France's nuclear power poster child has a money meltdown

By Columbus Free Press


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The myth of a successful nuclear power industry in France has melted into financial chaos.

With it dies the corporate-hyped poster child for a "nuclear renaissance" of new reactor construction that is drowning in red ink and radioactive waste.

Areva, France's nationally owned corporate atomic façade, has plunged into a deep financial crisis led by a devastating shortage of cash.

Electricite de France, the French national utility, has been raided by European Union officials charging that its price-fixing may be undermining competition throughout the continent.

Delays and cost overruns continue to escalate at Areva's catastrophic Olkiluoto reactor construction project in Finland. Areva has admitted to a $2.2 billion, or 55%, cost increase in the Finnish building site after three and a half years. The Flamanville project — the only one now being built in France — is already over $1 billion more expensive than projected after a single year under construction.

In 2008, France's nuclear power output dropped 0.1%, while wind generation rose more than 37%.

Attempts to build new French reactors in the US are meeting stiffened resistance.

And the definitive failure of America's Yucca Mountain nuke waste dump mirrors France's parallel inability to deal with its own radioactive trash.

Widely portrayed as the model of corporate success, reactor-builder Areva is desperately short of money. As it begs a bailout from its dominant owner, the French government, Areva's mismanagement and overextension in promoting and building new reactors has wrecked its image in worldwide capital markets. According to Mycle Schneider, Paris-based author of "Nuclear Power in France — Beyond the Myth," Areva shares have plunged by over 60% since June 2008, twice as much as the CAC40, the standard indicator of the 40 largest French companies on the stock market.

Areva's hyper-active public relations department has made much of recent orders to build two new reactors in China. But it's now begging France's taxpayers for some $4 billion in short term bailout money, and may need still another $6 billion more to pay for investments in uranium mines, fuel production and heavy manufacturing ventures.

Areva will also need more than 2 billion Euros (about US$3 billion) to buy back shares in its nuclear reactor unit after Germany's Siemens pulled out of a joint venture. There have been significant, highly publicized bumps in the Chinese transaction. And Areva may now be forced to pony up billions more in penalties from delays and overruns at its reactor construction fiasco in Finland.

The Finnish government will also have to meet additional costs from trading in carbon emissions because it had firmly counted on the new reactor to supply "green" power as of this year. Olkiluoto is now not expected to deliver electricity before 2012.

Areva's woes have caused French President Nicolas Sarkozy to face possible job cuts and asset sales at the government-controlled energy giant, which was formed in 2001.

China's two-reactor order includes a promise from Areva to supply up to 20 years worth of nuclear fuel. Areva also hopes to sell at least seven reactors in the US, but these plans are meeting stiff resistance. Complex ownership and licensing battles have erupted at Constellation Energy, meant to be the conduit for two new reactors in Maryland.

Ratepayer revolts in Florida and Missouri have arisen over plans to force the public to pay for new reactors as they are being built. Electric rates in the Sunshine State have already begun to soar due to proposed nuke construction, prompting an angry grassroots upheaval.

The potential American reactor market has also been bloodied by the definitive disposal of the proposed high-level dump at Yucca Mountain, Nevada. After decades as the centerpiece of America's "solution" to the nuke waste problem, with at least $10 billion spent on it, Yucca's failure underscores France's own waste dilemma.

The French reprocessing center at La Hague has come under widespread attack for its massive radiation discharges into the English Channel and surrounding atmosphere. The plant has produced over nine thousand containers of extremely high level wastes with no safe place to go. Its by-product of plutonium has complicated global attempts to curb the spread of radioactive materials capable of being turned into nuclear bombs.

In addition to the reprocessing wastes, without a permanent repository of its own, France's 58 reactors have also accumulated over ten thousand tons of spent fuel rods, as the 104 units in the U.S. constantly generate.

Areva says it hopes to raise cash by selling part of a uranium enrichment plant under construction in southern France to Japan's Kansai Electric. Other asset sales may be hampered by slumping market values. Areva also hopes to partner with U.S. weapons builder Northrop Grumman to build heavy reactor equipment in Virginia.

But on March 11, European Union regulators raided EdF offices because "suspected illegal conduct may include actions to raise prices on the French wholesale electricity market." The stunning action against the massive conglomerate, which is 84.8% owned by the French government, could result in huge fines.

