Utility Bills May Drop Next Year

By The Tampa Tribune


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Residents in the Bay area could see lower electric bills next year.

Progress Energy Florida and Tampa Electric, the two largest utilities in the Bay area, both said they expect to pay less next year for natural gas, coal and other fuels they use to produce electricity and hope to pass the savings on to customers.

The utilities submitted their projections for fuel costs in 2008 to the Florida Public Service Commission, which regulates utilities in the state.

If approved, residential customers of Tampa Electric would see bills drop 16 cents to $114.38 per 1,000 kilowatt-hours of electricity they consume.

Most residential customers use more electricity than that, especially during the summer.

Tampa Electric's residential customers use, on average, 1,250 kilowatt-hours a month.

The utility said it expects the cost of fuel and purchased power won't be volatile next year, so it will be able to pass savings on to its residential customers. The utility serves 666,219 residential and commercial customers in Hillsborough County and parts of Pasco, Polk and Pinellas counties.

The last time Tampa Electric reduced customer bills was in January 2005.

Fuel costs "finally appear to be stabilizing," Tampa Electric President Chuck Black said in a statement. "We expect that they will remain at current levels for the balance of 2007 and throughout 2008."

Electric utilities aren't allowed to make money from the purchase of natural gas, coal and other fuels used to generate electricity. Those costs must be passed on to customers without any markup.

Under Progress Energy's proposal, electric bills for residential customers would drop $2.27, or about 2 percent, to $108.07 for every 1,000 kilowatt-hours of consumption. The reduction is based on a $151 million decrease in fuel and other operating costs, the utility said.

The last time Progress Energy lowered residential bills was in July 2002.

"We maintain the most diversified fuel mix of any utility in the state, and are pleased that our fuel procurement practices and strategiesÂ… are paying dividends for our customers," Jeff Lyash, CEO of Progress Energy Florida, said in a statement.

Progress Energy provides power to nearly 1.7 million customers in 35 counties in northern and Central Florida, including most of Pinellas County.

The state Public Service Commission must approve the proposals. If it does, the rates would become effective Jan. 1.

Meanwhile, Florida Power & Light Co., the state's largest electric utility, said its residential customers would save nearly $1 a month under a proposed fuel chargeplan it filed with the PSC. Based on 1,000 kilowatt-hours of consumption, the average bill of an FP&L customer would drop 94 cents, or less than 1 percent, to $102.49.

FP&L officials attributed the decrease to lower natural gas costs and greater efficiency from its power plants.

Related News

Washington State Ferries' Hybrid-Electric Upgrade

Washington State Hybrid-Electric Ferries advance green maritime transit with battery-diesel propulsion, lower emissions, and fleet modernization, integrating charging infrastructure and reliable operations across WSF routes to meet climate goals and reduce fuel consumption.

 

Key Points

New WSF vessels using diesel-battery propulsion to cut emissions, improve efficiency, and sustain reliable ferry service.

✅ Hybrid diesel-battery propulsion reduces fuel use and CO2

✅ Larger vessels with efficient batteries and charging upgrades

✅ Compatible with WSF docks, maintenance, and safety standards

 

Washington State is embarking on an ambitious update to its ferry fleet, introducing hybrid-electric boats that represent a significant leap toward greener and more sustainable transportation. The state’s updated plans reflect a commitment to reducing carbon emissions and enhancing environmental stewardship while maintaining the efficiency and reliability of its vital ferry services.

The Washington State Ferries (WSF) system, one of the largest in the world, has long been a critical component of the state’s transportation network, linking various islands and coastal communities with the mainland. Traditionally powered by diesel engines, the ferries are responsible for significant greenhouse gas emissions. In response to growing environmental concerns and legislative pressure, WSF is now turning to hybrid-electric technology similar to battery-electric high-speed ferries seen elsewhere to modernize its fleet and reduce its carbon footprint.

The updated plans for the hybrid-electric boats build on earlier efforts to introduce cleaner technologies into the ferry system. The new designs incorporate advanced hybrid-electric propulsion systems that combine traditional diesel engines with electric batteries. This hybrid approach allows the ferries to operate on electric power during certain segments of their routes, reducing reliance on diesel fuel and cutting emissions as electric ships on the B.C. coast have demonstrated during similar operations.

