Alternative energy faces power line bottleneck in the west

By Reuters


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
President Barack Obama aims to double alternative energy production over three years, but how much "green" power will come from the U.S. West is uncertain if the sunny and wind-swept region cannot overcome a shortage of power lines.

Installing large solar installations and dotting landscapes with wind turbines across the western United States would be, technically speaking, straightforward, and potentially popular with the renewed interest in domestic energy sources amid rising economic, environmental and security concerns.

Delivering the region's green power to markets, however, is proving easier said than done.

"Our customers are telling us that they're already seeing transmission bottlenecks with their future plans," said Vic Abate, head of General Electric Co's renewable energy business.

Transmission line costs vary wildly. For years the rule of thumb was $1 million per mile, but a recent project in Southern California cost $16.5 million per mile.

T. Boone Pickens' "Pickens Plan" for generating 22 percent of the United States' electricity from wind power sees the need for $70 billion in transmission and power-grid infrastructure.

"It's all over the map," said George Given, head of the consulting firm Wood Mackenzie's global power unit. "If you're building over Texas, which is relatively flat... you don't have so many issues. But if you're building in mountains, it's monumentally different work."

Transmission line projects in the U.S. West, much of it mountainous, face another steep challenge the region's industry and public officials say the Obama administration must tackle: federal bureaucracy.

Much of the region's expanses are overseen by a variety of U.S. agencies charged with managing natural resources, wildlife, parks and native populations.

"Nevada is, what, 90 percent federally owned?" said Rich Halvey, energy program director at the Western Governors Association. "We're continually stymied because of how long it takes to get transmission projects approved and built."

Bureaucratic delays stem from mandates of U.S. land agencies, said Lew Milford of the Clean Energy States Alliance, which represents 20 states' renewable energy funds: "It's one of those tricky good-versus-good problems — trying to move more renewable energy but in an environmentally friendly way."

The U.S. Forest Service is the toughest sell of any U.S. land agency, said Robert Mitchell, chief executive of transmission systems developer Trans-Elect.

"If you are the chief forester and it is your responsibility to protect forest, probably the last thing you want to happen is to have transmission lines built through the forest," he said.

U.S. land agencies will need to cut red tape to help speed transmission projects, said Wayne Whitlock, a partner with the law firm Pillsbury Winthrop Shaw Pittman and a former lawyer at the U.S. Department of the Interior.

"Would they give exemptions? I'd be surprised if they do that. But they do have to make these projects higher priority," Whitlock said.

In a January 6 letter to Obama, California Gov. Arnold Schwarzenegger urged "Establishing clear policy within the U.S. Bureau of Land Management and other federal agencies to prioritize renewable energy project development and transmission on federal lands."

He also urged the U.S. Forest Service speed permitting and project changes needed to complete Sempra Energy's Sunrise Powerlink, a $1.9 billion, 120-mile long, 1,000-megawatt power line from California's inland Imperial Valley to coastal San Diego County.

State regulators back the project and the U.S. Bureau of Land Management gave its approval for the line to cross 49 miles of its land.

"If we get that, we're poised and ready to take the project into the next stages," says Mike Niggli, Sempra Energy Utilities chief operating officer, adding the Sunrise line would greatly enhance delivering green power.

Wind-swept Wyoming also wants the U.S. government to focus on transmission infrastructure.

"For several years, transmission has been the recognized bottleneck," Democratic Gov. Dave Freudenthal recently advised Obama by letter.

Investment incentives like those for wind farms may be needed, Freudenthal recently told Reuters.

"There have been no incentives for the guys who want to take the transmission risk," he said. "Maybe the federal government has to step in... to provide that help so that lines get built," he said.

Related News

Ukraine Prepares for Winter Amid Energy Challenges

Ukraine Winter Energy Resilience focuses on energy security, grid repairs, renewable power, EU support, heating reliability, electricity imports, and conservation measures to stabilize infrastructure and protect households amid conflict and severe cold.

 

Key Points

A strategy to secure heat and power via repairs, renewables, imports, and conservation during wartime winter.

✅ Grid repairs and hardening of power plants and transmission lines

✅ Diversified supply: renewables, electricity imports, fuel reserves

✅ Public conservation to cut peak demand and safeguard essential services

 

As winter approaches, Ukraine is bracing for a challenging season, especially in the energy sector amid global energy instability and price pressures, which has been heavily impacted by the ongoing conflict with Russia. With the weather forecast predicting colder temperatures, the Ukrainian government is ramping up efforts to secure energy supplies and bolster infrastructure, aiming to ensure that citizens have access to heating and electricity during the harsh months ahead.