The EU says EdF may have manipulated prices and redrawn contracts for some 60 key corporate users. Nuke backers constantly tout that close to 80% of France's electricity comes from reactors whose power flows through EdF. But Areva's cash shortage and EdF's price-fixing scandal underscore the huge financial imbalances imposed by building and operating atomic reactors.

According to Schneider, "EDF's shares dropped by over 40% during the last six months alone. When management in February 2009 announced that larger than expected charges had corroded profits, share value dropped by 7% overnight and continued to fall since. The EDF share now stands 12% below the value when it was first introduced to the stock market in November 2005. Not really a brilliant investment."

EdF and Areva are at the core of what has been labeled as the global "nuclear renaissance." Their escalating money problems underscore an epic failure that has been a significant factor in the current global economic crisis. After a half- century of massive government subsidies in the U.S., UK, France and elsewhere, atomic energy still staggers under an unsustainable load of high construction costs and uncompetitive prices for the electricity it generates.

EdF's recent $17.5 billion takeover of nuke utility British Energy came with a warning from EdF officials that England's commitment to wind turbines could undermine the future of nuclear power. The statement evoked widespread astonishment and scorn from the environmental community.

In the financial community, concerns still linger over the half-trillion-dollar (and still climbing) cost of the 1986 explosion at Chernobyl. The instant $900 million conversion of the "asset" at Three Mile Island into an epic liability occurred 30 years ago this month. (The conversion of Michigan's Fermi I reactor at Monroe into a $100 million molten mess happened October 5, 1966).

The costs from the earthquake last year that crippled seven reactors at Japan's Kashiwazaki are still rising. The failure of Yucca Mountain has converted billions of dollars in utility and taxpayer investments into pure waste. Growing grassroots movements in Vermont and elsewhere threaten to cut off license extensions and shut American reactors at which decommissioning funds have been slashed by the collapse of U.S. investment funds.

The argument that atomic energy provides an answer for global warming turned to a deep embarrassment in France when reactors were forced to shut during the summer heat because they were raising river temperatures far beyond legal limits. In another case, a reactor containment had to be sprayed in order to cool it back to operational temperatures. Similar shutdowns came at a reactor in Alabama.

But as massive cost overruns and delays continue to escalate at Areva's showpiece reactor construction fiasco in Finland, the industry clamors for unlimited access to taxpayer funds. The surging stream of atomic failure continues to guarantee that private investors will instead favor true green technologies like solar, wind and efficiency.

Thus in France, as elsewhere, the "nuclear renaissance" may be stillborn. In 2007, world nuclear electricity generation dropped by an unprecedented 2%. According to Schneider, in 2008, for the first time in nuclear power history, no new reactor was connected to the grid anywhere on Earth.

As Schneider's "Nuclear Power in France — Beyond the Myth" points out, after 35 years of nuclear power development, the French "nuclear dreamland" gets only 16% of its final energy from nuclear power. Commissioned by the Greens-EFA Group in the European Parliament (Brussels, December, 2008), Schneider's report shows that despite its huge nuclear commitment, almost half of France's energy consumption still comes from oil.

In fact, says Schneider, "the wasteful nature of the French economy and households leads to a higher per capita consumption of oil than in Germany, Italy, the UK or even the EU on average.

"Those who think that nuclear power would be a cheap and clean way to render the U.S. less dependent on oil should have a close look at the French record."

At the French heart of its "renaissance," the nuclear clock is winding down, not up. Time is running out for a radioactive technology that, after fifty years, remains unable to muster a sustainable level of private financing, shows no real promise of ever paying for itself, and has now plunged into deepening financial chaos.

Related News

Hinkley C nuclear reactor roof lifted into place

Hinkley Point C dome lift marks a nuclear reactor milestone in Somerset, as EDF used Big Carl crane to place a 245-tonne steel roof, enabling 2027 startup amid costs, delays, and precision indoor welding.

 

Key Points

A 245-tonne dome lifted onto Hinkley Point C's first reactor, finishing the roof and enabling fit-out for a 2027 startup.

✅ 245-tonne steel dome lifted by Big Carl onto 44m-high reactor

✅ Indoor welding avoided weather defects seen at Flamanville

✅ Cost now £33bn; first power targeted by end of 2027

 

Engineers have lifted a steel roof onto a building which will house the first of two nuclear reactors at Hinkley Point in Somerset.

Hundreds of people helped with the delicate operation to get the 245-tonne steel dome into position.

It means the first reactor can be installed next year, ready to be switched on in June 2027.