One of the key features of the updated plans is the inclusion of larger and more capable hybrid-electric ferries, echoing BC Ferries hybrid ships now entering service in the region. These vessels are designed to handle the demanding operational requirements of the Washington State Ferries system while significantly reducing environmental impact. The new boats will be equipped with state-of-the-art battery systems that can store and utilize electric power more efficiently, leading to improved fuel economy and lower overall emissions.

The transition to hybrid-electric ferries is driven by both environmental and economic considerations. On the environmental side, the move aligns with Washington State’s broader goals to combat climate change and reduce greenhouse gas emissions, including programs like electric vehicle rebate program that encourage cleaner travel across the state. The state has set ambitious targets for reducing carbon emissions across various sectors, and upgrading the ferry fleet is a crucial component of achieving these goals.

From an economic perspective, hybrid-electric ferries offer the potential for long-term cost savings. Although the initial investment in new technology can be substantial, with financing models like CIB support for B.C. electric ferries helping spur adoption and reduce barriers for agencies, the reduced fuel consumption and lower maintenance costs associated with hybrid-electric systems are expected to lead to significant savings over the lifespan of the vessels. Additionally, the introduction of greener technology aligns with public expectations for more sustainable transportation options.

The updated plans also emphasize the importance of integrating hybrid-electric technology with existing infrastructure. Washington State Ferries is working to ensure that the new vessels are compatible with current docking facilities and maintenance practices. This involves updating docking systems, as seen with Kootenay Lake electric-ready ferry preparations, to accommodate the specific needs of hybrid-electric ferries and training personnel to handle the new technology.

Public response to the hybrid-electric ferry initiative has been largely positive, with many residents and environmental advocates expressing support for the move towards greener transportation. The new boats are seen as a tangible step toward reducing the environmental impact of one of the state’s most iconic transportation services. The project also highlights Washington State’s commitment to innovation and leadership in sustainable transportation, alongside global examples like Berlin's electric flying ferry that push the envelope in maritime transit.

However, the transition to hybrid-electric ferries is not without its challenges. Implementing new technology requires careful planning and coordination, including addressing potential technical issues and ensuring that the vessels meet all safety and operational standards. Additionally, there may be logistical challenges associated with integrating the new ferries into the existing fleet and managing the transition without disrupting service.

Despite these challenges, the updated plans for hybrid-electric boats represent a significant advancement in Washington State’s efforts to modernize its transportation system. The initiative reflects a growing trend among transportation agencies to embrace sustainable technologies and address the environmental impact of traditional transportation methods.

In summary, Washington State’s updated plans for hybrid-electric ferries mark a crucial step towards a more sustainable and environmentally friendly transportation network. By incorporating advanced hybrid-electric technology, the state aims to reduce carbon emissions, improve fuel efficiency, and align with its broader climate goals. While challenges remain, the initiative demonstrates a commitment to innovation and underscores the importance of transitioning to greener technologies in the quest for a more sustainable future.

 

Related News

View more

Japanese utilities buy into vast offshore wind farm in UK

Japan Offshore Wind Investment signals Japanese utilities entering UK offshore wind, as J-Power and Kansai Electric buy into Innogy's Triton Knoll, leveraging North Sea expertise, 9.5MW turbines, and 15-year fixed-rate contracts.

 

Key Points

Japanese utilities buying UK offshore wind stakes to import expertise, as J-Power and Kansai join Innogy's Triton Knoll.

✅ $900M deal: J-Power 25%, Kansai Electric ~16% in Innogy unit

✅ Triton Knoll: 860MW, up to 90 9.5MW turbines, 15-year fixed PPA

✅ Goal: Transfer North Sea expertise to develop Japan offshore wind

 

Two of Japan's biggest power companies will buy around 40% of a German-owned developer of offshore wind farms in the U.K., seeking to learn from Britain's lead in this sector, as highlighted by a UK offshore wind milestone this week, and bring the know-how back home.

Tokyo-based Electric Power Development, better known as J-Power, will join Osaka regional utility Kansai Electric Power in investing in a unit of Germany's Innogy.

The deal, estimated to be worth around $900 million, will give J-Power a 25% stake and Kansai Electric a roughly 16% share. It will mark the first investment in an offshore wind project by Japanese power companies, as other markets shift strategies, with Poland backing wind over nuclear signaling broader momentum.

Innogy plans to start up the 860-megawatt Triton Knoll offshore wind project -- one of the biggest of its kind in the world -- in the North Sea in 2021. The vast installation will have up to 90 9.5MW turbines and sell its output to local utilities under a 15-year fixed-rate contract.

J-Power, which supplies mainly fossil-fuel-based electricity to Japanese regional utilities, will set up a subsidiary backed by the government-run Development Bank of Japan to participate in the Innogy project. Engineers will study firsthand construction and maintenance methods.

While land-based wind turbines are proliferating worldwide, offshore wind farms have progressed mainly in Europe, though U.S. offshore wind competitiveness is improving in key markets. Installed capacity totaled more than 18,000MW at the end of 2017, which at maximum capacity can produce as much power as 18 nuclear reactors.

Japan has hardly any offshore wind farms in commercial operation, and has little in the way of engineering know-how in this field or infrastructure for linking such installations to the land power grid, with a recent Japan grid blackout analysis underscoring these challenges. But there are plans for a total of 4,000MW of offshore wind power capacity, including projects under feasibility studies.

J-Power set up a renewable energy division in June to look for opportunities to expand into wind and geothermal energy in Japan, and efforts like a Japan hydrogen energy system are emerging to support decarbonization. Kansai Electric also seeks know-how for increasing its reliance on renewable energy, even as it hurries to restart idled nuclear reactors.

They are not the only Japanese investors is in this field. In Asia, trading house Marubeni will invest in a Taiwanese venture with plans for a 600MW offshore wind farm.

 

Related News

View more

Green energy could drive Covid-19 recovery with $100tn boost

Renewable Energy Economic Recovery drives GDP gains, job growth, and climate targets by accelerating clean energy investment, green hydrogen, and grid modernization, delivering high ROI and a resilient, low-carbon transition through stimulus and policy alignment.

 

Key Points

A strategy to boost GDP and jobs by accelerating clean power and green hydrogen while meeting climate goals.

✅ Adds $98tn to global GDP by 2050; $3-$8 return per $1 invested

✅ Quadruples clean energy jobs to 42m; improves health and welfare

✅ Cuts CO2 70% by 2050; enables net-zero via green hydrogen

 

Renewable energy could power an economic recovery from Covid-19 through a green recovery that spurs global GDP gains of almost $100tn (£80tn) between now and 2050, according to a report.

The International Renewable Energy Agency’s new IRENA report found that accelerating investment in renewable energy could generate huge economic benefits while helping to tackle the global climate emergency.

The agency’s director general, Francesco La Camera, said the global crisis ignited by the coronavirus outbreak exposed “the deep vulnerabilities of the current system” and urged governments to invest in renewable energy to kickstart economic growth and help meet climate targets.

The agency’s landmark report found that accelerating investment in renewable energy would help tackle the climate crisis and would in effect pay for itself.

Investing in renewable energy would deliver global GDP gains of $98tn above a business-as-usual scenario by 2050, as clean energy investment significantly outpaces fossil fuels, by returning between $3 and $8 on every dollar invested.

It would also quadruple the number of jobs in the sector to 42m over the next 30 years, and measurably improve global health and welfare scores, according to the report.

“Governments are facing a difficult task of bringing the health emergency under control while introducing major stimulus and recovery measures, as a US power coalition demands action,” La Camera said. “By accelerating renewables and making the energy transition an integral part of the wider recovery, governments can achieve multiple economic and social objectives in the pursuit of a resilient future that leaves nobody behind.”

The report also found that renewable energy could curb the rise in global temperatures by helping to reduce the energy industry’s carbon dioxide emissions by 70% by 2050 by replacing fossil fuels, with measures like a fossil fuel lockdown hastening the shift.

Renewables could play a greater role in cutting carbon emissions from heavy industry and transport to reach virtually zero emissions by 2050, particularly by investing in green hydrogen.

The clean-burning fuel, which can replace the fossil fuel gas in steel and cement making, could be made by using vast amounts of clean electricity to split water into hydrogen and oxygen elements.

Andrew Steer, chief executive of the World Resources Institute, said: “As the world looks to recover from the current health and economic crises, we face a choice: we can pursue a modern, clean, healthy energy system, or we can go back to the old, polluting ways of doing business. We must choose the former.”

The call for a green economic recovery from the coronavirus crisis comes after a warning from Dr Fatih Birol, head of the International Energy Agency, that government policies must be put in place to avoid an investment hiatus in the energy transition, even as the solar and wind industry faces Covid-19 disruptions.

“We should not allow today’s crisis to compromise the clean energy transition, even as wind power growth persists despite Covid-19,” he said. “We have an important window of opportunity.”

Ignacio Galán, the chairman and CEO of the Spanish renewables giant Iberdrola, which owns Scottish Power, said the company would continue to invest billions in renewable energy as well as electricity networks and batteries to help integrate clean energy in the electricity.

“A green recovery is essential as we emerge from the Covid-19 crisis. The world will benefit economically, environmentally and socially by focusing on clean energy,” he said. “Aligning economic stimulus and policy packages with climate goals is crucial for a long-term viable and healthy economy.”

 

Related News

View more

Ontario Teachers' Plan Acquires Brazilian Electricity Transmission Firm Evoltz

Ontario Teachers' Evoltz Acquisition expands electricity transmission in Brazil, adding seven grid lines across ten states, aligning infrastructure strategy with inflation-linked cash flows, renewable energy integration, Latin America and net-zero objectives pending regulatory approvals.

 

Key Points

A 100% purchase of Brazil's Evoltz, adding seven grid lines and delivering stable, inflation-linked cash flows.

✅ 100% stake in Evoltz with seven transmission lines

✅ Aligns with net-zero and renewable energy strategy

✅ Inflation-linked, core infrastructure cash flows in Brazil

 

The Ontario Teachers’ Pension Plan has acquired Evoltz Participações, an electricity transmission firm in Brazil, from US asset manager TPG. 

The retirement system took a 100% stake in the energy firm, Ontario Teachers’ said Monday. The acquisition has netted the pension fund seven electricity transmission lines that service consumers and businesses across 10 states in Brazil, amid dynamics similar to electricity rate reductions for businesses seen in Ontario. The firm was founded by TPG just three years ago. 

“Our strategy focuses on allocating significant capital to high-quality core infrastructure assets with lower risks and stable inflation-linked cash flows,” Dale Burgess, senior managing director of infrastructure and natural resources at Ontario Teachers, said in a statement. “Electricity transmission businesses are particularly attractive given their importance in facilitating a transition to a low-carbon economy.” 

The pension fund has invested in other electricity distribution companies recently. In March, Ontario Teachers’ took a 40% stake in Finland’s Caruna, and agreed to acquire a 25% stake in SSEN Transmission in the UK grid. For more than a decade, it has maintained a 50% stake in Chile-based transmission firm Saesa. 

The investment into Evoltz demonstrates Ontario Teachers’ growing portfolio in Brazil and Latin America, while activity in Ontario such as the Peterborough Distribution sale reflects ongoing utility consolidation. In 2016, the firm, with the Canada Pension Plan Investment Board (CPPIB), invested in toll roads in Mexico. They took a 49% stake with Latin American infrastructure group IDEAL. 

Evoltz, which delivers renewable energy, will also help decarbonize the pension fund’s portfolio. In January, the fund pledged to reach net-zero carbon emissions by 2050. Last year, Ontario Teachers’ issued its first green bond offering. The $890 million 10-year bond will help the retirement system fund sustainable investments aligned with policy measures like Ontario's subsidized hydro plan during COVID-19. 

However, Ontario Teachers’ has also received criticism for its investment into parts of Abu Dhabi’s gas pipeline network, and investor concerns about Hydro One highlight sector uncertainties. Last summer, it joined other institutional investors in investing $10.1 billion for a 49% stake. 

As of December, Ontario Teachers’ reached a portfolio with C$221.2 billion (US$182.5 billion) in assets. Since 1990, the fund has maintained a 9.6% annualized return. Last year, it missed its benchmark with an 8.6% return, with examples such as Hydro One shares fall after shake-up underscoring market volatility.

The pension fund expects the deal will close later this fall, pending closing conditions and regulatory approvals, including decisions such as the OEB combined T&D rates ruling that shape utility economics. 

 

Related News

View more

A new approach finds materials that can turn waste heat into electricity

Thermoelectric Materials convert waste heat into electricity via the Seebeck effect; quantum computations and semiconductors accelerate discovery, enabling clean energy, higher efficiency, and scalable heat-to-power conversion from abundant, non-toxic, cost-effective compounds.

 

Key Points

Thermoelectric materials turn waste heat into electricity via the Seebeck effect, improving energy efficiency.

✅ Convert waste heat to electricity via the Seebeck effect

✅ Quantum computations rapidly identify high-performance candidates

✅ Target efficient, low-thermal-conductivity, non-toxic, abundant compounds

 

The need to transition to clean energy is apparent, urgent and inescapable. We must limit Earth’s rising temperature to within 1.5 C to avoid the worst effects of climate change — an especially daunting challenge in the face of the steadily increasing global demand for energy and the need for reliable clean power, with concepts that can generate electricity at night now being explored worldwide.

Part of the answer is using energy more efficiently. More than 72 per cent of all energy produced worldwide is lost in the form of heat, and advances in turning thermal energy into electricity could recover some of it. For example, the engine in a car uses only about 30 per cent of the gasoline it burns to move the car. The remainder is dissipated as heat.

Recovering even a tiny fraction of that lost energy would have a tremendous impact on climate change. Thermoelectric materials, which convert wasted heat into useful electricity, can help, especially as researchers pursue low-cost heat-to-electricity materials for scalable deployment.

Until recently, the identification of these materials had been slow. My colleagues and I have used quantum computations — a computer-based modelling approach to predict materials’ properties — to speed up that process and identify more than 500 thermoelectric materials that could convert excess heat to electricity, and help improve energy efficiency.


Making great strides towards broad applications
The transformation of heat into electrical energy by thermoelectric materials is based on the “Seebeck effect.” In 1826, German physicist Thomas Johann Seebeck observed that exposing the ends of joined pieces of dissimilar metals to different temperatures generated a magnetic field, which was later recognized to be caused by an electric current.

Shortly after his discovery, metallic thermoelectric generators were fabricated to convert heat from gas burners into an electric current. But, as it turned out, metals exhibit only a low Seebeck effect — they are not very efficient at converting heat into electricity.

In 1929, the Russian scientist Abraham Ioffe revolutionized the field of thermoelectricity. He observed that semiconductors — materials whose ability to conduct electricity falls between that of metals (like copper) and insulators (like glass) — exhibit a significantly higher Seebeck effect than metals, boosting thermoelectric efficiency 40-fold, from 0.1 per cent to four per cent.

This discovery led to the development of the first widely used thermoelectric generator, the Russian lamp — a kerosene lamp that heated a thermoelectric material to power a radio.


Are we there yet?
Today, thermoelectric applications range from energy generation in space probes to cooling devices in portable refrigerators, and include emerging thin-film waste-heat harvesters for electronics as well. For example, space explorations are powered by radioisotope thermoelectric generators, converting the heat from naturally decaying plutonium into electricity. In the movie The Martian, for example, a box of plutonium saved the life of the character played by Matt Damon, by keeping him warm on Mars.

In the 2015 film, The Martian, astronaut Mark Watney (Matt Damon) digs up a buried thermoelectric generator to use the power source as a heater.

Despite this vast diversity of applications, wide-scale commercialization of thermoelectric materials is still limited by their low efficiency.

What’s holding them back? Two key factors must be considered: the conductive properties of the materials, and their ability to maintain a temperature difference, as seen in nighttime electricity from cold concepts, which makes it possible to generate electricity.

The best thermoelectric material would have the electronic properties of semiconductors and the poor heat conduction of glass. But this unique combination of properties is not found in naturally occurring materials. We have to engineer them, drawing on advances such as carbon nanotube energy harvesters to guide design choices.

Searching for a needle in a haystack
In the past decade, new strategies to engineer thermoelectric materials have emerged due to an enhanced understanding of their underlying physics. In a recent study in Nature Materials, researchers from Seoul National University, Aachen University and Northwestern University reported they had engineered a material called tin selenide with the highest thermoelectric performance to date, nearly twice that of 20 years ago. But it took them nearly a decade to optimize it.

To speed up the discovery process, my colleagues and I have used quantum calculations to search for new thermoelectric candidates with high efficiencies. We searched a database containing thousands of materials to look for those that would have high electronic qualities and low levels of heat conduction, based on their chemical and physical properties. These insights helped us find the best materials to synthesize and test, and calculate their thermoelectric efficiency.

We are almost at the point where thermoelectric materials can be widely applied, but first we need to develop much more efficient materials. With so many possibilities and variables, finding the way forward is like searching for a tiny needle in an enormous haystack.

Just as a metal detector can zero in on a needle in a haystack, quantum computations can accelerate the discovery of efficient thermoelectric materials. Such calculations can accurately predict electron and heat conduction (including the Seebeck effect) for thousands of materials and unveil the previously hidden and highly complex interactions between those properties, which can influence a material’s efficiency.

Large-scale applications will require themoelectric materials that are inexpensive, non-toxic and abundant. Lead and tellurium are found in today’s thermoelectric materials, but their cost and negative environmental impact make them good targets for replacement.

Quantum calculations can be applied in a way to search for specific sets of materials using parameters such as scarcity, cost and efficiency, and insights can even inform exploratory devices that generate electricity out of thin air in parallel fields. Although those calculations can reveal optimum thermoelectric materials, synthesizing the materials with the desired properties remains a challenge.

A multi-institutional effort involving government-run laboratories and universities in the United States, Canada and Europe has revealed more than 500 previously unexplored materials with high predicted thermoelectric efficiency. My colleagues and I are currently investigating the thermoelectric performance of those materials in experiments, and have already discovered new sources of high thermoelectric efficiency.

Those initial results strongly suggest that further quantum computations can pinpoint the most efficient combinations of materials to make clean energy from wasted heat and the avert the catastrophe that looms over our planet.

 

Related News

View more

New bill would close loophole that left hundreds of Kentucky miners with cold checks

Kentucky Coal Wage Protection Bill strengthens performance bond enforcement, links Energy and Environment Cabinet and Labor Cabinet notifications, addresses Blackjewel bankruptcy fallout, safeguards unpaid miners, ties mining permits to payroll bonds, penalizes violators via revocations.

 

Key Points

A Kentucky plan to enforce wage bonds and revoke mining permits to protect miners after bankruptcies.

✅ Requires wage bonds for firms under 5 years

✅ Links Energy and Environment Cabinet and Labor Cabinet

✅ Violators face permit revocation in 90 days

 

Following the high-profile bankruptcy of a coal company that left hundreds of Kentucky miners with bad checks last month, Sen. Johnny Ray Turner (D-Prestonsburg) said he will pre-file a bill Thursday aimed at closing a loophole that allowed the company to operate in violation of state law.

The bill would also compel state agencies to determine whether other companies are currently in violation of the law, and could revoke mining permits if the companies don't comply.

Turner's bill would amend an already-existing law that requires coal and construction companies that have been operating in Kentucky for less than five years to post a performance bond to protect wages if the companies cease their operations.

Blackjewel LLC., which employed hundreds of miners in Eastern Kentucky, failed to post that bond. When it shut its mines down and filed for bankruptcy last month, it left hundreds of miners without payment for 3 weeks and one day of work.

The bond issue has sparked criticism from various state officials, including Attorney General Andy Beshear, who said Tuesday that he would investigate whether other companies are currently in violation, similar to an external investigation of utility workers in another jurisdiction.

Blackjewel issued cold checks to its employees June 28, and when the checks bounced days later, many employees were left with bank accounts overdrawn by more than $1,000. The bankruptcy left many miners and their families with concerns over upcoming bill and mortgage payments, and, as unpaid days off at utilities elsewhere show, the strain on workers can be severe, and fostered a ongoing protest that blocked a train hauling coal from one of the company's Harlan County mines.

Blackjewel had been operating in Kentucky for about two years before it filed for bankruptcy, so it should have paid the performance bond, according to state law.

David A. Dickerson, the Kentucky Labor Cabinet Secretary, said the law as it's currently written does not set up any mechanism that notifies the cabinet, or provides comparable public reporting at large utility projects elsewhere, when a company opens in Kentucky that is supposed to pay the bond.

That allowed Blackjewel to operate for two years without any protection for workers before it closed its mines. Had the company posted the bond according to state law, miners likely would have been paid for the work they had already completed, officials said.

The law requires companies to set aside enough money to cover payroll for four weeks.

Turner's bill would compel the state Energy and Environment Cabinet to notify the Labor Cabinet's Department of Workplace Standards of any application for a mining permit from a company that has been doing business in Kentucky for less than five years.

It also compels the EEC to notify the Labor Cabinet of any companies that already have permits that are subject to the bond.

"It should have already been that way, but I'm happy so our children don't have to go through this," said Jeff Willig, a former Blackjewel miner who helped launch the protest at the railroad.

Willig said he and other miners will continue to block the tracks until they receive payment for their past work.

Any company currently operating in violation of the law would have 90 days to become compliant before its mining permits are revoked. New companies that are applying for permits will be required post the bond before permits are issued.

"Hopefully it will take care of the loopholes that had been exploited by Blackjewel," Turner said.

The bill will be taken up by the legislature when it returns to session in January. It would also cover attorneys' fees if workers are forced to sue their employer to cover wages, underscoring broader worker safety concerns during health emergencies.

Turner said he has reached out to Republican leadership in the Senate, and expects the bill to have bipartisan support come January.

Turner announced the legislation at a press conference in Harlan, the county with the highest population of Blackjewel employees affected by the bankruptcy, and as prolonged utility outages after tornadoes have strained other Kentucky communities.

State rep. Angie Hatton (D-Whitesburg) was also in attendance, along with rep. Chris Fugate (R-Chavies) and state Sen. Morgan McGarvey (D-Louisville).

Hatton said the bankruptcy has had serious economic impact throughout Eastern Kentucky, including in Letcher County, which is home to more than 130 former Blackjewel workers.

"This is something that has done a lot of damage to Eastern Kentucky," Hatton said.

Hatton plans to file the same bill in the state House of Representatives.

Fugate commended community members in Harlan County and elsewhere who have banded together in support of the miners by donating children's clothing, school supplies, food and other goods, while other regions have created a coal transition fund to help displaced workers.

Mosley called the bankruptcy "totally unprecedented" and said the current performance bond law, which has been on-the-books since 1986, lacked the enforcement necessary to protect miners in bankruptcies like Blackjewel's, even as a workplace safety fine in another case shows regulatory consequences in other industries.

"There was a law, there wasn't good enough process," Mosley said.

Blackjewel received court approval to sell many of its mines last month, including many in Kentucky, to Kopper Glo Mining, LLC.

As part of the sale agreement, Kopper Glo said it would pay $450,000 to cover the past wages of Blackjewel miners, and collect a per ton fee accumulating up to $550,000 that it will also contribute to pay back wages.

That total $1 million is less than half of all back wages owed to Blackjewel miners, but attorneys who filed a class action suit against the company said miners have a priority lien on the purchase price. That could allow former Blackjewel employees to make good on their back wages as bankruptcy proceedings continue.

Mosley said he spoke with a Kopper Glo official Thursday, who said the company is working to re-open the mines as quickly as possible. The official did not give an exact timeline.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.