoming regulatory hurdles and addressing environmental concerns, alongside nuclear innovation to modernize the fuel cycle. Second, securing reliable alternative suppliers at competitive prices is crucial, and supportive policy frameworks such as the Nuclear Innovation Act now in law can help. Finally, ensuring the continued safe and efficient operation of existing nuclear reactors is paramount.

The ban on Russian uranium is a bold move with significant economic and geopolitical implications. While challenges lie ahead, the potential benefits of a more secure and domestically sourced nuclear fuel supply chain are undeniable. The success of this initiative will be closely watched not only by the U.S. but also by other nations seeking to lessen their dependence on Russia for critical resources.

 

Related News

View more

Cabinet Of Ministers Of Ukraine - Prime Minister: Our Goal In The Energy Sector Is To Synchronize Ukraine's Integrated Power System With Entso-e

Ukraine's EU Energy Integration aims for ENTSO-E synchronization, electricity market liberalization, EU Green Deal alignment, energy efficiency upgrades, hydrogen development, and streamlined grid connections to accelerate reform, market pricing, and sustainable growth.

 

Key Points

Ukraine's EU Energy Integration syncs with ENTSO-E, liberalizes power markets, and aligns with the EU Green Deal.

✅ ENTSO-E grid synchronization and cross-border trade readiness

✅ Electricity market liberalization and market-based pricing

✅ EU Green Deal alignment: efficiency, hydrogen, coal regions

 

Ukraine's goal in the energy sector is to ensure the maximum integration of energy markets with EU markets, and in line with the EU plan to dump Russian energy that is reshaping the region, synchronization of Ukraine's integrated energy system with ENTSO-E while leaning on electricity imports as needed to maintain stability. Prime Minister Denys Shmyhal emphasized in his statement at the Fourth Ukraine Reform Conference underway through July 7-8 in Vilnius, the Republic of Lithuania.

The Head of Government presented a plan of reforms in Ukraine until 2030. In particular, energy sector reform and environmental protection, according to the PM, include the liberalization of the electricity market, with recent amendments to the market law guiding implementation, the simplification of connection to the electrical grid system and the gradual transition to market electricity prices, alongside potential EU emergency price measures under discussion, and the monetization of subsidies for vulnerable groups.

"Ukraine shares and fully supports the EU's climate ambitions and aims to synchronize its policies in line with the EU Green Deal, including awareness of Hungary's energy alignment with Russia to ensure coherent regional planning. The interdepartmental working group has determined priority areas for cooperation with the European Union: energy efficiency, hydrogen, transformation of coal regions, waste management," said the Prime Minister.

According to Denys Shmyhal, Ukraine has supported the EU's climate ambitions to move towards climate-neutral development by 2050 within the framework of the European Green Deal and should become an integral part of it in order not only to combat the effects of climate change in synergy with the EU but, as the country prepares for winter energy challenges and strengthens resilience, within the economic strategy development aimed to enhance security and create new opportunities for Ukrainian business, with continued energy security support from partners bolstering implementation.

 

Related News

View more

The Innovative Solution Bringing Electricity To Crisis Stricken Areas

Toyota and Honda Moving e delivers hydrogen backup power via a fuel cell bus, portable batteries, and power exporters for disaster relief, emergency electricity, and grid outage support near charging stations and microgrids.

 

Key Points

A hydrogen mobile power system using a fuel cell bus and batteries to supply emergency electricity during disasters.

✅ Fuel cell bus outputs up to 18 kW, 454 kWh capacity

✅ Portable batteries and power exporter deliver site power

✅ Supports disaster relief near hydrogen charging stations

 

Without the uninterrupted supply of power and electricity, modern economies would be unable to function. A blackout can impact everything from transport to health care, communication, and even water supplies, as seen in a near-blackout in Japan that strained the grid. It is one of the key security concerns for every government on earth, a point underscored by Fatih Birol on electricity options during the pandemic, and the growth in the market for backup power reflects that fact. In 2018, the global Backup Power market was $14.9 billion and is expected to reach $22 billion by the end of 2025, growing at a CAGR of 5.0 percent between 2019 and 2025.

It is against this backdrop that Toyota and Honda have come up with a new and innovative solution to providing electricity during disasters. The two transport giants have launched a mobile power generation system that consists of a fuel cell bus that can carry a large amount of hydrogen, aligned with Japan's hydrogen energy system efforts underway, portable external power output devices, and portable batteries to disaster zones. The system, which is called ‘Moving e’ includes Toyota’s charging station fuel cell bus, Honda’s power exporter 9000 portable external power output device, two types of Honda’s portable batteries, and a Honda Mobile Power Pack Charge & Supply Concept charger/discharger for MPP. 

In simple terms, the bus would drive to a disaster zone, and while other approaches such as gravity energy storage are advancing, the portable batteries and power output devices would be used to extract electricity from the fuel cell bus and provide it wherever it is needed. The bus itself can generate 454kWh and has a maximum output of 18kW. That is more than enough energy to supply electricity for large indoor areas such as an evacuation area. The bus is also fitted with space for people to nap or rest during a disaster.

The two companies plan to test the effectiveness of the Moving e at multiple municipalities and businesses. These locations will have to be within 100km of a hydrogen station that is capable of refueling the bus. If the bus has to drive 200km, then its electricity supply to the disaster zone would drop from 490kwh to 240kWh. While there aren’t currently enough hydrogen stations to make this a realistic scenario for all disaster zones, especially as countries push for hydrogen-ready power plants in Germany and related infrastructure, hydrogen is growing increasingly competitive with gasoline and diesel.

While gas generators are still considered more reliable and generally cheaper than backup batteries for home use, cleaner backup power is growing increasingly popular, and novel storage like power-to-gas in Europe is also advancing across grids. This latest development by Toyota and Honda is another step forward for the battery and fuel cell industry, with initiatives like PEM hydrogen R&D in China accelerating progress, – especially considering the meteoric rise of hydrogen energy in recent years.
 

 

Related News

View more

Siemens Energy to unlock a new era of offshore green hydrogen production

Offshore Wind-to-Hydrogen Integration enables green hydrogen by embedding an electrolyzer in offshore turbines. Siemens Gamesa and Siemens Energy align under H2Mare to decarbonize industry, advance the Paris Agreement, and unlock scalable, off-grid renewable production.

 

Key Points

A method integrating electrolyzers into offshore wind turbines to generate green hydrogen and reduce carbon emissions.

✅ Integrated electrolyzer at turbine base for off-grid operation

✅ Enables scalable, cost-efficient green hydrogen production

✅ Supports decarbonization targets under Paris Agreement

 

To reach the Paris Agreement goals, the world will need vast amounts of green hydrogen and, with offshore wind growth accelerating, wind will provide a large portion of the power needed for its production.

Siemens Gamesa and Siemens Energy announced today that they are joining forces combining their ongoing wind-to-hydrogen developments to address one of the major challenges of our decade - decarbonizing the economy to solve the climate crisis.

The companies are contributing with their developments to an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to directly produce green hydrogen. The companies intend to provide a full-scale offshore demonstration of the solution by 2025/2026. The German Federal Ministry of Education and Research, reflecting Germany's clean energy progress, announced today that the developments can be implemented as part of the ideas competition 'Hydrogen Republic of Germany'.

'Our more than 30 years of experience and leadership in the offshore wind industry, coupled with Siemens Energy's expertise in electrolyzers, brings together brilliant minds and cutting-edge technologies to address the climate crisis. Our wind turbines play a huge role in the decarbonization of the global energy system, and the potential of wind to hydrogen means that we can do this for hard-to-abate industries too. It makes me very proud that our people are a part of shaping a greener future,' said Andreas Nauen, Siemens Gamesa CEO.

Christian Bruch, CEO of Siemens Energy, explains: 'Together with Siemens Gamesa, we are in a unique position to develop this game changing solution. We are the company that can leverage its highly flexible electrolyzer technology and create and redefine the future of sustainable offshore energy production. With these developments, the potential of regions with abundant offshore wind, such as the UK offshore wind sector, will become accessible for the hydrogen economy. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.'

Over a time frame of five years, Siemens Gamesa plans to invest EUR 80 million and Siemens Energy is targeting to invest EUR 40 million in the developments. Siemens Gamesa will adapt its development of the world's most powerful turbine, the SG 14-222 DD offshore wind turbine to integrate an electrolysis system seamlessly into the turbine's operations. By leveraging Siemens Gamesa's intricate knowledge and decades of experience with offshore wind, electric losses are reduced to a minimum, while a modular approach ensures a reliable and efficient operational set-up for a scalable offshore wind-to-hydrogen solution. Siemens Energy will develop a new electrolysis product to not only meet the needs of the harsh maritime offshore environment and be in perfect sync with the wind turbine, but also to create a new competitive benchmark for green hydrogen.

The ultimate fully integrated offshore wind-to-hydrogen solution will produce green hydrogen using an electrolyzer array located at the base of the offshore wind turbine tower, blazing a trail towards offshore hydrogen production. The solution will lower the cost of hydrogen by being able to run off grid, much like solar-powered hydrogen in Dubai showcases for desert environments, opening up more and better wind sites. The companies' developments will serve as a test bed for making large-scale, cost-efficient hydrogen production a reality and will prove the feasibility of reliable, effective implementation of wind turbines in systems for producing hydrogen from renewable energy.

The developments are part of the H2Mare initiative which is a lighthouse project likely to be supported by the German Federal Ministry of Education and Research ideas competition 'Hydrogen Republic of Germany'. The H2mare initiative under the consortium lead of Siemens Energy is a modular project consisting of multiple sub-projects to which more than 30 partners from industry, institutes and academia are contributing. Siemens Energy and Siemens Gamesa will contribute to the H2Mare initiative with their own developments in separate modular building blocks.

About hydrogen and its role in the green energy transition

Currently 80 million tons of hydrogen are produced each year and production is expected to increase by about 20 million tons by 2030. Just 1% of that hydrogen is currently generated from green energy sources. The bulk is obtained from natural gas and coal, emitting 830 million tons of CO2 per year, more than the entire nation of Germany or the global shipping industry. Replacing this current polluting consumption would require 820 GW of wind generating capacity, 26% more than the current global installed wind capacity. Looking further ahead, many studies suggest that by 2050 production will have grown to about 500 million tons, with a significant shift to green hydrogen already signaled by projects like Brazil's green hydrogen plant now underway. The expected growth will require between 1,000 GW and 4,000 GW of renewable capacity by 2050 to meet demand, and in the U.S. initiatives like DOE hydrogen hubs aim to catalyze this build-out, which highlights the vast potential for growth in wind power.

 

Related News

View more

BC Hydro electricity demand down 10% amid COVID-19 pandemic

BC Hydro electricity demand decline reflects COVID-19 impacts across British Columbia, with reduced industrial load, full reservoirs, strategic spilling, and potential rate increases, as hydropower plants adjust operations at Seven Mile, Revelstoke, and Site C.

 

Key Points

A 10% COVID-19-driven drop in BC power use, prompting reservoir spilling, plant curtailment, and potential rate hikes.

✅ 10% load drop; industrial demand down 7% since mid-March

✅ Reservoirs near capacity; controlled spilling to mitigate risk

✅ Possible rate hikes; Site C construction continues

 

Elecricity demand is down 10 per cent across British Columbia, an unprecedented decline in commercial electricity consumption sparked by the COVID-19 pandemic, according to a BC Hydro report.

Power demand across hotels, offices, recreational facilities and restaurants have dwindled as British Columbians self isolate, and bill relief for residents and businesses was introduced during this period.

The shortfall means there's a surplus of water in reservoirs across the province.

"This drop in load in addition to the spring snow melt is causing our reservoirs to reach near capacity, which could lead to environmental concerns, as well as public safety risks if we don't address the challenges now," said spokesperson Tanya Fish.

Crews will have to strategically spill reservoirs to keep them from overflowing, a process that can have negative impacts on downstream ecosystems. Excessive spilling can increase fish mortality rates.

Spilling is currently underway at the Seven Mile and Revelstoke reservoirs. In addition, several small plants have been shut down.

Site C and hydro rates
According to the report, titled Demand Dilemma, the decline could continue into April 2021 and drop by another two per cent, even as a regulator report alleged BC Hydro misled oversight bodies.

Major industry — forestry, mining and oil and gas — accounts for about 30 per cent of BC Hydro's overall electricity load. Energy demand from these customers has dropped by seven per cent since mid-March, while in Manitoba a Consumers Coalition has urged rejection of proposed rate increases.

BC Hydro says a prolonged drop in demand could have an impact on future rates, which could potentially go up as the power provider looks to recoup deferred operating costs and financial losses.

In Manitoba, Manitoba Hydro's debt has grown significantly, underscoring the financial risks utilities face during demand shocks.

Fish said the crown corporation still expects there to be increased demand in the long-term. She said construction of the Site C Dam is continuing as planned to support clean-energy generation in the province. There are currently nearly 1,000 workers on-site.

 

Related News

View more

Germany should stop lecturing France on nuclear power, says Eon boss

EU Nuclear Power Dispute strains electricity market reform as Germany resists state aid for French reactors, while Eon urges cooperation to meet the energy transition, low-carbon goals, renewables integration, and cross-border power trade.

 

Key Points

A policy standoff between Germany and France over nuclear energy's role, state aid, and electricity market reforms.

✅ Germany opposes state aid for existing French nuclear plants.

✅ Eon CEO urges compromise to advance market reform and decarbonization.

✅ Cross-border trade shows reliance on French nuclear amid renewables push.

 

Germany should stop trying to impose its views on nuclear power on the rest of the EU, the head of one of Europe’s largest utilities has warned, as he stressed its importance in the region’s clean energy transition.

Leonhard Birnbaum, chief executive of German energy provider Eon, said Berlin should accept differences of opinion as he signalled his desire for a compromise with France to break a deadlock amid a nuclear power dispute over energy reforms.

Germany this year shut down its final three nuclear power plants as it followed through on a long-held promise to drop the use of the energy source, effectively turning its back on nuclear for now, while France has made it a priority to modernise its nuclear power plants.

The differences are delaying reforms to the region’s electricity market and legislation designed to meet greenhouse gas emissions targets.

One sticking point is Germany’s refusal to back French moves to allow governments to provide state aid to existing power plants, which could enable Paris to support the French nuclear fleet.

The Eon chief, whose company has 48mn customers across Europe, said it would be “better for everyone” if the two countries could approach the dispute with the mindset that “everyone does their part”, even as Germany has at times weighed a U-turn on the nuclear phaseout in recent debates.

“Neither the French will be able to persuade us to use nuclear power, nor we will be able to persuade them not to. That’s why I think we should take a different approach to the discussion,” he added.

Birnbaum said Germany “would do well to be a bit cautious about trying to impose our way on everyone else”. This approach was unlikely to be “crowned with success”.

“The better solution will not come from opposing each other, but from working together.”

Birnbaum made the comments at a press conference announcing Eon’s second-quarter results.

The company raised its profit outlook, predicting adjusted net income of €2.7bn to €2.9bn, and promised to reduce bills for customers as it hailed “diminishing headwinds” following the energy crisis caused by the war in Ukraine.

Birnbaum, whose company owned one of the three German nuclear plants shut down this year, pointed out that French nuclear energy was helping the conversion to a system of renewable energy in Germany at a time when Europe is losing nuclear power just when it needs energy.

This was a reference to Europe’s shared power market that allows countries to buy and sell electricity from one another. 

Germany has been a net importer of French electricity since shutting down its own nuclear plants, which last month prompted the French energy minister Agnès Pannier-Runacher to accuse Berlin of hypocrisy. 

“It’s a contradiction to massively import French nuclear energy while rejecting every piece of EU legislation that recognises the value of nuclear as a low-carbon energy source,” Pannier-Runacher told the German business daily Handelsblatt.

She also criticised Berlin’s drive to use new gas-fired power plants as a “bridge” to its target of being carbon neutral by 2045, even as some German officials contend that nuclear won’t solve the gas issue in the near term, arguing that it created a “credibility problem” for Germany: “Gas is a fossil fuel.”

Berlin officials responded by pointing out that Germany was a net exporter of electricity to France over the winter when its nuclear power stations were struggling to produce because of maintenance problems. 

They added that the country only imported French power because it was cheaper, not because their country was suffering shortages.

Berlin argues that renewable energy is cleaner and safer than nuclear, despite renewable rollout challenges linked to cheap Russian gas and grid expansion, and accuses France of seeking to protect the interests of its nuclear industry.

In Paris, officials see Germany’s resistance to nuclear energy as wrong-headed given the need to fight climate change effectively, and worry it is an attempt to undercut a key aspect of French industrial competitiveness.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.