Engineers at EDF said the "challenging job" was completed in just over an hour.

They first broke the ground on the new nuclear station in March 2017. Now, some 10,000 people work on what is Europe's largest building site.

Yet many analysts note that Europe is losing nuclear power even as demand for reliable energy grows.

They have faced delays from Covid restrictions and other recent setbacks, and the budget has doubled to £33bn, so getting the roof on the first of the two reactor buildings is a big deal.

EDF's nuclear island director Simon Parsons said it was a "fantastic night".

"Lifting the dome into place is a celebration of all the work done by a fantastic team. The smiles on people's faces this morning were something else.

"Now we can get on with the fitting of equipment, pipes and cables, including the first reactor which is on site and ready to be installed next year."

Nuclear minister Andrew Bowie hailed the "major milestone" in the building project, citing its role in the UK's green industrial revolution ambitions.

He said: "This is a key part of the UK Government's plans to revitalise nuclear."

But many still question whether Hinkley Point C will be worth all the money, especially after Hitachi's project freeze in Britain, with Roy Pumfrey of the Stop Hinkley campaign describing the project as "shockingly bad value".


Why lift the roof on?

The steel dome is bigger than the one on St Paul's Cathedral in London.

To lift it onto the 44-metre-high reactor building, they needed the world's largest land-based crane, dubbed Big Carl by engineers.

So why not just build the roof on top of the building?

The answer lies in a remote corner of Normandy in France, near a village called Flamanville.

EDF has been building a nuclear reactor there since 2007, ten years before they started in west Somerset.

The project is now a decade behind schedule and has still not been approved by French regulators.

Why? Because of cracks found in the precision welding on the roof of the reactor building.

In nuclear-powered France, they built the roof in situ, out in the open. 

Engineers have decided welding outside, exposed to wind and rain, compromised the high standards needed for a nuclear reactor.

So in Somerset they built a temporary workshop, which looks like a fair sized building itself. All the welding has been done inside, and then the completed roof was lifted into place.


Is it on time or on budget?

No, neither. When Hinkley C was first approved a decade ago, EDF said it would cost £14bn.

Four years later, in 2017, they finally started construction. By now the cost had risen to £19.5bn, and EDF said the plant would be finished by the end of 2025.

Today, the cost has risen to £33bn, and it is now hoped Hinkley C will produce electricity by the end of 2027.

"Nobody believes it will be done by 2027," said campaigner Roy Pumfrey.

"The costs keep rising, and the price of Hinkley's electricity will only get dearer," they added.

On the other hand, the increase in costs is not a problem for British energy bill payers, or the UK government.

EDF agreed to pay the full cost of construction, including any increases.

When I met Grant Shapps, then the UK Energy Secretary, at the site in April, he shrugged off the cost increases.

He said: "I think we should all be rather pleased it is not the British tax payer - it is France and EDF who are paying."

In return, the UK government agreed a set rate for Hinkley's power, called the Strike Price, back in 2013. The idea was this would guarantee the income from Hinkley Point for 35 years, allowing investors to get their money back.


Will it be worth the money?

Back in 2013, the Strike Price was set at £92.50 for each megawatt hour of power. At the time, the wholesale price of electricity was around £50/MWh, so Hinkley C looked expensive.

But since then, global shocks like the war in Ukraine have increased the cost of power substantially, and advocates argue next-gen nuclear could deliver smaller, cheaper, safer designs.

 

Related News

View more

Nuclear Innovation Needed for American Energy, Environmental Future

Advanced Nuclear Technology drives decarbonization through innovation, SMRs, and a stable grid, bolstering U.S. leadership, energy security, and clean power exports under supportive regulation and policy to meet climate goals cost-effectively.

 

Key Points

Advanced nuclear technology uses SMRs to deliver low-carbon, reliable power and strengthen energy security.

✅ Accelerates decarbonization with firm, low-carbon baseload power

✅ Enhances grid reliability via SMRs and advanced fuel cycles

✅ Supports U.S. leadership through exports, R&D, and modern regulation

 

The most cost-effective way--indeed the only reasonable way-- to reduce greenhouse gas emissions and foster our national economic and security interests is through innovation, especially next-gen nuclear power innovation. That's from Rep. Greg Walden, R-Oregon, ranking Republican member of the House Energy and Commerce Committee, speaking to a Subcommittee on Energy hearing titled, "Building a 100 Percent Clean Economy: Advanced Nuclear Technology's Role in a Decarbonized Future."

Here are the balance of his remarks.

Encouraging the deployment of atomic energy technology, strengthening our nuclear industrial base, implementing policies that helps reassert U.S. nuclear leadership globally... all provide a promising path to meet both our environmental and energy security priorities. In fact, it's the only way to meet these priorities.

So today can help us focus on what is possible and what is necessary to build on recent policies we've enacted to ensure we have the right regulatory landscape, the right policies to strengthen our domestic civil industry, and the advanced nuclear reactors on the horizon.

U.S. global leadership here is sorely needed. Exporting clean power and clean power technologies will do more to drive down global Co2 emissions on the path to net-zero emissions worldwide than arbitrary caps that countries fail to meet.

In May last year, the International Energy Agency released an informative report on the role of nuclear power in clean energy systems; it did not find current trends encouraging.

The report noted that nuclear and hydropower "form the backbone of low-carbon electricity generation," responsible for three-quarters of global low-carbon generation and the reduction of over 60 gigatons of carbon dioxide emissions over the past 50 years.

Yet IEA found in advanced economies, nuclear power is in decline, with closing plants and little new investment, "just when the world requires more low-carbon electricity."

There are various reasons for this, some relating to cost overruns and delays, others to policies that fail to value the "low-carbon and energy security attributes" of nuclear. In any case, the report found this failure to encourage nuclear will undermine global efforts to develop cleaner electricity systems.

Germany demonstrates the problem. As it chose to shut down its nuclear industry, it has doubled down on expanding renewables like solar and wind. Ironically, to make this work, it also doubled down on coal. This nuclear phase out has cost Germany $12 billion a year, 70% of which is from increased mortality risk from stronger air pollutants (this according to the National Bureau of Economic Research). If other less technologically advanced nations even could match the rate of renewables growth reached by Germany, they would only hit about a fifth of what is necessary to reach climate goals--and with more expensive energy. So, would they then be forced to bring online even more coal-fired sources than Germany?

On the other hand, as outlined by the authors of the pro-nuclear book "A Bright Future," France and Sweden have both demonstrated in the 1970s and 1980s, how to do it. They showed that the build out of nuclear can be done at five times the rate of Germany's experience with renewables, with increased electricity production and relatively lower prices.

I think the answer is obvious about the importance of nuclear. The question will be "can the United States take the lead going forward?"

We can help to do this in Congress if we fully acknowledge what U.S. leadership on nuclear will mean--both for cleaner power and industrial systems beyond electricity, here and abroad--and for the ever-important national security attributes of a strong U.S. industry.

Witnesses have noted in recent hearings that recognizing how U.S. energy and climate policy effects energy and energy technology relationships world-wide is critical to addressing emissions where they are growing the fastest and for strengthening our national security relationships.

Resurrecting technological leadership in nuclear technology around the world will meet our broader national and energy security reasons--much as unleashing U.S. LNG from our shale revolution restored our ability to counter Russia in energy markets, while also driving cleaner technology. Our nuclear energy exports boost our national security priorities.

We on Energy and Commerce have been working, in a bipartisan manner over the past few Congresses to enhance U.S. nuclear policies. There is most certainly more to do. And I think today's hearing will help us explore what can be done, both administratively and legislatively, to pave the way for advanced nuclear energy.

Let me welcome the panel today. Which, I'm pleased to see, represents several important perspectives, including industry, regulatory, safety, and international expertise, to two innovative companies--Terrapower and my home state of Oregon's NuScale. All of these witnesses can speak to what we need to do to build, operate and lead with these new technologies.

We should work to get our nation's nuclear policy in order, learning from global frameworks like the green industrial revolution abroad. Today represents a good step in that effort.

 

Related News

View more

Green hydrogen, green energy: inside Brazil's $5.4bn green hydrogen plant

Enegix Base One Green Hydrogen Plant will produce renewable hydrogen via electrolysis in Ceara, Brazil, leveraging 3.4 GW baseload renewables, offshore wind, and hydro to scale clean energy, storage, and export logistics.

 

Key Points

A $5.4bn Ceara, Brazil project to produce 600m kg of green hydrogen annually using 3.4 GW of baseload renewables.

✅ 3.4 GW baseload from hydro and offshore wind pipelines

✅ Targets 600m kg green hydrogen per year via electrolysis

✅ Focus on storage, transport, and export supply chains

 

In March, Enegix Energy announced some of the most ambitious hydrogen plans the world has ever seen. The company signed a memorandum of understanding (MOU) with the government of the Brazilian state of Ceará to build the world’s largest green hydrogen plant in the state on the country’s north-eastern coast, and the figures are staggering.

The Base One facility will produce more than 600 million kilograms of green hydrogen annually from 3.4GW of baseload renewable energy, and receive $5.4bn in investment to get the project off the ground and producing within four years.

Green hydrogen, hydrogen produced by electrolysis that is powered by renewables, has significant potential as a clean energy source. Already seeing increased usage in the transport sector, the power source boasts the energy efficiency and the environmental viability to be a cornerstone of the world’s energy mix.

Yet practical challenges have often derailed large-scale green hydrogen projects, from the inherent obstacle of requiring separate renewable power facilities to the logistical and technological challenges of storing and transporting hydrogen. Could vast investment, clever planning, and supportive governments and programs like the DOE’s hydrogen hubs initiative help Enegix to deliver on green hydrogen’s oft-touted potential?

Brazilian billions
The Base One project is exceptional not only for its huge scale, but the timing of its construction, with demand for hydrogen set to increase dramatically over the next few decades. Figures from Wood Mackenzie suggest that hydrogen could account for 1.4 billion tonnes of energy demand by 2050, one-tenth of the world’s supply, with green hydrogen set to be the majority of this figure.

Yet considering that, prior to the announcement of the Enegix project, global green hydrogen capacity was just 94MW, advances in offshore green hydrogen and the development of a project of this size and scope could scale up the role of green hydrogen by orders of magnitude.

“We really need to [advance clean energy] without any emissions on a completely clean, carbon neutral and net-zero framework, and so we needed access to a large amount of green energy projects,” explains Wesley Cooke, founder and CEO of Enegix, a goal aligned with analyses that zero-emissions electricity by 2035 is possible, discussing the motivation behind the vast project.

With these ambitious goals in mind, the company needed to find a region with a particular combination of political will and environmental traits to enable such a project to take off.


“When we looked at all of these key things: pipeline for renewables, access to water, cost of renewables, and appetite for renewables, Brazil really stood out to us,” Cooke continues. “The state of Ceará, that we’ve got an MOU with the government in at the moment, ticks all of these boxes.”

Ceará’s own clean energy plans align with Enegix’s, at least in terms of their ambition and desire for short-term development. Last October, the state announced that it plans to add 5GW of new offshore wind capacity in the next five years. With BI Energia alone providing $2.5bn in investment for its 1.2GW Camocim wind facility, there is significant financial muscle behind these lofty ambitions.

“One thing I should add is that Brazil is very blessed when it comes to baseload renewables,” says Cooke. “They have an incredibly high percentage of their country-wide energy that comes from renewable sources and a lot of this is in part due to the vast hydro schemes that they have for hydro dams. Not a lot of countries have that, and specifically when you’re trying to produce hydrogen, having access to vast amounts of renewables [is vital].”

Changing perceptions and tackling challenges
This combination of vast investment and integration with the existing renewable power infrastructure of Ceará could have cultural impacts too. The combination of state support for and private investment in clean energy offsets many of the narratives emerging from Brazil concerning its energy policies and environmental protections, even as debates over clean energy's trade-offs persist in Brazil and beyond, from the infamous Brumadinho disaster to widespread allegations of illegal deforestation and gold mining.

“I can’t speak for the whole of Brazil, but if we look at Ceará specifically, and even from what we’ve seen from a federal government standpoint, they have been talking about a hydrogen roadmap for Brazil for quite some time now,” says Cooke, highlighting the state’s long-standing support for green hydrogen. “I think we came in at the perfect time with a very solid plan for what we wanted to do, [and] we’ve had nothing but great cooperation, and even further than just cooperation, excitement around the MOU.”

This narrative shift could help overcome one of the key challenges facing many hydrogen projects, the idea that its practical difficulties render it fundamentally unsuitable for baseload power generation. By establishing a large-scale green hydrogen facility in a country that has recently struggled to present itself as one that is invested in renewables, the Base One facility could be the ultimate proof that such clean hydrogen projects are viable.

Nevertheless, practical challenges remain, as is the case with any energy project of this scale. Cooke mentions a number of solutions to two of the obstacles facing hydrogen production around the world: renewable energy storage and transportation of the material.

“We were looking at compressed hydrogen via specialised tankers [and] we were looking at liquefied hydrogen, [as] you have to get liquefied hydrogen very cool to around -253°, and you can use 30% to 40% of your total energy that you started with just to get it down to that temperature,” Cooke explains.

“The other aspect is that if you’re transporting this internationally, you really have to think about the supply chain. If you land in a country like Indonesia, that’s wonderful, but how do you get it from Indonesia to the customers that need it? What is the supply chain? What does that look like? Does it exist today?”

The future of green hydrogen
These practical challenges present something of a chicken and egg problem for the future of green hydrogen: considerable up-front investment is required for functions such as storage and transport, but the difficulties of these functions can scare off investors and make such investments uncommon.

Yet with the world’s environmental situation increasingly dire, more dramatic, and indeed risky, moves are needed to alter its energy mix, and Enegix is one company taking responsibility and accepting these risks.

“We need to have the renewables to match the dirty fuel types,” Cooke says. “This [investment] will really come from the decisions that are being made right now by large-scale companies, multi-billion-euro-per-year revenue companies, committing to building out large scale factories in Europe and Asia, to support PEM [hydrolysis].”

This idea of large-scale green hydrogen is also highly ambitious, considering the current state of the energy source. The International Renewable Energy Agency reports that around 95% of hydrogen comes from fossil fuels, so hydrogen has a long ways to go to clean up its own carbon footprint before going on to displace fossil fuel-driven industries.

Yet this displacement is exactly what Enegix is targeting. Cooke notes that the ultimate goal of Enegix is not simply to increase hydrogen production for use in a single industry, such as clean vehicles. Instead, the idea is to develop green hydrogen infrastructure to the point where it can replace coal and oil as a source of baseload power, leapfrogging other renewables to form the bedrock of the world’s future energy mix.

“The problem with [renewable] baseload is that they’re intermittent; the wind’s not always blowing and the sun’s not always shining and batteries are still very expensive, although that is changing. When you put those projects together and look at the levelised cost of energy, this creates a chasm, really, for baseload.

“And for us, this is really where we believe that hydrogen needs to be thought of in more detail and this is what we’re really evangelising about at the moment.”

A more hydrogen-reliant energy mix could also bring social benefits, with Cooke suggesting that the same traits that make hydrogen unwieldy in countries with established energy infrastructures could make hydrogen more practically viable in other parts of the world.

“When you look at emerging markets and developing markets at the moment, the power infrastructure in some cases can be quite messy,” Cooke says. “You’ve got the potential for either paying for the power or extending your transmission grid, but rarely being able to do both of those.

“I think being able to do that last mile piece, utilising liquid organic hydrogen carrier as an energy vector that’s very cost-effective, very scalable, non-toxic, and non-flammable; [you can] get that power where you need it.

“We believe hydrogen has the potential to be very cost-effective at scale, supporting a vision of cheap, abundant electricity over time, but also very modular and usable in many different use cases.”

 

Related News

View more

Canadian Manufacturers and Exporters Congratulates the Ontario Government for Taking Steps to Reduce Electricity Prices

Ontario Global Adjustment Deferral offers COVID-19 electricity bill relief to industrial and commercial consumers not on the RPP, aligning GA to March levels for Class A and Class B manufacturers to improve cash flow.

 

Key Points

A temporary GA deferral easing electricity costs for Ontario industrial and commercial users not on the RPP.

✅ Sets Class B GA at $115/MWh; Class A gets equal percentage cut.

✅ Applies April-June 2020; automatic bill adjustments and credits.

✅ Deferred charges repaid over 12 months starting January 2021.

 

Manufacturers welcome the Government of Ontario's decision to defer a portion of Global Adjustment (GA) charges as part of support for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan.

"Manufacturers are pleased the government listened to Canadian Manufacturers & Exporters (CME) member recommendations and is taking action to reduce Ontario electricity bills immediately," said Dennis Darby, President & CEO of CME.

"The majority of manufacturers have identified cash flow as their top concern during the crisis, "added Darby. "The GA system would have caused a nearly $2 billion cost surge to Ontario manufacturers this year. This new initiative by the government is on top of the billions in support already provided to help manufacturers weather this unprecedented storm, while other provinces accelerate British Columbia's clean energy shift to drive long-term competitiveness. All these measures are a great start in helping businesses of all sizes stay afloat during the crisis and, keeping Ontarians employed."

"We call on the Ontario government to continue to consider the impact of electricity costs on the manufacturing sector, even after the COVID-19 crisis is resolved," stated Darby. "High prices are putting Ontario manufacturers at a significant competitive disadvantage and, discourages investments." A recent report from London Economics International (LEI) found that when compared to jurisdictions with similar manufacturing industries, Ontario's electricity prices can be up to 75% more expensive, underscoring the importance of planning for Toronto's growing electricity needs to maintain affordability.

To provide companies with temporary immediate relief on their electricity bills, the Ontario government is deferring a portion of Global Adjustment (GA) charges for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP), starting from April 2020, as some regions saw reduced electricity demand from widespread remote work during the pandemic. The GA rate for smaller industrial and commercial consumers (i.e., Class B) has been set at $115 per megawatt-hour, which is roughly in line with the March 2020 value. Large industrial and commercial consumers (i.e., Class A) will receive the same percentage reduction in GA charges as Class B consumers.

The Ontario government intends to keep this relief in place through the end of June 2020, alongside investments like smart grid technology in Sault Ste. Marie to support reliability, subject to necessary extensions and approvals to implement this initiative.

Industrial and commercial electricity consumers will automatically see this relief reflected on their bills. Consumers who have already received their April bill should see an adjustment on a future bill.

Related initiatives include developing cyber standards for electricity sector IoT devices to strengthen system security.

The government intends to bring forward subsequent amendments that would, if approved, recover the deferred GA charges (excluding interest) from industrial and commercial electricity consumers, as Toronto prepares for a surge in electricity demand amid continued growth, over a 12-month period beginning in January 2021.

 

Related News

View more

Egypt, China's Huawei discuss electricity network's transformation to smart grid

Egypt-Huawei Smart Grid advances Egypt's energy sector with digital transformation, grid modernization, and ICT solutions, enhancing power generation, transmission, and distribution while enabling renewable integration, data analytics, cybersecurity, and scalable infrastructure nationwide.

 

Key Points

An Egypt-Huawei project to modernize Egypt's grid into a smart network using ICT, analytics, and scalable infrastructure.

✅ Gradual migration to a smart grid to absorb higher load

✅ Boosts generation, transmission, and distribution efficiency

✅ ICT training supports workforce and digital transformation

 

Egypt and China's tech giant Huawei on Thursday discussed the gradual transformation of Egypt's electricity network to a smart grid model, Egyptian Ministry of Electricity and Renewable Energy said.

Egyptian Minister of Electricity and Renewable Energy Mohamed Shaker met with Huawei's regional president Li Jiguang in Cairo, where they discussed the cooperation, the ministry said in a statement.

The meeting is part of Egypt's plans to develop its energy sector based on the latest technologies and smarter electricity infrastructure initiatives, it added.

During the meeting, Shaker hailed the existing cooperation between Egypt and China in several mega projects, citing regional efforts like the Philippines power grid upgrades, welcoming further cooperation with China to benefit from its expertise and technological progress.

"The future vision of the Egyptian electricity sector is based on the gradual transformation of the current network from a typical one to a smart grid that would help absorb the large amounts of generated power," Shaker said.

Shaker highlighted his ministry's efforts to improve its services, including power generation, transportation and grid improvements across distribution.

Li, president of Huawei Northern Africa Enterprise Business Group, commended the rapid and remarkable development of the projects implemented by the Egyptian ministry to establish a strong infrastructure along with a smart grid that supports the digital grid transformation.

The Huawei official added that despite the challenges the corporation faced in the first half of 2020, it has managed to achieve revenues growth, which shows Huawei's strength and stability amid global challenges such as cybersecurity fears in critical infrastructure.

In late February, Egypt's Ministry of Higher Education and Scientific Research and Huawei discussed plans to provide training to develop the skills of Egyptian university students talented in information and communications technology, including emerging topics like 5G energy use considerations.

 

Related News

View more

Planning for our electricity future should be led by an independent body

Nova Scotia Integrated Resource Plan evaluates NSPI supply options, UARB oversight, Muskrat Falls imports, coal retirements, wind and biomass expansion, transmission upgrades, storage, and least-cost pathways to decarbonize the grid for ratepayers.

 

Key Points

A 25-year roadmap assessing supply, imports, costs, and emissions to guide least-cost decarbonization for Nova Scotia.

✅ Compares wind, biomass, gas, imports, and storage costs

✅ Addresses coal retirements, emissions caps, and reliability

✅ Recommends transmission upgrades and Muskrat Falls utilization

 

Maintaining a viable electricity network requires good long-term planning and, as a recent grid operations report notes, ongoing operational improvements. The existing stock of generating assets can become obsolete through aging, changes in fuel prices or environmental considerations. Future changes in demand must be anticipated.

Periodically, an integrated resource plan is created to predict how all this will add up during the ensuing 25 years. That process is currently underway and is led by Nova Scotia Power Inc. (NSPI) and will be submitted for approval to the Utilities and Review Board (UARB).

Coal-fired plants are still the largest single source of electricity in Nova Scotia. They need to be replaced with more environmentally friendly sources when they reach the end of their useful lives. Other sources include wind, hydroelectricity from rivers, biomass, as seen in increased biomass use by NS Power, natural gas and imports from other jurisdictions.

Imports are used sparingly today but will be an important source when the electricity from Muskrat Falls comes on stream. That project has big capacity. It can produce all the power needed in Newfoundland and Labrador (NL), where Quebec's power ambitions influence regional flows, plus the amount already committed to Nova Scotia, and still have a lot left over.

Some sources of electricity are more valuable than others. The daily amount of power from wind and solar cannot be controlled. Fuel-based sources and hydro can.

Utilities make their profits by providing the capital necessary to build infrastructure. Most of the money is borrowed but a portion, typically 30 per cent, usually comes from NSPI or a sister company. On that they receive a rate of return of nine per cent. Nova Scotia can borrow money today at less than two per cent.

The largest single investment of that type is the $1.577-billion Maritime Link connecting power from Newfoundland to Nova Scotia. It continues through to the New Brunswick border to facilitate exports to the United States. NSPI’s sister company, NSP Maritime Link Inc. (NSPML), is making nine per cent on $473 million of the cost.

There is little unexploited hydro capacity in Nova Scotia and there will not be any new coal-fired plants. Large-scale solar is not competitive in Nova Scotia’s climate. Nova Scotia’s needs would not accommodate the amount of nuclear capacity needed to be cost-effective, even as New Brunswick explores small reactors in its strategy.

So the candidates for future generating resources are wind, natural gas, biomass (though biomass criticism remains) and imports from other jurisdictions. Tidal is a promising opportunity but is still searching for a commercially viable technology. 

NSPI is commendably transparent about its process (irp.nspower.ca). At this stage there is little indication of the conclusions they are reaching but that will presumably appear in due course.

The mountains of detail might obscure the fact that NSPI is not an unbiased arbiter of choices for the future.

It is reported that they want to prematurely close the Trenton 5 coal plant in 2023-25. It is valued at $88.5 million. If it is closed early, ratepayers will still have to pay off the remaining value even though the plant will be idle. NSPI wants to plan a decommissioning of five of its other seven plants. There is a federal emissions constraint but retiring coal plants earlier than needed will cost ratepayers a lot.

Whenever those plants are closed, there will be a need for new sources of power. NSPI is proposing to plan for new investments in new transmission infrastructure to facilitate imports. Other possibilities would be additional wind farms, consistent with the shift to more wind and solar projects, thermal plants that burn natural gas or biomass, or storage for excess wind power that arrives before it can be used. The investment in storage could be anywhere from $20 million to $200 million.

These will add to the asset burden funded by ratepayers, even as industrial customers seek discounts while still paying for shuttered coal infrastructure.

External sources of new power will not provide NSPI the same opportunity: wind power by independent producers might be less expensive because they are willing to settle for less than nine per cent or because they are more efficient. Buying more power from Muskrat Falls will use transmission infrastructure we are already paying for. If a successful tidal technology is found, it will not be owned by NSPI or a sister company, which are no longer trying to perfect the technology.

This is not to suggest that NSPI would misrepresent the alternatives. But they can tilt the discussion in their favour. How tough will they be negotiating for additional Muskrat Falls power when it hurts their profits? Arguing for premature coal retirement on environmental grounds is fair game but whether the cost should be accepted is a political choice. 

NSPI is in a conflict of interest. We need a different process. An independent body should author the integrated resource plan. They should be fully informed about NSPI’s views.

They should communicate directly with Newfoundland and Labrador for Muskrat power, with independent wind producers, and with tidal power companies. The UARB cannot do any of these things.

The resulting plan should undergo the same UARB review that NSPI’s version would. This enhances the likelihood that Nova Scotians will get the least-cost alternative.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified