Budget, schedule trouble kills reactor project

By National Post


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Atomic Energy of Canada Ltd. has shelved plans to build a replacement for a reactor that produces vital medical isotopes, in part because the project was millions of dollars over budget and years behind schedule.

A pair of new reactors, dubbed MAPLE-1 and MAPLE-2, were to have been put into service in 2000 to take over the job of medical isotope production from the 50-year-old National Research Universal (NRU) reactor, whose shutdown late last year sparked a medical and political crisis.

But now, eight years behind schedule, with a budget that has ballooned from $140-million to $300-million or more and with no prospects of solving the technical hurdles that have bedevilled the project, AECL, with the government's backing, finally pulled the plug.

"This is a good business decision. This is the right decision for the Canadian taxpayer, it is the right decision for AECL, and it is the right decision for the medical community," Natural Resources Minister Gary Lunn said in the House of Commons.

An energy industry lobbyist, speaking on condition of anonymity, said the failure of the MAPLEs is a black eye for AECL and will be singled out by its international competitors.

"This is terrible news for Canadian technology," said the lobbyist.

Liberal MP Omar Alghabra agreed:"I think it'll have great impact, negative impact on their reputation."

AECL's chief executive officer Hugh MacDiarmid said he anticipates his company's competitors and critics will say these things about the MAPLE failure but he does not believe it will affect AECL's commercial business, selling CANDU reactors for electricity generation.

"The MAPLEs project was literally at the frontier, the first of its kind," said Mr. MacDiarmid. "To suggest that the outcome of this project somehow reflects negatively on our ability to deliver a CANDU reactor... I don't connect those dots."

The shutdown of the MAPLEs will put new pressure on AECL engineers to find ways to keep the NRU reactor functioning.

The NRU, believed to be the oldest in the world, first went into service in 1957 and now produces most of the medical isotopes used in Canada and half of the global supply of isotopes.

A shutdown of the NRU, forced upon it late last year by the federal nuclear regulator which was acting on safety concerns, prompted a medical and political crisis when doctors could no longer receive a steady supply of the isotopes, used to diagnose and treat patients in Canada and around the world with cancer and other diseases. Isotopes have a short shelf life and must be used within days of their production.

The NRU was put back into service in February and continues to produce isotopes. It is licensed to do so until 2011.

Mr. Lunn said the decision to shutter MAPLE would not threaten isotope production but neither he nor AECL officials could say what project, if any, will succeed MAPLE as a replacement for the NRU. MAPLE is an acronym for Multipurpose Applied Physics Lattice Experiment.

"I can't give you anything definitive as to where we're going to be 10 years from now," said Hugh MacDiarmid, who was installed as AECL's chief executive officer in January.

Long-term planning for AECL is difficult right now because it is undergoing a strategic review, ordered by Mr. Lunn, which could lead to the partial or complete privatization of the Crown corporation.

"We are committed to ensure that the medical community has their adequate supply of isotopes," Mr. Lunn said. "The current reactor will continue to produce them. It's a marvellous piece of technology. And it's operating safer than it ever has been before in its entire history. This decision (to shelve the MAPLEs) that we made today is about good governance, good management. It has no impact on the production of isotopes."

But Mr. Lunn's political opponents are not prepared to accept that.

"It's hard to take them at their word," said Mr. Alghabra, the Liberal's natural resources critic. "I think I'll be forgiven for being skeptical and raising these issues. I think all Canadians... who suffered because of the shortage earlier this year will join me in raising these questions."

NDP MP Libby Davies said: "I think there's a huge public policy question here in terms of why hasn't the planning been done to ensure that there is a facility and a renewal in terms of being able to provide these medical isotopes."

AECL's board of directors decided to shut down work on the MAPLEs at a meeting in late April shortly after the latest round of tests on one of the reactors failed to produce the desired results.

It's not clear just how much the MAPLEs will have cost the Canadian taxpayer. Sources in the nuclear industry have told Canwest News Service that the final bill will be in excess of $300-million. Reuters reported that it was $500-million. Mr. Lunn, said it was "hundreds and hundreds of millions of dollars over budget."

Mr. MacDiarmid said he could not provide the full costing on the MAPLE project because to do so would violate commercial confidentiality agreements with MDS Nordion Inc., the publicly traded company that buys the isotopes from AECL and distributes them to the medical community.

Whatever money was lost on the MAPLEs, millions more will have to be spent to upgrade the NRU and the facility at Chalk River. The Auditor General, in a recent report, suggested that AECL needed to spend between $600-million and $800-million on the facility at AECL, including improvements to the NRU.

Mr. MacDiarmid agreed that funding would be required to upgrade the NRU in order to win the licence extension but he declined to say how much money would be required.

Related News

Renewable growth drives common goals for electricity networks across the globe

Energy Transition Grid Reforms address transmission capacity, interconnection, congestion management, and flexibility markets, enabling renewable integration and grid stability while optimizing network charges and access in Australia, Ireland, and Great Britain.

 

Key Points

Measures to expand transmission, boost flexibility, and manage congestion for reliable, low-carbon electricity systems.

✅ Transmission upgrades and interconnectors ease congestion

✅ Flexible markets, DER, and storage bolster grid stability

✅ Evolving network charges and access incentivize siting

 

Electricity networks globally are experiencing significant increases in the volume of renewable capacity as countries seek to decarbonise their power sectors, even as clean energy's 'dirty secret' highlights integration trade-offs, without impacting the security of supply. The scale of this change is creating new challenges for power networks and those responsible for keeping the lights on.

The latest insight paper from Cornwall Insight – Market design amidst global energy transition – looks into this issue. It examines the outlook for transmission networks, and how legacy design and policies are supporting decarbonisation, aligning with IRENA findings on renewables and shaping the system. The paper focuses on three key markets; Australia, Ireland and Great Britain (GB).

Australia's main priority is to enhance transmission capacity and network efficiency; as concerns over excess solar risking blackouts grow in distribution networks, without this, the transmission system will be a barrier to growth for decentralised flexibility and renewables. In contrast, GB and Ireland benefit from interconnection with other national markets. This provides them with additional levers that can be pulled to manage system security and supply. However, they are still trying to hone and optimise network flexibility in light of steepening decarbonisation objectives.

Unsurprisingly, renewable energy resources have been growing in all three markets, with Ireland regarded as a leader in grid integration, with this expected to continue for the foreseeable future. Many of these projects are often located in places where network infrastructure is not as well developed, creating pressure on system operation as a result.

In all three markets, unit charges are rising, driven by a reduced charging base as decentralised energy grows quickly. This combination of changes is leading to network congestion, a challenge mirrored by the US grid overhaul for renewables underway, as transmission network development struggles to keep up, and flexibility markets are being optimised and changed.

In summary, reforms are on-going in each jurisdiction to accommodate the rapid physical transformation of the generation mix. Each has its objectives and tensions which are reflective of wider global reform programmes being undertaken in most developed, liberalised and decarbonising energy markets.

Gareth Miller, CEO of Cornwall Insight, said: “Despite differences in market design and characteristics, all three markets are grappling with similar issues, that comes from committing to deep decarbonisation. This includes the most appropriate methods for charging for networks, managing access to them and dealing with issues such as network congestion and constraint.

“In all three countries, renewable projects are often placed in isolated locations, as seen in Scotland where more pylons are needed to keep the lights on, away from the traditional infrastructure that is closer to demand. However, as renewable growth is set to continue, the networks will need to transition from being demand-centric to more supply orientated.

“Both system operators and stakeholders will need to continually evaluate their market structures and designs to alleviate issues surrounding locational congestion and grid stability. Each market is at very different stages in the process in trying to improve any problems implementing solutions to allow for higher efficiencies in renewable energy integration.

“It is uncertain whether any of the proposed changes will fundamentally resolve the issues that come with increased renewables on the system. However, despite marked differences, they certainly could all learn from each other and elements of their network arrangements, as well as from US decarbonisation strategies research.”

 

Related News

View more

IEA: Electricity investment surpasses oil and gas for the first time

Electricity Investment Surpasses Oil and Gas 2016, driven by renewable energy, power grids, and energy efficiency, as IEA reports lower oil and gas spending, rising solar and wind capacity, and declining coal power plant approvals.

 

Key Points

A 2016 milestone where electricity topped global energy investment, led by renewables, grids, and efficiency, per the IEA.

✅ IEA: electricity investment hit $718b; oil and gas fell to $650b.

✅ Renewables led with $297b; solar and wind unit costs declined.

✅ Coal plant approvals plunged; networks and storage spending rose.

 

Investments in electricity surpassed those in oil and gas for the first time ever in 2016 on a spending splurge on renewable energy and power grids as the fall in crude prices led to deep cuts, the International Energy Agency (IEA) said.

Total energy investment fell for the second straight year by 12 per cent to US$1.7 trillion compared with 2015, the IEA said. Oil and gas investments plunged 26 per cent to US$650 billion, down by over a quarter in 2016, and electricity generation slipped 5 per cent.

"This decline (in energy investment) is attributed to two reasons," IEA chief economist Laszlo Varro told journalists.

"The reaction of the oil and gas industry to the prolonged period of low oil prices which was a period of harsh investment cuts; and technological progress which is reducing investment costs in both renewable power and in oil and gas," he said.

Oil and gas investment is expected to rebound modestly by 3 per cent in 2017, driven by a 53 per cent upswing in U.S. shale, and spending in Russia and the Middle East, the IEA said in a report.

"The rapid ramp up of U.S. shale activities has triggered an increase of U.S. shale costs of 16 per cent in 2017 after having almost halved from 2014-16," the report said.

The global electricity sector, however, was the largest recipient of energy investment in 2016 for the first time ever, overtaking oil, gas and coal combined, the report said.

"Robust investments in renewable energy and increased spending in electricity networks, which supports the outlook that low-emissions sources will cover most demand growth, made electricity the biggest area of capital investments," Varro said.

Electricity investment worldwide was US$718 billion, lifted by higher spending in power grids which offset the fall in power generation investments.

"Investment in new renewables-based power capacity, at US$297 billion, remained the largest area of electricity spending, despite falling back by 3 per cent as clean energy investment in developing nations slipped, the report said."

Although renewables investments was 3 per cent lower than five years ago, capacity additions were 50 per cent higher and expected output from this capacity about 35 per cent higher, thanks to the fall in unit costs and technology improvements in solar PV and wind generation, the IEA said.

 

COAL INVESTMENT IS COMING TO AN END

Investments in coal-fired electricity plants fell sharply. Sanctioning of new coal power plants fell to the lowest level in nearly 15 years, reflecting concerns about local air pollution, and emergence of overcapacity and competition from renewables, with renewables poised to eclipse coal in global power generation, notably in China. Coal investments, however, grew in India.

"Coal investment is coming to an end. At the very least, it is coming to a pause," Varro said.

The IEA report said energy efficiency investments continued to expand in 2016, reaching US$231 billion, with most of it going to the building sector globally.

Electric vehicles sales rose 38 per cent in 2016 to 750,000 vehicles at $6 billion, and represented 10 per cent of all transport efficiency spending. Some US$6 billion was spent globally on electronic vehicle charging stations, the IEA said.

Spending on electricity networks and storage continued the steady rise of the past five years, as surging electricity demand puts power systems under strain, reaching an all-time high of US$277 billion in 2016, with 30 per cent of the expansion driven by China’s spending in its distribution system, the report said.

China led the world in energy investments with 21 per cent of global total share, the report said, driven by low-carbon electricity supply and networks projects.

Although oil and gas investments fell in the United States in 2016, its total energy investments rose 16 per cent, even as Americans use less electricity in recent years, on the back of spending in renewables projects, the IEA report said.

 

Related News

View more

Irving Oil invests in electrolyzer to produce hydrogen from water

Irving Oil hydrogen electrolyzer expands green hydrogen capacity at the Saint John refinery with Plug Power technology, cutting carbon emissions, enabling clean fuel for buses, and supporting Atlantic Canada decarbonization and renewable grid integration.

 

Key Points

A 5 MW Plug Power unit at Irving's Saint John refinery producing low-carbon hydrogen via electrolysis.

✅ Produces 2 tonnes/day, enough to fuel about 60 hydrogen buses

✅ Uses grid power; targets cleaner supply via renewables and nuclear

✅ First Canadian refinery investing in electrolyzer technology

 

Irving Oil is expanding hydrogen capacity at its Saint John, N.B., refinery in a bid to lower carbon emissions and offer clean energy to customers.

The family-owned company said Tuesday it has a deal with New York-based Plug Power Inc. to buy a five-megawatt hydrogen electrolyzer that will produce two tonnes of hydrogen a day — equivalent to fuelling 60 buses with hydrogen — using electricity from the local grid and drawing on examples such as reduced electricity rates proposed in Ontario to grow the hydrogen economy.

Hydrogen is an important part of the refining process as it's used to lower the sulphur content of petroleum products like diesel fuel, but most refineries produce hydrogen using natural gas, which creates carbon dioxide emissions and raises questions explored in hydrogen's future for power companies in the energy sector.

"Investing in a hydrogen electrolyzer allows us to produce hydrogen in a very different way," Irving director of energy transition Andy Carson said in an interview.

"Instead of using natural gas, we're actually using water molecules and electricity through the electrolysis process to produce ... a clean hydrogen."

Irving plans to continue to work with others in the province to decarbonize the grid amid pressures like Ontario's push into energy storage as electricity supply tightens and ensure the electricity being used to power its hydrogen electrolyzer is as clean as possible, he said.

N.B. Power's electrical system includes 14 generating stations powered by hydro, coal, oil, wind, nuclear and diesel. The utility has committed to increasing its renewable energy sources and exploring innovations such as EV-to-grid integration piloted in Nova Scotia.

Irving said it will be the first oil refinery in Canada to invest in electrolyzer technology, as Ontario's Hydrogen Innovation Fund supports broader deployment nationwide.

The company said its goal is to offer hydrogen fuelling infrastructure in Atlantic Canada, complementing N.L.'s fast-charging network for EV drivers in the region.

"This kind of investment allows us to not just move to a cleaner form of hydrogen in the refinery. It also allows us to store and make hydrogen available to the marketplace," Carson said.

Federal watchdog warns Canada's 2030 emissions target may not be achievable
The hydrogen technology will help Irving "unlock pent up demand for hydrogen as an energy transition fuel for logistics organizations," he said.

Alberta also aims to expand its hydrogen production over the coming years, alongside British Columbia's $900 million hydrogen project moving ahead on the West Coast. 

Those plans lean on the development of carbon capture and storage (CCS) technology that aims to trap the emissions created when producing hydrogen from natural gas.

 

Related News

View more

Warren Buffett-linked company to build $200M wind power farm in Alberta

Rattlesnake Ridge Wind Project delivers 117.6 MW in southeast Alberta for BHE Canada, a Berkshire Hathaway Energy subsidiary, using 28 turbines near Medicine Hat under a long-term PPA, supplying renewable power to 79,000 homes.

 

Key Points

A 117.6 MW Alberta wind farm by BHE Canada supplying 79,000 homes via 28 turbines and a long-term PPA.

✅ 28 turbines near Medicine Hat, 117.6 MW capacity

✅ Long-term PPA with a major Canadian corporate buyer

✅ Developed with RES; no subsidies; competitive pricing

 

A company linked to U.S. investor Warren Buffett says it will break ground on a $200-million, 117.6-megawatt wind farm in southeastern Alberta next year.

In a release, Calgary-based BHE Canada, a subsidiary of Buffett's Berkshire Hathaway Energy, says its Rattlesnake Ridge Wind project will be located southwest of Medicine Hat and will produce enough energy to supply the equivalent of 79,000 homes.

"We felt that it was time to make an investment here in Alberta," said Bill Christensen, vice-president of corporate development for BHE Canada, in an interview with the Calgary Eyeopener.

"The structure of the markets here in Alberta, including frameworks for selling renewable energy, make it so that we can invest, and do it at a profit that works for us, and at a price that works for the off-taker," Christensen explained.

Berkshire Hathaway Energy also owns AltaLink, the regulated transmission company that supplies electricity to more than 85 per cent of the Alberta population.

BHE Canada says an unnamed large Canadian corporate partner has signed a long-term power purchase agreement, similar to RBC's solar purchase arrangements, for the majority of the energy output generated by the 28 turbines at Rattlesnake Ridge.

"If you look at just the raw power price that power is going for in Alberta right now, it's averaged around $55 a megawatt hour, or 5.5 cents a kilowatt hour. And we're selling the wind power to this customer at substantially less than that, reflecting wind power's competitiveness in the market, and there's been no subsidies," Christensen said.

 

Positive energy outlook

Christensen said he sees a good future for Alberta's renewable energy industry, not just in wind but also in solar power growth, particularly in the southeast of the province.

But he says BHE Canada is interested in making investments in traditional energy in Alberta, too, as the province is a powerhouse for both green energy and fossil fuels overall.

"It's not a choice of one or the other. I think there is still opportunity to make investments in oil and gas," he said.

"We're really excited about having this project and hope to be able to make other investments here in Alberta to help support the economy here, amid a broader renewable energy surge across the province."

The project is being developed by U.K.-based Renewable Energy Systems, part of a trend where more energy sources make better projects for developers, which is building two other Alberta wind projects totalling 134.6 MW this year and has 750 MW of renewable energy installed or currently under construction in Canada.

BHE Canada and RES are also looking for power purchase partners for the proposed Forty Mile Wind Farm in southeastern Alberta. They say that with generation capacity of 398.5 MW, it could end up being the largest wind power project in Canada.

 

Related News

View more

BC Hydro to begin reporting COVID-19 updates at Site C

BC Hydro COVID-19 Site C updates detail monitoring, self-isolation at the work camp, Northern Health coordination, social distancing, reduced staffing, progress on diversion tunnels, Highway 29 realignment, and public reports to Peace River Regional District.

 

Key Points

Regular reports on COVID-19 monitoring, isolation protocols, staffing, and Site C work with Northern Health.

✅ Daily updates to Peace River Regional District

✅ Isolation rooms reserved in camp dorms

✅ Construction continues with social distancing

 

BC Hydro says it will begin giving regular updates to the public and the Peace River Regional District about its monitoring of the coronavirus COVID-19 at Site C, reflecting broader industry alerts such as a U.S. grid warning on pandemic risks.

BC Hydro met with the Peace River Regional District Sunday via phone call to discuss the forthcoming measures.

"We did a make a commitment to provide regular updates to Peace River Regional District member communities on an ongoing basis," said spokesman Dave Conway.

"(It's) certainly one of the things that we heard that they want and we heard that strongly and repeatedly."

Conway said updates could be posted as early as Monday on BC Hydro's website for the project.

As of March 23, there were sixteen people in self-isolation at the work camp just outside Fort St. John. Conway did not know how many of the workers have been tested for the virus, but said there are no confirmed cases on site. Provincial guidelines are being followed, he said.

"If they show any of the following symptoms, so sneezing, sore throat, muscle aches, headaches, coughs, or difficulty breathing, they're isolated for 14 days," Conway said.

"We're being very cautious of our application of the guidelines. We're asking anybody to self isolate if they have any slight symptoms."

BC Hydro has set aside one 30-room dorm at the camp for workers who need to isolate themselves, similar to measures in other jurisdictions where the power industry may house staff on-site to maintain operations, and has another four dorms with another 120 rooms that can be used as necessary. Conway could not immediately say whether additional rooms at hotels or at its apartment block have also been reserved.

There have been  700 workers home since a scale-back in construction was announced on March 18, and more workers are expected to be sent home this week. There were 940 people in camp on March 23, Conway said.

"To put that into perspective, the number of people staying in camp at this time of year, based on previous years, usually averages around 1,700," Conway said.

Brad Sperling, board chair for the Peace River Regional District, said BC Hydro has committed to formulating a strategy over the next few days to keep local government and public informed.

Electoral director Karen Goodings said she was pleased by that, and that it's important to everyone that BC Hydro works with Northern Health and adheres to provincial guidelines.

"The senior governments are critical to what measures will be undertaken not only on the project, including the camp, but also on the rules around transportation of workers and on addressing workplace conduct investigations at other utilities," Goodings wrote in an email.

On Sunday, the Site C leisure bus was seen at Totem Mall with two passengers on board.

Conway said the ongoing use of the shuttle is being monitored and evaluated, and is operating under social distancing and extra cleaning guidelines aligned with public transportation changes that have come under BC Transit.

The bus makes 10 trips per day from the camp, with an average of two passengers per trip, Conway said.

"We still have, of course, people in camp, and it's an opportunity for guests to get out and go for a walk and re-provision themselves for essentials for personal needs," Conway said.

Construction of the river diversion tunnels continues to meet a fall deadline, while work also carries on to realign Highway 29, build the transmission line, and clear the valley and future reservoir. Other site security and environmental monitoring work also continues, as utilities confront a dangerous dam-climbing trend driven by social media.

BC Hydro has said measures have been put into place, amid concerns similar to those voiced by nuclear plant workers about precautions at industrial sites, to minimize the potential spread of the COVID-19 on site, such as closing the camp gym and theatre, eliminating self serve dining stations, as well as non-essential travel, tours, and meetings.

Some workers, however, have raised worries about the tight working conditions on site, noting field safety incidents that highlight risks in the sector.

The province announced Monday 48 new cases in B.C., including one more in the Northern Health region, bringing the region's total to five, while Saskatchewan's numbers show how the crisis has reshaped that province. Their precise whereabouts are not being reported by B.C. public health officials.

 

Related News

View more

Hitachi freezes British nuclear project, books $2.8bn hit

Hitachi UK Nuclear Project Freeze reflects Horizon Nuclear Power's suspended Anglesey plant amid Brexit uncertainty, investor funding gaps, rising safety regulation costs, and a 300 billion yen write-down, impacting Britain's low-carbon electricity plans.

 

Key Points

Hitachi halted Horizon's Anglesey nuclear plant over funding and Brexit risks, recording a 300 billion yen write-down.

✅ 3 trillion yen UK nuclear project funding stalled

✅ 300 billion yen impairment wipes Horizon asset value

✅ Brexit, safety rules raised costs and investor risk

 

Japan’s Hitachi Ltd said on Thursday it has decided to freeze a 3 trillion yen ($28 billion) British nuclear power project and will consequently book a write down of 300 billion yen.

The suspension comes as Hitachi’s Horizon Nuclear Power failed to find private investors for its plans to build a plant in Anglesey, Wales, where local economic concerns have been raised, which promised to provide about 6 percent of Britain’s electricity.

“We’ve made the decision to freeze the project from the economic standpoint as a private company,” Hitachi said in a statement.

Hitachi had called on the British government to boost financial support for the project to appease investor anxiety, but turmoil over the country’s impending exit from the European Union limited the government’s capacity to compile plans, people close to the matter previously said.

Hitachi had called on the British government to boost financial support for the project to appease investor anxiety, but turmoil over the country’s impending exit from the European Union and setbacks at Hinkley Point C limited the government’s capacity to compile plans, people close to the matter previously said.

Hitachi had banked on a group of Japanese investors and the British government each taking a one-third stake in the equity portion of the project, the people said. The project would be financed one-third by equity and rest by debt.

The nuclear writedown wipes off the Horizon unit’s asset value, which stood at 296 billion yen as of September-end.

Hitachi stopped short of scrapping the northern Wales project. The company will continue to discuss with the British government on nuclear power, it said.

However, industry sources said hurdles to proceed with the project are high considering tighter safety regulations since a meltdown at Japan’s Fukushima nuclear power plant in 2011 drove up costs, even as Europe’s nuclear decline strains energy planning.

Analysts and investors viewed the suspension as an effective withdrawal and saw the decision as a positive step that has removed uncertainties for the Japanese conglomerate.

Hitachi bought Horizon in 2012 for 696 million pounds ($1.12 billion), fromE.ON and RWE as the German utilities decided to sell their joint venture following Germany’s nuclear exit after the Fukushima accident.

Hitachi’s latest decision further dims Japan’s export prospects, even as some peers pursue UK offshore wind investments to diversify.

Toshiba Corp last year scrapped its British NuGen project after its US reactor unit Westinghouse went bankrupt, while Westinghouse in China reported no major impact, and it failed to sell NuGen to South Korea’s KEPCO.

Mitsubishi Heavy Industries Ltd has effectively abandoned its Sinop nuclear project in Turkey, a person involved in the project previously told Reuters, as cost estimates had nearly doubled to around 5 trillion yen.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.