The Energy Landscape in Ukraine

The conflict has severely disrupted Ukraine’s energy infrastructure, leading to widespread damage and inefficiencies. Key facilities, including power plants and transmission lines, have been targeted amid energy ceasefire violations reported by both sides, resulting in significant energy shortages. As a response, the government has implemented a series of measures aimed at stabilizing the energy sector, ensuring that the nation can withstand the winter months.

One of the primary strategies has been the repair and reinforcement of energy infrastructure. Officials have prioritized critical facilities that are essential for electricity generation and distribution. Emergency repairs and upgrades are being carried out to restore functionality and improve resilience against potential attacks.

In addition to repairing existing infrastructure, Ukraine is actively seeking to diversify its energy sources. This includes increasing reliance on renewable energy, such as wind and solar, which can be less susceptible to disruption. The shift toward renewables not only enhances energy security and supports moving away from fossil fuels in line with Ukraine's long-term environmental goals.

International Support and Collaboration

Ukraine's challenges have not gone unnoticed on the international stage. Countries and organizations around the world have pledged energy security support to help Ukraine fortify its energy sector. This assistance includes financial aid, technical expertise, and the provision of materials needed for infrastructure repairs.

The European Union, in particular, has been a key ally, providing both immediate and long-term support to Ukraine's energy efforts. The EU's commitment to helping Ukraine transition to a more sustainable energy model, including steps toward ENTSO-E synchronization to bolster grid stability, is reflected in various initiatives aimed at increasing energy efficiency and integrating renewable sources.

Furthermore, international organizations have mobilized resources to assist in the restoration of damaged infrastructure. This collaboration not only enhances Ukraine's energy capabilities but also strengthens ties with global partners, fostering a sense of solidarity amidst the ongoing conflict.

Preparing for Winter Challenges

As temperatures drop, the demand for heating will surge, putting additional pressure on an already strained energy system. To address this, the Ukrainian government is urging citizens to prepare for potential shortages. Officials are promoting energy conservation measures, encouraging households to reduce consumption and use energy more efficiently.

Public awareness campaigns are being launched to educate citizens about the importance of energy saving and the steps they can take to minimize their energy use and prevent outages during peak demand. These initiatives aim to foster a collective sense of responsibility as the nation braces for the winter ahead.

In addition to conservation efforts, the government is exploring alternative energy supplies. This includes negotiating with neighboring countries for electricity imports and enhancing domestic production where feasible. By securing a diverse range of energy sources, Ukraine aims to mitigate the risk of shortages and ensure that essential services remain operational.

The Role of Resilience and Innovation

Despite the challenges, the resilience of the Ukrainian people and their commitment to overcoming adversity shine through. Communities are coming together to support one another, sharing resources and information to help navigate the difficulties of winter.

Innovative solutions are also emerging as part of the response to the energy crisis. Local initiatives aimed at promoting energy efficiency and the use of alternative energy sources are gaining traction. From community-led solar projects to energy-efficient building practices, Ukrainians are finding ways to adapt and thrive even in the face of uncertainty.

Looking Ahead

As Ukraine prepares for the winter months, the focus remains on ensuring energy security and maintaining the functionality of critical infrastructure. While challenges loom, the collective efforts of the government, international partners, and citizens demonstrate a strong commitment to resilience and adaptation.

In conclusion, the upcoming winter presents significant challenges for Ukraine's energy sector, yet the nation's determination to secure its energy future remains unwavering. With ongoing repairs, international support, and community innovation, Ukraine is working diligently to navigate the complexities of this winter, aiming to emerge stronger and more resilient in the face of adversity. The resilience shown today will be crucial as the country continues to confront the ongoing impacts of conflict and seeks to build a sustainable future.

 

Related News

View more

NB Power launches public charging network for EVs

NB Power eCharge Network expands EV charging in New Brunswick with fast chargers, level 2 stations, Trans-Canada Highway coverage, and green infrastructure, enabling worry-free electric vehicle travel and lower emissions across the province.

 

Key Points

NB Power eCharge Network is a provincewide EV charging system with fast and level 2 stations for reliable travel.

✅ 15 fast-charging sites on Trans-Canada and northern New Brunswick

✅ Level 2 stations at highways, municipalities, and businesses

✅ 20-30 minute DC fast charging; cut emissions ~80% and fuel ~75%

 

NB Power announced Friday the eCharge Network, the province’s first electric vehicle charging network aimed at giving drivers worry-free travel everywhere in the province.

The network includes 15 locations along the province’s busiest highways where both fast-chargers and level-2 chargers will be available. In addition, nine level-2 chargers are already located at participating municipalities and businesses throughout the province. The new locations will be installed by the end of 2017.

NB Power is working with public and private partners to add to the network to enable electric vehicle owners to drive with confidence and to encourage others to make the switch from gas to electric vehicles, supported by a provincial rebate program now available.

“We are incredibly proud to offer our customers and visitors to New Brunswick convenient charging with the launch of our eCharge Network,” said Gaëtan Thomas, president and CEO of NB Power. “Our goal is to make it easy for owners of electric vehicles to drive wherever they choose in New Brunswick, and to encourage more drivers to consider an electric vehicle for their next purchase.”

An electric vehicle owner in New Brunswick can shrink their vehicle carbon footprint by about 80 per cent while reducing their fuel-related costs by about 75 per cent, according to NB Power, and broader grid benefits are being explored through Nova Scotia's vehicle-to-grid pilot across the region.

In addition to the network of standard charging stations, the eCharge network will also include 400 volt fast-charging stations along the Trans-Canada Highway and in the northern parts of New Brunswick. The first of their kind in New Brunswick, these 15 fast-charging stations, similar to Newfoundland and Labrador's newly completed fast-charging network connecting communities, will enable all-electric vehicles to recharge in as little as 20 to 30 minutes. Fast-charge sites will include standard level-2 stations for both battery electric vehicles and plug-in hybrids.

NB Power will install fast-charge and level-2 sites at five locations throughout northern New Brunswick, addressing northern coverage challenges seen elsewhere, such as Labrador's infrastructure gaps today, which will be cost-shared with government. Locations include the areas of Saint-Quentin/Kedgwick, Campbellton, Bathurst, Tracadie, and Miramichi.

“Our government understands that embracing the green economy and reducing our carbon footprint is a priority for New Brunswickers,” said Environment and Local Government Minister Serge Rousselle. “Our climate change action plan calls for a collaborative approach to creating the strategic infrastructure to support electric vehicles throughout all regions in the province, and we are pleased to see this important step underway. New Brunswickers will now have the necessary network to adopt new methods of transportation and contribute to our provincial plan to increase the number of electric vehicles on the road and will help meet emission reduction targets as we work to combat climate change.”

An investment of $500,000 from Natural Resources Canada will go towards purchasing and installing the charging stations for the 10 fast-charging stations along the Trans-Canada Highway.

“The eCharge Network will make it easier for Canadians to choose cleaner options and helps put New Brunswick’s transportation system on a path to a lower-carbon future,” said Moncton-Riverview-Dieppe MP Ginette Petitpas Taylor. “The Government of Canada continues to support green infrastructure in the transportation sector that will advance Canada’s efforts to build a clean economy, create well-paying jobs, and achieve our climate change goals.”

Petitpas Taylor attended for federal Natural Resources Minister Jim Carr.

Fast chargers are being installed at the following locations along the Trans-Canada Highway across New Brunswick:

– Irving Big Stop, Aulac

– Edmundston Truck Stop

– Irving Big Stop, Saint-André

– Johnson Guardian, Perth-Andover

– Murray’s Irving, Woodstock

– Petro-Canada / Acorn Restaurant, Prince William

– Irving Big Stop, Waasis

 

Related News

View more

The Impact of AI on Corporate Electricity Bills

AI Energy Consumption strains corporate electricity bills as data centers and HPC workloads run nonstop, driving carbon emissions. Efficiency upgrades, renewable energy, and algorithm optimization help control costs and enhance sustainability across industries.

 

Key Points

AI Energy Consumption is the power used by AI compute and data centers, impacting costs and sustainability.

✅ Optimize cooling, hardware, and workloads to cut kWh per inference

✅ Integrate on-site solar, wind, or PPAs to offset data center power

✅ Tune models and algorithms to reduce compute and latency

 

Artificial Intelligence (AI) is revolutionizing industries with its promise of increased efficiency and productivity. However, as businesses integrate AI technologies into their operations, there's a significant and often overlooked impact: the strain on corporate electricity bills.

AI's Growing Energy Demand

The adoption of AI entails the deployment of high-performance computing systems, data centers, and sophisticated algorithms that require substantial energy consumption. These systems operate around the clock, processing massive amounts of data and performing complex computations, and, much like the impact on utilities seen with major EV rollouts, contributing to a notable increase in electricity usage for businesses.

Industries Affected

Various sectors, including finance, healthcare, manufacturing, and technology, rely on AI-driven applications for tasks ranging from data analysis and predictive modeling to customer service automation and supply chain optimization, while manufacturing is influenced by ongoing electric motor market growth that increases electrified processes.

Cost Implications

The rise in electricity consumption due to AI deployments translates into higher operational costs for businesses. Corporate entities must budget accordingly for increased electricity bills, which can impact profit margins and financial planning, especially in regions experiencing electricity price volatility in Europe amid market reforms. Managing these costs effectively becomes crucial to maintaining competitiveness and sustainability in the marketplace.

Sustainability Challenges

The environmental impact of heightened electricity consumption cannot be overlooked. Increased energy demand from AI technologies contributes to carbon emissions and environmental footprints, alongside rising e-mobility demand forecasts that pressure grids, posing challenges for businesses striving to meet sustainability goals and regulatory requirements.

Mitigation Strategies

To address the escalating electricity bills associated with AI, businesses are exploring various mitigation strategies:

  1. Energy Efficiency Measures: Implementing energy-efficient practices, such as optimizing data center cooling systems, upgrading to energy-efficient hardware, and adopting smart energy management solutions, can help reduce electricity consumption.

  2. Renewable Energy Integration: Investing in renewable energy sources like solar or wind power and energy storage solutions to enhance flexibility can offset electricity costs and align with corporate sustainability initiatives.

  3. Algorithm Optimization: Fine-tuning AI algorithms to improve computational efficiency and reduce processing times can lower energy demands without compromising performance.

  4. Cost-Benefit Analysis: Conducting thorough cost-benefit analyses of AI deployments to assess energy consumption against operational benefits and potential rate impacts, informed by cases where EV adoption can benefit customers in broader electricity markets, helps businesses make informed decisions and prioritize energy-saving initiatives.

Future Outlook

As AI continues to evolve and permeate more aspects of business operations, the demand for electricity will likely intensify and may coincide with broader EV demand projections that increase grid loads. Balancing the benefits of AI-driven innovation with the challenges of increased energy consumption requires proactive energy management strategies and investments in sustainable technologies.

Conclusion

The integration of AI technologies presents significant opportunities for businesses to enhance productivity and competitiveness. However, the corresponding surge in electricity bills underscores the importance of proactive energy management and sustainability practices. By adopting energy-efficient measures, leveraging renewable energy sources, and optimizing AI deployments, businesses can mitigate cost impacts, reduce environmental footprints, and foster long-term operational resilience in an increasingly AI-driven economy.

 

Related News

View more

Crews have restored power to more than 32,000 Gulf Power customers

Gulf Power Hurricane Michael Response details rapid power restoration, grid rebuilding, and linemen support across the Florida Panhandle, Panama City, and coastal areas after catastrophic winds, rain, and storm surge damaged transmission lines and substations.

 

Key Points

Gulf Power's effort to restore electricity after Hurricane Michael, including grid rebuilding and storm recovery.

✅ 3,000+ crews deployed for restoration and rebuilding

✅ Transmission, distribution, and substations severely damaged

✅ Panhandle customers warned of multi-week outages

 

Less than 24 hours ago, Hurricane Micheal devastated the residents in the Florida Panhandle with its heavy winds, rainfall and storm surge, as reflected in impact numbers across the region.

Gulf Power crews worked quickly through the night to restore power to their customers.

Linemen crews were dispatched from numerous of cities all over the U. S., reflecting FPL's massive Irma response to help those impacted by Hurricane Michael.

According to Jeff Rogers, Gulf Power spokesperson; “This was an unprecedented storm, and our customers will see an unprecedented response from Gulf Power. The destruction we’ve seen so far to this community and our electrical system is devastating — we’re seeing damage across our system, including distribution lines, transmission lines and substations.”

Gulf Power told Channel 3 said they dealt with issues like trees and heavy debris blocking roads from strong winds, and communications down can slow down the rebuilding and restoration process, but Gulf Power said they are prepared for this type of storm devastation.

According to Gulf Power, Hurricane Micheal caused so much damage to Panama City's electrical grid that crews not only had repair the lines, they had to rebuild the electrical system, a scenario similar to a complete rebuild seen after Hurricane Laura in Louisiana.

Gulf Power officials say, "Less than 24 hours after the storm, more than 3,000 storm personnel from around the country arrived in the Panama City area Thursday to begin the restoration and rebuilding process. So far, more than 4,000 customers have been restored on Panama City Beach. Power has been restored to all customers in Escambia, Santa Rosa and Okaloosa counties, and it’s expected that customers in Walton County will be restored tonight. But customers in the hardest hit areas should prepare to be without power for weeks, not days in some areas. Initial evaluations by Gulf Power indicate widespread, heavy damage to the electrical system in the Panama City area."

According to Gulf Power, crews have restored power to more than 32,000 Gulf Power customers in the wake of Hurricane Michael, but the work is just beginning for power restoration in the Panama City area.

Rogers said, “We’re heartbroken for our customers and our teammates who live in and near the Panama City area,” said Rogers. “This is the type of storm that changes lives — so aside from restoring power to our customers quickly and safely, our focus in the coming days and weeks will also be to help restore hope to these communities and help give them a sense of normalcy as soon as possible.”

 

Related News

View more

Elon Musk could help rebuild Puerto Rico with solar-powered electricity grid

Puerto Rico Tesla Solar Power enables resilient microgrids using batteries, renewable energy, and energy storage to rebuild the hurricane-damaged grid, reduce fossil fuels, cut costs, and accelerate recovery with scalable solar-plus-storage solutions.

 

Key Points

A solar-plus-storage plan using Tesla microgrids and batteries to restore Puerto Rico's cleaner, resilient power.

✅ Microgrids cut diesel reliance and harden critical facilities.

✅ Batteries stabilize the grid and shave peak demand costs.

✅ Scalable solar enables faster, modular disaster recovery.

 

Puerto Rico’s governor Ricardo Rossello has said that he will speak to Elon Musk after the Tesla inventor said his innovative solar and battery systems could be used to restore electricity on the island.

Mr Musk was mentioned in a tweet, referencing an article discussing ways to restore Puerto Rico’s power grid, which was knocked out by Hurricane Maria on September 20.

Restoring the ageing and already-weakened network has proved slow: as of Friday 90 per cent of the island remained without power. The island’s electricity company was declared bankrupt in July.

Mr Musk was asked: “Could @ElonMusk go in and rebuild #PuertoRico’s electricity system with independent solar & battery systems?”

The South African entrepreneur replied: “The Tesla team has done this for many smaller islands around the world, but there is no scalability limit, so it can be done for Puerto Rico too.

“Such a decision would be in the hands of the PR govt, PUC, any commercial stakeholders and, most importantly, the people of PR.”

His suggestion was seized upon by Mr Rossello, who then tweeted: “@ElonMusk Let's talk. Do you want to show the world the power and scalability of your #TeslaTechnologies?

“PR could be that flagship project.”

Mr Musk replied that he was happy to talk.

Restoring power to the battered island is a priority for the government, and improving grid resilience remains critical, with hospitals still running on generators and the 3.5 million people struggling with a lack of refrigeration or air conditioning.

Radios broadcast messages advising people how to keep their insulin cool, and doctors are concerned about people not being able to access dialysis.

And, with its power grid wiped out, the Caribbean island could totally rethink the way it meets its energy needs, drawing on examples like a resilient school microgrid built locally. 

“This is an opportunity to completely transform the way electricity is generated in Puerto Rico and the federal government should support this,” said Judith Enck, the former administrator for the region with the environmental protection agency.

“They need a clean energy renewables plan and not spending hurricane money propping up the old fossil fuel infrastructure.”

Forty-seven per cent of Puerto Rico’s power needs were met by burning oil last year - a very expensive and outdated method of electricity generation. For the US as a whole, petroleum accounted for just 0.3 per cent of all electricity generated in 2016 even as the grid isn’t yet running on 100% renewable energy nationwide.

The majority of the rest of Puerto Rico’s energy came courtesy of coal and natural gas, with renewables, which later faced pandemic-related setbacks, accounting for only two per cent of electricity generation.

“In that time of extreme petroleum prices, the utility was borrowing money and buying oil in order to keep those plants operating,” said Luis Martinez, a lawyer at natural resources defense council and former special aide to the president of Puerto Rico’s environmental quality board.

“That precipitated the bankruptcy that followed. It was in pretty poor shape before the storm. Once the storm got there, it finished the job.”

But Mr Martinez told the website Earther that it might be difficult to secure the financing for rebuilding Puerto Rico with renewables from FEMA (Federal Emergency Management Agency) funds.

“A lot of distribution lines were on wood poles,” he said.

“Concrete would make them more resistant to winds, but that would potentially not be authorized under the use of FEMA funds.

"We’re looking into if some of those requirements can be waived so rebuilding can be more resilient.”

 

Related News

View more

Pickering nuclear station is closing as planned, despite calls for refurbishment

Ontario Pickering Nuclear Closure will shift supply to natural gas, raising emissions as the electricity grid manages nuclear refurbishment, IESO planning, clean power imports, and new wind, solar, and storage to support electrification.

 

Key Points

Ontario will close Pickering and rely on natural gas, increasing emissions while other nuclear units are refurbished.

✅ 14% of Ontario electricity supplied by Pickering now

✅ Natural gas use rises; grid emissions projected up 375%

✅ IESO warns gas phaseout by 2030 risks blackouts, costs

 

The Ontario government will not reconsider plans to close the Pickering nuclear station and instead stop-gap the consequent electricity shortfall with natural gas-generated power in a move that will, as an analysis of Ontario's grid shows, hike the province’s greenhouse gas emissions substantially in the coming years.

In a report released this week, a nuclear advocacy group urged Ontario to refurbish the aging facility east of Toronto, which is set to be shuttered in phases in 2024 and 2025, prompting debate over a clean energy plan after Pickering as the closure nears. The closure of Pickering, which provides 14 per cent of the province’s annual electricity supply, comes at the same time as Ontario’s other two nuclear stations are undergoing refurbishment and operating at reduced capacity.

Canadians for Nuclear Energy, which is largely funded by power workers' unions, argued closing the 50-year-old facility will result in job losses, emissions increases, heightened reliance on imported natural gas and an electricity supply gap across Ontario.

But Palmer Lockridge, spokesperson for the provincial energy minister, said further extending Pickering’s lifespan isn’t on the table.

“As previously announced in 2020, our government is supporting Ontario Power Generation’s plan to safely extend the life of the Pickering Nuclear Generating Station through the end of 2025,” said Lockridge in an emailed response to questions.

“Going forward, we are ensuring a reliable, affordable and clean electricity system for decades to come. That’s why we put a plan in place that ensures we are prepared for the emerging energy needs following the closure of Pickering, and as a result of our government’s success in growing and electrifying the province’s economy.”

The Progressive Conservative government under Premier Doug Ford has invested heavily in electrification, sinking billions into electric vehicle and battery manufacturing and industries like steel-making to retool plants to run on electricity rather than coal, and exploring new large-scale nuclear plants to bolster baseload supply.

Natural gas now provides about seven per cent of the province’s energy, a piece of the pie that will rise significantly as nuclear energy dwindles. Emissions from Ontario’s electricity grid, which is currently one of the world’s cleanest with 94 per cent zero-emission power generation, are projected to rise a whopping 375 per cent as the province turns increasingly to natural gas generation. Those increases will effectively undo a third of the hard-won emissions reductions the province achieved by phasing out coal-fired power generation.

The Independent Electricity System Operator (IESO), which manages Ontario’s grid, studied whether the province could phase out natural gas generation by 2030 and concluded that “would result in blackouts and hinder electrification” and increase average residential electricity costs by $100 per month.

The Ontario Clean Air Alliance, however, obtained draft documents from the electricity operator that showed it had studied, but not released publicly, other scenarios that involved phasing out natural gas without energy shortfalls, price hikes or increases in emissions.

The Ontario government will not reconsider plans to close the Pickering nuclear station and instead stop-gap the consequent electricity shortfall facing Ontario with natural gas-generated power in a move that will hike the province’s greenhouse gas emissions.

One model suggested increasing carbon taxes and imports of clean energy from other provinces could keep blackouts, costs and emissions at bay, while another involved increasing energy efficiency, wind generation and storage.

“By banning gas-fired electricity exports to the U.S., importing all the Quebec water power we can with the existing transmission lines and investing in energy efficiency and wind and solar and storage — do all those things and you can phase out gas-fired power and lower our bills,” said Jack Gibbons, chair of the Ontario Clean Air Alliance.

The IESO has argued in response that the study of those scenarios was not complete and did not include many of the challenges associated with phasing out natural gas plants.

Ontario Energy Minister Todd Smith asked the IESO to develop “an achievable pathway to zero-emissions in the electricity sector and evaluate a moratorium on new-build natural gas generation stations,” said his spokesperson. That report, an early look at halting gas power, is expected in November.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified