Construction worker electrocuted in Ottawa County

By Associated Press


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Western Michigan authorities say a construction worker has been electrocuted in an on-the-job accident.

The Ottawa County sheriff's department tells WGHN-FM and WOOD-TV the 44-year-old man was driving a construction truck one morning when its boom touched a CMS Energy Corp. power line.

Scott Maxwell got out of the truck and then tried to re-enter it when he came in contact with the electrical charge.

Co-workers tried to revive the Coopersville man, but he was declared dead at Spectrum Health in Grand Rapids.

The accident happened at a house in Wright Township, about 145 miles west-northwest of Detroit.

Related News

Major U.S. utilities spending more on electricity delivery, less on power production

U.S. Utility Spending Shift highlights rising transmission and distribution costs, grid modernization, and smart meters, while generation expenses decline amid fuel price volatility, capital and labor pressures, and renewable integration across the power sector.

 

Key Points

A decade-long trend where utilities spend more on delivery and grid upgrades, and less on electricity generation costs.

✅ Delivery O&M, wires, poles, and meters drive rising costs

✅ Generation spending declines amid fuel price changes and PPI

✅ Grid upgrades add reliability, resilience, and renewable integration

 

Over the past decade, major utilities in the United States have been spending more on delivering electricity to customers and less on producing that electricity, a shift occurring as electricity demand is flat across many regions.

After adjusting for inflation, major utilities spent 2.6 cents per kilowatthour (kWh) on electricity delivery in 2010, using 2020 dollars. In comparison, spending on delivery was 65% higher in 2020 at 4.3 cents/kWh, and residential bills rose in 2022 as inflation persisted. Conversely, utility spending on power production decreased from 6.8 cents/kWh in 2010 (using 2020 dollars) to 4.6 cents/kWh in 2020.

Utility spending on electricity delivery includes the money spent to build, operate, and maintain the electric wires, poles, towers, and meters that make up the transmission and distribution system. In real 2020 dollar terms, spending on electricity delivery increased every year from 1998 to 2020 as utilities worked to replace aging equipment, build transmission infrastructure to accommodate new wind and solar generation amid clean energy transition challenges that affect costs, and install new technologies such as smart meters to increase the efficiency, reliability, resilience, and security of the U.S. power grid.

Spending on power production includes the money spent to build, operate, fuel, and maintain power plants, as well as the cost to purchase power in cases where the utility either does not own generators or does not generate enough to fulfill customer demand. Spending on electricity production includes the cost of fuels including natural gas prices alongside capital, labor, and building materials, as well as the type of generators being built.

Other utility spending on electricity includes general and administrative expenses, general infrastructure such as office space, and spending on intangible goods such as licenses and franchise fees, even as electricity sales declined in recent years.

The retail price of electricity reflects the cost to produce and deliver power, the rate of return on investment that regulated utilities are allowed, and profits for unregulated power suppliers, and, as electricity prices at 41-year high have been reported, these components have drawn increased scrutiny.

In 2021, demand for consumer goods and the energy needed to produce them has been outpacing supply, though power demand sliding in 2023 with milder weather has also been noted. This difference has contributed to higher prices for fuels used by electric generators, especially natural gas. The increased cost for fuel, capital, labor, and building materials, as seen in the U.S. Bureau of Labor Statistics’ Producer Price Index, is increasing the cost of power production for 2021. U.S. average electricity prices have been higher every month of this year compared with 2020, according to our Monthly Electric Power Industry Report.

 

Related News

View more

US Grid Gets an Overhaul for Renewables

FERC Transmission Planning Overhaul streamlines interregional grid buildouts, enabling high-voltage lines, renewable integration, and grid reliability to scale, cutting fossil reliance while boosting decarbonization, climate resilience, and affordability across regions facing demand and extreme weather.

 

Key Points

Federal rule updating interregional grid planning to integrate renewables, share costs, and improve reliability.

✅ Accelerates high-voltage, interregional lines for renewable transfer

✅ Optimizes transmission planning and cost allocation frameworks

✅ Boosts grid reliability, resilience, and emissions reductions

 

The US took a significant step towards a cleaner energy future on May 13th, 2024. The Federal Energy Regulatory Commission (FERC) approved the first major update to the country's electric transmission policy in over a decade, while congressional Democrats continue to push for action on aggregated DERs within FERC's remit today. This overhaul aims to streamline the process of building new power lines, specifically those that connect different regions. This improved connectivity is crucial for integrating more renewable energy sources like wind and solar into the national grid.

The current system faces challenges in handling the influx of renewables, and the aging U.S. grid amplifies those hurdles today. Renewable energy sources are variable by nature – the sun doesn't always shine, and the wind doesn't always blow. Traditionally, power grids have relied on constantly running power plants, like coal or natural gas, to meet electricity demands. These plants can be easily adjusted to produce more or less power as needed. However, renewable energy sources require a different approach.

The new FERC policy focuses on building more interregional transmission lines. These high-voltage power lines would allow electricity generated in regions with abundant solar or wind power, and even enable imports of green power from Canada in certain corridors, to be transmitted to areas with lower renewable energy resources. For example, solar energy produced in sunny states like California could be delivered to meet peak demand on the East Coast during hot summer days.

This improved connectivity offers several advantages. Firstly, it allows for a more efficient use of renewable resources. Secondly, it reduces the need for fossil fuel-based power plants, leading to cleaner air and lower greenhouse gas emissions. Finally, a more robust grid is better equipped to handle extreme weather events, which are becoming increasingly common due to climate change, and while Biden's climate law shows mixed results on decarbonization, stronger transmission supports resilience.

The need for an upgrade is undeniable. The Biden administration has set ambitious goals for decarbonizing the power sector by 2035, including proposals for a clean electricity standard as a pathway to those targets. A study by the US Department of Energy estimates that achieving this target will require more than doubling the country's regional transmission capacity and increasing interregional capacity by more than fivefold. The aging US grid is already struggling to keep up with current demands, and without significant improvements, it could face reliability issues in the future.

The FERC's decision has been met with praise from environmental groups and renewable energy companies. They see it as a critical step towards achieving a clean energy future. However, some stakeholders, including investor-owned utilities, have expressed concerns about the potential costs associated with building new transmission lines, citing persistent barriers to development identified in recent Senate testimony. Finding the right balance between efficiency, affordability, and environmental responsibility will be key to the success of this initiative.

The road ahead won't be easy. Building new power lines is a complex process that can face opposition from local communities, and broader disputes over electricity pricing changes often complicate planning and approvals. However, the potential benefits of a modernized grid are significant. By investing in this overhaul, the US is taking a crucial step towards a more reliable, sustainable, and cleaner energy future.

 

Related News

View more

Negative Electricity Prices Amid Renewable Energy Surplus

France Negative Electricity Prices highlight surplus renewables as solar and wind output exceeds demand, driving grid flexibility, demand response, and storage signals while reshaping energy markets, lowering emissions, and improving economic efficiency and energy security.

 

Key Points

They occur when surplus solar and wind push wholesale power prices below zero, signaling flexible, low-carbon grids.

✅ Surplus solar and wind outpace demand, flipping price signals

✅ Incentivizes demand response, storage, and flexible loads

✅ Enhances decarbonization, energy security, and market efficiency

 

In a remarkable feat for renewable energy, France has recently experienced negative electricity prices due to an abundant supply of solar and wind power. This development highlights the country's progress towards sustainable energy solutions and underscores the potential of renewables to reshape global energy markets.

The Surge in Renewable Energy Supply

France's electricity grid benefited from a surplus of renewable energy generated by solar panels and wind turbines. During periods of peak production, such as sunny and windy days, the supply of electricity exceeded demand, leading to negative prices and reflecting how solar is reshaping price dynamics in Northern Europe.

Implications for Energy Markets

The occurrence of negative electricity prices reflects a shift towards a more flexible and responsive energy system. It demonstrates the capability of renewables to meet substantial portions of electricity demand reliably and economically, with evidence of falling wholesale prices in many markets, challenging traditional notions of energy supply and pricing dynamics.

Technological Advancements and Policy Support

Technological advancements in renewable energy infrastructure, coupled with supportive government policies and incentives, have played pivotal roles in France's achievement. Investments in solar farms, wind farms, and grid modernization, including the launch of France's largest battery storage platform by TagEnergy, have enhanced the efficiency and reliability of renewable energy integration into the national grid.

Economic and Environmental Benefits

The adoption of renewable energy sources not only reduces greenhouse gas emissions but also fosters economic growth and energy independence. By harnessing abundant solar and wind resources, France strengthens its energy security and reduces reliance on fossil fuels, contributing to long-term sustainability goals and reflecting a continental shift as renewable power has surpassed fossil fuels for the first time.

Challenges and Future Outlook

While France celebrates the success of negative electricity prices, challenges remain in scaling renewable energy deployment and optimizing grid management. Balancing supply and demand, integrating intermittent renewables, and investing in energy storage technologies are critical for ensuring grid stability and maximizing the benefits of renewable energy, particularly in addressing clean energy's curtailment challenge across modern grids.

Global Implications

France's experience with negative electricity prices serves as a model for other countries striving to transition to clean energy economies. It underscores the potential of renewables to drive economic prosperity, mitigate climate change impacts, and reshape global energy markets towards sustainability, as seen in Germany where solar-plus-storage is now cheaper than conventional power in several contexts.

Conclusion

France's achievement of negative electricity prices driven by renewable energy surplus marks a significant milestone in the global energy transition. By leveraging solar and wind power effectively, France demonstrates the feasibility and economic viability of renewable energy integration at scale. As countries worldwide seek to reduce carbon emissions and enhance energy resilience, France's example provides valuable insights and inspiration for advancing renewable energy agendas and accelerating towards a sustainable energy future.

 

Related News

View more

How ‘Virtual Power Plants’ Will Change The Future Of Electricity

Virtual Power Plants orchestrate distributed energy resources like rooftop solar, home batteries, and EVs to deliver grid services, demand response, peak shaving, and resilience, lowering costs while enhancing reliability across wholesale markets and local networks.

 

Key Points

Virtual Power Plants aggregate solar and batteries to provide grid services, cut peak costs, and boost reliability.

✅ Aggregates DERs via cloud to bid into wholesale markets

✅ Reduces peak demand, defers costly grid upgrades

✅ Enhances resilience vs outages, cyber risks, and wildfires

 

If “virtual” meetings can allow companies to gather without anyone being in the office, then remotely distributed solar panels and batteries can harness energy and act as “virtual power plants.” It is simply the orchestration of millions of dispersed assets within a smarter electricity infrastructure to manage the supply of electricity — power that can be redirected back to the grid and distributed to homes and businesses. 

The ultimate goal is to revamp the energy landscape, making it cleaner and more reliable. By using onsite generation such as rooftop solar and smart solar inverters in combination with battery storage, those services can reduce the network’s overall cost by deferring expensive infrastructure upgrades and by reducing the need to purchase cost-prohibitive peak power. 

“We expect virtual power plants, including aggregated home solar and batteries, to become more common and more impactful for energy consumers throughout the country in the coming years,” says Michael Sachdev, chief product officer for Sunrun Inc., a rooftop solar company, in an interview. “The growth of home solar and batteries will be most apparent in places where households have an immediate need for backup power, as they do in California, where grid reliability pressures have led utilities to turn off the electricity to reduce wildfire risk.”

Most Popular In: Energy

How Extremophile Bacteria Living In Nuclear Reactors Might Help Us Make Vaccines
Apple, Ford, McDonald’s, Microsoft Among This Summer’s Climate Leaders
What’s Next For Oil And Gas?
Home battery adoption, such as Tesla Powerwall systems, is becoming commonplace in Hawaii and in New England, he adds, because those distributed assets are improving the efficiency of the electrical network. It is a trend that is reshaping the country’s energy generation and delivery system by relying more on clean onsite generation and less on fossil fuels.

Sunrun has recently formed a business partnership with AutoGrid, which will manage Sunrun’s fleet of rechargeable batteries. It is a cloud-based system that allows Sunrun to work with utilities to dispatch its “storage fleet” to optimize the economic results. AutoGrid compiles the data and makes AI-driven forecasts that enable it to pinpoint potential trouble spots. 

But a distributed energy system, or a virtual power plant, would have 200,000 subsystems. Or, 200,000 5 kilowatt batteries would be the equivalent of one power plant that has a capacity of 1,000 megawatts. 

“A virtual power plant acts as a generator,” says Amit Narayan, chief executive officer of AutoGrid, in an interview. “It is one of the top five innovations of the decade. If you look at Sunrun, 60% of every solar system it sells in the Bay Area is getting attached to a battery. The value proposition comes when you can aggregate these batteries and market them as a generation unit. The pool of individual assets may improve over time. But when you add these up, it is better than a large-scale plant. It is like going from mainframe computers to laptops.”

The AutoGrid executive goes on to say that centralized systems are less reliable than distributed resources. While one battery could falter, 200,000 of them that operate from remote locations will prove to be more durable — able to withstand cyber attacks and wildfires. Sunrun’s Sachdev adds that the ability to store energy in batteries, as seen in California’s expanding grid-scale battery use supporting reliability, and to move it to the grid on demand creates value not just for homes and businesses but also for the network as a whole.

The good news is that the trend worldwide is to make it easier for smaller distributed assets, including energy storage for microgrids that support local resilience, to get the same regulatory treatment as power plants. System operators have been obligated to call up those power supplies that are the most cost-effective and that can be easily dispatched. But now regulators are giving virtual power plants comprised of solar and batteries the same treatment. 

In the United States, for example, the Federal Energy Regulatory Commission issued an order in 2018 that allows storage resources to participate in wholesale markets — where electricity is bought directly from generators before selling that power to homes and businesses. Under the ruling, virtual power plants are paid the same as traditional power suppliers. A federal appeals court this month upheld the commission’s order, saying that it had the right to ensure “technological advances in energy storage are fully realized in the marketplace.” 

“In the past, we have used back-up generators,” notes AutoGrid’s Narayan. “As we move toward more automation, we are opening up the market to small assets such as battery storage and electric vehicles. As we deploy more of these assets, there will be increasing opportunities for virtual power plants.” 

Virtual power plants have the potential to change the energy horizon by harnessing locally-produced solar power and redistributing that to where it is most needed — all facilitated by cloud-based software that has a full panoramic view. At the same time, those smaller distributed assets can add more reliability and give consumers greater peace-of-mind — a dynamic that does, indeed, beef-up America’s generation and delivery network.

 

Related News

View more

Electricity use actually increased during 2018 Earth Hour, BC Hydro

Earth Hour BC highlights BC Hydro data on electricity use, energy savings, and participation in the Lower Mainland and Vancouver Island amid climate change and hydroelectric power dynamics.

 

Key Points

BC observance tracking BC Hydro electricity use and conservation during Earth Hour, amid hydroelectric power dominance.

✅ BC Hydro reports rising electricity use during Earth Hour 2018

✅ Savings fell from 2% in 2008 to near zero province-wide

✅ Hydroelectric grid yields low GHG emissions in BC

 

For the first time since it began tracking electricity use in the province during Earth Hour, BC Hydro said customers used more power during the 60-minute period when lights are expected to dim, mirroring all-time high electricity demand seen recently.

The World Wildlife Fund launched Earth Hour in Sydney, Australia in 2007. Residents and businesses there turned off lights and non-essential power as a symbol to mark the importance of combating climate change.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

#google#

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted, as record-breaking demand in 2021 and beyond changed consumption patterns.

 

Lights on

For Earth Hour this year, which took place 8:30-9:30 p.m. on March 24, BC Hydro says electricity use in the Lower Mainland increased by 0.5 per cent, even as it activated a winter payment plan to help customers manage bills. On Vancouver Island it increased 0.6 per cent.

In the province's southern Interior and northern Interior, power use remained the same during the event.

On Friday, the utility released a report called: "lights out". Why Earth Hour is dimming in BC. which explores the decline of energy savings related to Earth Hour in the province.

The WWF says the way in which hydro companies track electricity savings during Earth Hour is not an accurate measure of participation, and tracking of emerging loads like crypto mining electricity use remains opaque, and noted that more countries than ever are turning off lights for the event.

For 2018, the WWF shifted the focus of Earth Hour to the loss of wildlife across the globe.

BC Hydro says in its report that the symbolism of Earth Hour is still important to British Columbians, but almost all power generation in B.C. is hydroelectric, though recent drought conditions have required operational adjustments, and only accounts for one per cent of greenhouse gas emissions.

 

Related News

View more

BC Hydro electricity demand down 10% amid COVID-19 pandemic

BC Hydro electricity demand decline reflects COVID-19 impacts across British Columbia, with reduced industrial load, full reservoirs, strategic spilling, and potential rate increases, as hydropower plants adjust operations at Seven Mile, Revelstoke, and Site C.

 

Key Points

A 10% COVID-19-driven drop in BC power use, prompting reservoir spilling, plant curtailment, and potential rate hikes.

✅ 10% load drop; industrial demand down 7% since mid-March

✅ Reservoirs near capacity; controlled spilling to mitigate risk

✅ Possible rate hikes; Site C construction continues

 

Elecricity demand is down 10 per cent across British Columbia, an unprecedented decline in commercial electricity consumption sparked by the COVID-19 pandemic, according to a BC Hydro report.

Power demand across hotels, offices, recreational facilities and restaurants have dwindled as British Columbians self isolate, and bill relief for residents and businesses was introduced during this period.

The shortfall means there's a surplus of water in reservoirs across the province.

"This drop in load in addition to the spring snow melt is causing our reservoirs to reach near capacity, which could lead to environmental concerns, as well as public safety risks if we don't address the challenges now," said spokesperson Tanya Fish.

Crews will have to strategically spill reservoirs to keep them from overflowing, a process that can have negative impacts on downstream ecosystems. Excessive spilling can increase fish mortality rates.

Spilling is currently underway at the Seven Mile and Revelstoke reservoirs. In addition, several small plants have been shut down.

Site C and hydro rates
According to the report, titled Demand Dilemma, the decline could continue into April 2021 and drop by another two per cent, even as a regulator report alleged BC Hydro misled oversight bodies.

Major industry — forestry, mining and oil and gas — accounts for about 30 per cent of BC Hydro's overall electricity load. Energy demand from these customers has dropped by seven per cent since mid-March, while in Manitoba a Consumers Coalition has urged rejection of proposed rate increases.

BC Hydro says a prolonged drop in demand could have an impact on future rates, which could potentially go up as the power provider looks to recoup deferred operating costs and financial losses.

In Manitoba, Manitoba Hydro's debt has grown significantly, underscoring the financial risks utilities face during demand shocks.

Fish said the crown corporation still expects there to be increased demand in the long-term. She said construction of the Site C Dam is continuing as planned to support clean-energy generation in the province. There are currently nearly 1,000 workers on-site.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.