TVA intends to meet the energy demand

By The Tennessean


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
One of TVA's primary responsibilities is to plan for and provide an adequate, reliable supply of electricity to meet the needs of the 8.7 million people and more than 650,000 businesses and industries that depend on TVA electricity.

The region's economy continues to grow, and the demand for TVA electricity in the next decade is expected to continue to grow at its current rate of almost 2 percent a year. Since 1994, peak demand on the TVA system has grown about 10,000 megawatts, an amount equal to the power needed to serve the region's five largest cities — Memphis, Nashville, Knoxville, Chattanooga and Huntsville.

This fall, TVA began work to complete Unit 2 at Watts Bar Nuclear Plant by 2013, which will add about 1,200 megawatts to the system. TVA also committed $20 million in the 2008 budget to develop an energy-efficiency plan. The plan will outline TVA programs to reduce growth in power use by 1,200 megawatts by 2013 and identify programs to further reduce the growth in power demand over the next decade.

Even with these reductions and additional generation from Watts Bar, the region's growth in power demand will require another generating unit as large as the Watts Bar unit by 2017.

To meet this growth, TVA can build new plants or buy power from other utilities or independent suppliers. The increasing volatility of the energy market makes reliance on other suppliers a less attractive option for meeting long-term needs, because it would cost our customers significantly more, even if we can get the energy when we need it.

Currently, nuclear and fossil fuels are the only economically viable options for generating large amounts of electricity needed to serve growing communities. Renewable energy technologies are evolving, but have not reached the point where they can supplant the large generating resources needed to reliably sustain the electricity demands of today's society.

At the end of October, TVA and 12 other members of a consortium of electric utilities and nuclear suppliers took the first step toward the possible construction and operation of two advanced commercial nuclear power reactors at the Bellefonte site in north Alabama.

At this point, no decision has been made on whether to build the two generating units. The application offers a cost-effective way to preserve the nuclear power option while evaluating other alternatives. The Nuclear Regulatory Commission will take four years to review and decide whether a construction and operating license should be granted.

TVA will be working with its utility and industrial customers to develop programs that lead to more cost-effective use of our existing generating resources. It will take all the options — renewable energy, energy efficiency and new generation — to meet our future energy needs, and TVA is committed to working with our stakeholders to make sure we can continue to reliably supply the electricity needed to preserve the quality of life and to enable economic development across the Tennessee Valley.

Related News

An NDP government would make hydro public again, end off-peak pricing, Horwath says in Sudbury

Ontario NDP Hydro Plan proposes ending time-of-use pricing, buying back Hydro One, lowering electricity rates, curbing rural delivery fees, and restoring public ownership to ease household bills amid debates with PCs and Liberals over costs.

 

Key Points

A plan to end time-of-use pricing, buy back Hydro One, and cut bills via public ownership and fair delivery fees.

✅ End time-of-use pricing; normal schedules without penalties

✅ Repurchase Hydro One; restore public ownership

✅ Cap rural delivery fees; address oversupply to cut rates

 

Ontario NDP leader Andrea Horwath says her party’s hydro plan will reduce families’ electricity bills, a theme also seen in Manitoba Hydro debates and the NDP is the only choice to get Hydro One back in public hands.

Howarth outlined the plan Saturday morning outside the home of a young family who say they struggle with their electricity bills — in particular over the extra laundry they now have after the birth of their twin boys.

An NDP government would end time-of-use pricing, which charges higher rates during peak times and lower rates after hours, “so that people aren’t punished for cooking dinner at dinner time,” Horwath said at a later campaign stop in Orillia, “so people can live normal lives and still afford their hydro bill.”

#google#

An NDP government would end time-of-use pricing, which gives lower rates for off-peak usage, Howarth said, separate from a recent subsidized hydro plan during COVID-19. The change would mean families wouldn't be "forced to wait until night when the pricing is lower to do laundry," and wouldn't have to rearrange their lives around chores.

The pricing scheme was supposed to lower prices and help smooth out demand for electricity, especially during peak times, but has failed, she said.

In order to lower hydro bills, Horwath said an NDP government would buy back shares of Hydro One sold off under the Wynne government, which she said has led to high prices and exorbitant executive pay among executives. The NDP plan would also make sure rural families do not pay more in delivery fees than city dwellers, and curb the oversupply of energy to bring prices down.

Critics have said the NDP plan is too costly and will take a long time to implement, and investors see too many unknowns about Hydro One.

"The NDP's plan to buy back Hydro One and continue moving forward with a carbon tax will cost taxpayers billions," said Melissa Lantsman, a spokesperson for PC Leader Doug Ford.

"Only Doug Ford has a plan to reduce hydro rates and put money back in people's pockets. We'll reduce your hydro bill by 12 per cent."

Ford has said he will fire Hydro One CEO Mayo Schmidt, and has dubbed him the $6-million-dollar man.

Horwath has said both Ford and Liberal Leader Kathleen Wynne will end up costing Ontarians more in electricity if one of them is elected come June 7. Their "hydro scheme is the wrong plan," she said.

 

Related News

View more

Coronavirus puts electric carmakers on alert over lithium supplies

Western Lithium Supply Localization is accelerating as EV battery makers diversify from China, boosting lithium hydroxide sourcing in North America and Europe, amid Covid-19 disruptions and rising prices, with geothermal brines and local processing.

 

Key Points

An industry shift to source lithium and processing near EV hubs, reducing China reliance and supply chain risk.

✅ EV makers seek North American and European lithium hydroxide

✅ Prices rise amid Covid-19 and logistics constraints

✅ New extraction: geothermal and oilfield brine projects

 

The global outbreak of coronavirus will accelerate efforts by western carmakers to localise supplies of lithium for electric car batteries, according to US producer Livent.

The industry was keen to diversify away from China, which produces the bulk of the world’s lithium, a critical material for lithium-ion batteries, said Paul Graves, Livent’s chief executive.

“It’s a conversation that’s starting to happen that was not happening even six months ago,” especially in the US, the former Goldman Sachs banker added.

China produced about 79 per cent of the lithium hydroxide used in electric car batteries last year, according to consultancy CRU, a supply chain that has been disrupted by the virus outbreak and EV shortages in some markets.

Prices for lithium hydroxide rose 3.1 per cent last month, their first increase since May 2018, according to Benchmark Mineral Intelligence, due to the impact of the Covid-19 bug.

Chinese lithium producer Ganfeng Lithium, which supplies major carmakers from Tesla to Volkswagen, said it had raised prices by less than 10 per cent, due to higher production costs and logistical difficulties.

“We can get lithium from lots of places . . . is that really something we’re prepared to rely upon?” Mr Graves said. “People are going to relook at supply chains, including battery recycling initiatives that enhance resilience, and relook at their integrity . . . and they’re going to say is there something we need to do to change our supply chains to make them more shockproof?”

General Motors last week said it was looking to source battery minerals such as lithium and nickel from North America for its new range of electric cars that will use cells made in Ohio by South Korea’s LG Chem.

“Some of these critical minerals could be challenging to obtain; it’s not just cobalt you need to be concerned about but also battery-grade nickel and lithium as well,” said Andy Oury, a lead engineer for batteries at GM. “We’re doing all of this with an eye to sourcing as much of the raw material from North America as possible.”

However, George Heppel, an analyst at CRU, warned it would be difficult to compete with China on costs. “China is always going to be the most competitive place to buy battery raw materials. That’s not likely to change anytime soon,” he said.

Livent, which extracts lithium from brines in northern Argentina, is looking at extracting the mineral from geothermal resources in the US and also wants to build a processing plant in Europe.

The Philadelphia-based company is also working with Canadian start-up E3 Metals to extract lithium from brines in Alberta's oil and gasfields for new projects in Canada.

“We’ll look at doing more in the US and more in Europe,” said Mr Graves, underscoring evolving Canada-U.S. collaboration across EV supply chains.


 

 

Related News

View more

UK EV Drivers Demand Fairer Vehicle Taxes

UK EV Per-Mile Taxes are reshaping road pricing and vehicle taxation for electric cars, raising fairness concerns, climate policy questions, and funding needs for infrastructure and charging networks across the country.

 

Key Points

They are per-mile road charges on EVs to fund infrastructure, raising fairness, emissions, and vehicle taxation concerns.

✅ Propose tax relief or credits for EV owners

✅ Consider emission-based road user charging

✅ Invest in charging networks and road infrastructure

 

As the UK continues its push towards a greener future with increased adoption of electric vehicles (EVs) and surging EV interest during supply disruptions, a growing number of electric car drivers are voicing their frustration over the current tax system. The debate centers around the per-mile vehicle taxes that are being proposed and implemented, which many argue are unfairly burdensome on EV owners. This issue has sparked a broader campaign advocating for a more equitable approach to vehicle taxation, one that reflects the evolving landscape of transportation and environmental policy.

Rising Costs for Electric Car Owners

Electric vehicles have been hailed as a crucial component in the UK’s strategy to reduce carbon emissions and combat climate change. Government incentives, such as grants for EV purchases and tax breaks, have been instrumental in encouraging the shift from petrol and diesel cars to cleaner alternatives, even as affordability concerns persist among many UK consumers. However, as the number of electric vehicles on the road grows, the financial dynamics of vehicle taxation are coming under scrutiny.

One of the key issues is the introduction and increase of per-mile vehicle taxes. While these taxes are designed to account for road usage and infrastructure costs, they have been met with resistance from EV drivers who argue that they are being disproportionately affected. Unlike traditional combustion engine vehicles, electric cars typically have lower running costs compared to petrol or diesel models and, in many cases, benefit from lower or zero emissions. Yet, the current tax system does not always reflect these advantages.

The Taxation Debate

The crux of the debate lies in how vehicle taxes are structured and implemented. Per-mile taxes are intended to ensure that all road users contribute fairly to the maintenance of transport infrastructure. However, the implementation of such taxes has raised concerns about fairness and affordability, particularly for those who have invested heavily in electric vehicles.

Critics argue that per-mile taxes do not adequately take into account the environmental benefits of driving an electric car, noting that the net impact depends on the electricity generation mix in each market. While EV owners are contributing to a cleaner environment by reducing emissions, they are also facing higher taxes that could undermine the financial benefits of their greener choice. This has led to calls for a reassessment of the tax system to ensure that it aligns with the UK’s climate goals and provides a fair deal for electric vehicle drivers.

Campaigns for Fairer Taxation

In response to these concerns, several advocacy groups and individual EV owners have launched campaigns calling for a more balanced approach to vehicle taxation. These campaigns emphasize the need for a system that supports the transition to electric vehicles and recognizes their role in reducing environmental impact, drawing on ambitious EV targets abroad as useful benchmarks.

Key proposals from these campaigns include:

  1. Tax Relief for EV Owners: Advocates suggest providing targeted tax relief for electric vehicle owners to offset the costs of per-mile taxes. This could include subsidies or tax credits that acknowledge the environmental benefits of EVs and help to make up for higher road usage fees.

  2. Emission-Based Taxation: An alternative approach is to design vehicle taxes based on emissions rather than mileage. This system would ensure that those driving high-emission vehicles contribute more to road maintenance, while EV owners, who are already reducing emissions, are not penalized.

  3. Infrastructure Investments: Campaigners also call for increased investments in infrastructure that supports electric vehicles, such as charging networks and proper grid management practices that balance load. This would help to address concerns about the adequacy of current road maintenance and support the growing number of EVs on the road.

Government Response and Future Directions

The UK government faces the challenge of balancing revenue needs with environmental goals. While there is recognition of the need to update the tax system in light of increasing EV adoption, there is also a focus on ensuring that any changes are equitable and do not disincentivize the shift towards cleaner vehicles, while considering whether the UK grid can handle additional EV demand reliably.

Discussions are ongoing about how to best implement changes that address the concerns of electric vehicle owners while ensuring that the transportation infrastructure remains adequately funded. The outcome of these discussions will be critical in shaping the future of vehicle taxation in the UK and supporting the country’s broader environmental objectives.

Conclusion

As electric vehicle adoption continues to rise in the UK, the debate over vehicle taxation becomes increasingly important. The campaign for fairer per-mile taxes highlights the need for a tax system that supports the transition to cleaner transportation while also being fair to those who have made environmentally conscious choices. Balancing these factors will be key to achieving the UK’s climate goals and ensuring that all road users contribute equitably to the maintenance of transport infrastructure. The ongoing dialogue and policy adjustments will play a crucial role in shaping a sustainable and just future for transportation in the UK.

 

Related News

View more

Share of coal in UK's electricity system falls to record lows

UK Coal Phase-Out marks record-low coal generation as the UK grid shifts to renewable power, wind farms, and a net zero trajectory, slashing carbon emissions and supporting cleaner EV charging across the electricity system.

 

Key Points

UK Coal Phase-Out ends coal-fired electricity nationwide, powered by renewables and net zero policy to cut grid carbon.

✅ Coal's Q2 share fell to 0.7%, a record low

✅ Renewables up 12% with Beatrice wind farm

✅ EV charging grows cleaner as grid decarbonizes

 

The share of coal in the UK’s electricity system has fallen to record lows in recent months, alongside a coal-free power record, according to government data.

The figures show electricity generated by the UK’s most polluting power plants made up an average of 0.7% of the total in the second quarter of this year, a shift underway since wind first outpaced coal in 2016 across the UK. The amount of coal used to power the electricity grid fell by almost two-thirds compared with the same months last year.

A government spokesperson said coal-generated energy “will soon be a distant memory” as the UK moves towards becoming a net zero emissions economy, despite signs that low-carbon generation stalled in 2019 in some analyses.

“This new record low is a result of our world-leading low-carbon energy industry, which provided more than half of our energy last year and continues to go from strength to strength as we aim to end our contribution to climate change entirely by 2050,” the spokesperson said.

The UK electricity market is on track to end coal power after 142 years by the government’s target date of 2025.

This year three major energy companies have announced plans to close coal-fired power plants in the UK, which would leave only four remaining after the coming winter, ahead of the last coal power station going offline nationwide.

RWE said this month it would close the Aberthaw B power station in south Wales, its last UK coal plant, after the winter. SSE will close the Fiddler’s Ferry plant near Warrington, Cheshire, in March 2020, and EDF Energy will shutter the Cottam coal plant in September.

So far this year the UK has gone more than 3,000 hours without using coal for power, including a full week without coal earlier in the year – nearly five times more than the whole of 2017.

Meanwhile, the government’s data shows that renewable energy climbed by 12% from the second quarter of last year, boosted by the startup of the Beatrice windfarm in the Moray Firth in Scotland, and the UK leading the G20 in wind power share in recent assessments.

The cleaner power system could accelerate carbon savings from the UK’s roads, too, as more drivers opt for electric vehicles. A study by Imperial College London for the energy company Drax found that the UK’s increasingly low-carbon energy system meant electric cars were a greener option even when taking into account the carbon emissions produced by making car batteries.

Dr Iain Staffell, of Imperial College London, said: “An electric vehicle in the UK simply cannot be more polluting than its petrol or diesel equivalent – even when taking into account the upfront carbon cost of manufacturing their batteries. Any EV bought today could be emitting just a tenth of what a petrol car would in as little as five years’ time, as the electricity it uses to charge comes from an increasingly low-carbon mix.”

 

Related News

View more

New fuel cell concept brings biological design to better electricity generation

Quinone-mediated fuel cell uses a bio-inspired organic shuttle to carry electrons and protons to a nearby cobalt catalyst, improving hydrogen conversion, cutting platinum dependence, and raising efficiency while lowering costs for clean electricity.

 

Key Points

An affordable, bio-inspired fuel cell using an organic quinone shuttle and cobalt catalyst to move electrons efficiently

✅ Organic quinone shuttles electrons to a separate cobalt catalyst

✅ Reduces platinum use, lowering cost of hydrogen power

✅ Bio-inspired design aims to boost efficiency and durability

 

Fuel cells have long been viewed as a promising power source. But most fuel cells are too expensive, inefficient, or both. In a new approach, inspired by biology, a team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

Fuel cells have long been viewed as a promising power source. These devices, invented in the 1830s, generate electricity directly from chemicals, such as hydrogen and oxygen, and produce only water vapor as emissions. But most fuel cells are too expensive, inefficient, or both.

In a new approach, inspired by biology and published today (Oct. 3, 2018) in the journal Joule, a University of Wisconsin-Madison team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

In a traditional fuel cell, the electrons and protons from hydrogen are transported from one electrode to another, where they combine with oxygen to produce water. This process converts chemical energy into electricity. To generate a meaningful amount of charge in a short enough amount of time, a catalyst is needed to accelerate the reactions.

Right now, the best catalyst on the market is platinum -- but it comes with a high price tag, and while advances like low-cost heat-to-electric materials show promise, they address different conversion pathways. This makes fuel cells expensive and is one reason why there are only a few thousand vehicles running on hydrogen fuel currently on U.S. roads.

Shannon Stahl, the UW-Madison professor of chemistry who led the study in collaboration with Thatcher Root, a professor of chemical and biological engineering, says less expensive metals can be used as catalysts in current fuel cells, but only if used in large quantities. "The problem is, when you attach too much of a catalyst to an electrode, the material becomes less effective," he says, "leading to a loss of energy efficiency."

The team's solution was to pack a lower-cost metal, cobalt, into a reactor nearby, where the larger quantity of material doesn't interfere with its performance. The team then devised a strategy to shuttle electrons and protons back and forth from this reactor to the fuel cell.

The right vehicle for this transport proved to be an organic compound, called a quinone, that can carry two electrons and protons at a time. In the team's design, a quinone picks up these particles at the fuel cell electrode, transports them to the nearby reactor filled with an inexpensive cobalt catalyst, and then returns to the fuel cell to pick up more "passengers."

Many quinones degrade into a tar-like substance after only a few round trips. Stahl's lab, however, designed an ultra-stable quinone derivative. By modifying its structure, the team drastically slowed down the deterioration of the quinone. In fact, the compounds they assembled last up to 5,000 hours -- a more than 100-fold increase in lifetime compared to previous quinone structures.

"While it isn't the final solution, our concept introduces a new approach to address the problems in this field," says Stahl. He notes that the energy output of his new design produces about 20 percent of what is possible in hydrogen fuel cells currently on the market. On the other hand, the system is about 100 times more effective than biofuel cells that use related organic shuttles.

The next step for Stahl and his team is to bump up the performance of the quinone mediators, allowing them to shuttle electrons more effectively and produce more power. This advance would allow their design to match the performance of conventional fuel cells, but with a lower price tag.

"The ultimate goal for this project is to give industry carbon-free options for creating electricity, including thermoelectric materials that harvest waste heat," says Colin Anson, a postdoctoral researcher in the Stahl lab and publication co-author. "The objective is to find out what industry needs and create a fuel cell that fills that hole."

This step in the development of a cheaper alternative could eventually be a boon for companies like Amazon and Home Depot that already use hydrogen fuel cells to drive forklifts in their warehouses.

"In spite of major obstacles, the hydrogen economy, with efforts such as storing electricity in pipelines in Europe, seems to be growing," adds Stahl, "one step at a time."

Financial support for this project was provided by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and by the Wisconsin Alumni Research Foundation (WARF) through the WARF Accelerator Program.

 

Related News

View more

Scottish North Sea wind farm to resume construction after Covid-19 stoppage

NnG Offshore Wind Farm restarts construction off Scotland, backed by EDF Renewables and ESB, CfD 2015, 54 turbines, powering 375,000 homes, 500 jobs, delivering GBP 540 million, with Covid-19 safety measures and staggered workforce.

 

Key Points

A 54-turbine Scottish offshore project by EDF Renewables and ESB, resuming to power 375,000 homes and support 500 jobs.

✅ Awarded a CfD in 2015; 54 turbines off Scotland's east coast.

✅ Projected to power 375,000 homes and deliver GBP 540 million locally.

✅ Staggered workforce return with Covid-19 control measures and oversight.

 

Neart Na Gaoithe (NnG) Offshore Wind Farm, owned by  EDF Renewables and Irish firm ESB, stopped construction in March, even as the world's most powerful tidal turbine showcases progress in marine energy.

Project boss Matthias Haag announced last night the 54-turbine wind farm would restart construction this week, as the largest UK offshore wind farm begins supplying power, underscoring sector momentum.

Located off Scotland’s east coast, where wind farms already power millions of homes, it was awarded a Contract for Difference (CfD) in 2015 and will look to generate enough energy to power 375,000 homes.

It is expected to create around 500 jobs, and supply chain growth like GE's new offshore blade factory jobs shows wider industry momentum, while also delivering £540 million to the local economy.

Mr Haag, NnG project director, said the wind farm build would resume with a small, staggered workforce return in line social distancing rules, and with broader energy sector conditions, including Hinkley Point C setbacks that challenge the UK's blueprint.

He added: “Initially, we will only have a few people on site to put in place control measures so the rest of the team can start work safely later that week.

“Once that’s happened we will have a reduced workforce on site, including essential supervisory staff.

“The arrangements we have put in place will be under regular review as we continue to closely monitor Covid-19 and follow the Scottish Government’s guidance.”

NnG wind farm, a 54-turbine projects, was due to begin full offshore construction in June 2020 before the Covid-19 outbreak, at a time when a Scottish tidal project had just demonstrated it could power thousands of homes.

EDF Renewables sold half of the NnG project to Irish firm ESB in November last year, and parent company EDF recently saw the Hinkley C reactor roof lifted into place, highlighting progress alongside renewables.

The first initial payment was understood to be around £50 million.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified