City of Medicine Hat Electric Utility Recognized for Health and Safety Excellence


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Medicine Hat Electric Utility Safety Awards spotlight Canadian Electricity Association OHS excellence, recognizing occupational health and safety leadership, employee safety performance, rigorous training, safe work methods, and shared best practices across Canadian utilities.

 

Key Points

CEA OHS honors for outstanding occupational health and employee safety performance across Canadian electric utilities.

✅ President's and Vice President's Awards achieved

✅ CEA OHS program tracks industry safety performance

✅ Focus on training, safe methods, best practices

 

Mayor Ted Clugston and Canadian Electricity Association (CEA) Chief Operating Officer Francis Bradley gathered at City Hall earlier today to present the City of Medicine Hat Electric Utility with several awards of excellence in health and safety practices.

The annual CEA Occupational Health and Safety (OHS) Awards identify top safety performing member companies and publicly recognize their commitment to safety and their contribution to the declining trend of workplace incidents each year.

The City of Medicine Hat Electric Utility was awarded with the President’s Award of Safety Excellence for Employee Safety and two Vice President’s Awards of Safety Excellence.

 “The City of Medicine Hat takes pride in producing and delivering safe, reliable and cost effective electrical energy to our customers,” said Mayor Ted Clugston.  “These awards are a great staff achievement, and demonstrate the City’s commitment to the health and safety of our employees, contracted workers and workplace visitors. As members of the Canadian Electricity Association, we are pleased to be recognized alongside other major utility providers across Canada in the electricity sector today.”

For more than 30 years, CEA has tracked and monitored the safety record of its member utilities. The Canadian electric utility industry is one of the safest maintenance, operation and construction related industries in the country due in a large measure to the high level of arc flash training and other programs; the establishment of safe work methods; and the sharing of industry best practices established through the OHS program.

Related News

Electric Utilities Plot Bullish Course for EV Charging Infrastructure

EV Charging Infrastructure Incentives are expanding as utilities fund public chargers, Level 2 networks, DC fast charging, grid-managed off-peak programs, and equitable access across Ohio, New Jersey, and Florida to accelerate clean transportation.

 

Key Points

Utility-backed programs funding Level 2 and DC fast chargers, managing grid demand, and expanding EV equity.

✅ Incentives for Level 2 and DC fast public charging stations.

✅ Grid-friendly off-peak charging to balance demand.

✅ Equity targets place chargers in low-income communities.

 

Electric providers in Florida, Ohio and New Jersey recently announced plans to expand electric vehicle charging networks and infrastructure through various incentive programs that could add thousands of new public chargers in the next several years.

Elsewhere, utilities are advancing similar efforts, with Michigan EV programs proposing more than $20 million for charging infrastructure to accelerate adoption.

American Electric Power in Ohio will offer nearly $10 million in incentives toward the build out of 375 EV charging stations throughout the company's service territory, which largely includes Columbus.

Meanwhile, the Public Service Electric and Gas Company (PSE&G), an electric utility provider in New Jersey, has proposed a six-year plan to support the development of nearly 40,000 electric vehicle chargers across a wide range of customers and sectors, said Francis Sullivan, a spokesperson for PSE&G.

And Duke Energy in Florida is installing up to 530 EV charging stations across its service area, as part of its Park and Plug pilot program, which will be making the charging ports available in multifamily housing complexes, workplaces and other high traffic areas.

"We are bringing cleaner energy to Florida through 700 megawatts of new universal solar, and we are helping our customers to bring clean transportation to the state as well," Catherine Stempien, Duke Energy Florida president, said in a statement. "We are committed to providing smarter, cleaner energy alternatives for all our customers."

The project in Ohio is making incentive funding available to government organizations, multifamily housing developments and workplaces, covering from 50 percent to all of the costs. The plan, to be rolled out in the next four years, aims to incentivize the development of 300 level-two chargers and 75 "fast chargers" capable of charging a car's battery in minutes rather than hours.

"I think what's interesting about what we're seeing now in the industry is that electric vehicles and electric vehicle charging are expanding beyond California, and like other Pacific Coast states," said Scott Fisher, vice president of marketing at Greenlots, maker of car chargers and software. Greenlots has been selected as one of the companies to provide the chargers for the AEP project.

California has occupied the lion's share of the electric vehicle market, making up about 5 percent of the cars on the state's highways. The U.S. market sits at about 1.5 percent. However, indications show the EV boom may be set to take off as more models are being rolled out, and prices are making the electric cars more competitive with their gas-powered counterparts. The group Securing America's Future Energy (SAFE) announced the one-millionth electric vehicle is on course to be sold in the United States this month.

In a statement, Ben Prochazka, vice president of the Electrification Coalition, an EV advocacy group, called this "a major milestone and brings us one step closer to reducing our transportation system's dependence on oil. This is a direct result of the tireless efforts by communities and advocates throughout the 'EV ecosystem.'"

In New Jersey, PSE&G's efforts -- which are part of the company's proposed Clean Energy Future program -- will not only focus on building out the charging infrastructure, but structure car recharging to control charging and encourage residents to charge their cars during off-peak times.

"For now, with a modest number of charging stations in the market, it's not a huge problem. But over time, as you're putting in many thousands of these stations, what you want to make sure is that those stations are operating in sync with state power grids, where you don't have people all charging at the same time at like 5 p.m. on a hot summer day," said Fisher.

PSE&G also plans to offer incentives to encourage the development of level-two chargers and DC fast-chargers, as well as "provide grants and incentives for 100 electric school buses and EV charging infrastructure at school districts in PSE&G's service territory," said Sullivan.

"PSE&G will also help fund electrification projects at customer locations such as ports, airports and transit facilities," Sullivan added, via email.

Utilities and transportation planners are also keeping the concept of equity in mind -- to ensure EVs are adopted by more than just the Tesla owner -- and will also focus on placing infrastructure in low-income areas.

"Ten percent of the stations will be in low income areas, defined by census blocks," said Scott Blake, a communications consultant at AEP in Columbus.

Duke Energy also announced 10 percent of the chargers it is installing in Florida will be in "income-qualified communities," according to a company press release.

 

Related News

View more

Russians hacked into US electric utilities: 6 essential reads

U.S. power grid cyberattacks expose critical infrastructure to Russian hackers, DHS warns, targeting SCADA, smart grid sensors, and utilities; NERC CIP defenses, microgrids, and resilience planning aim to mitigate outages and supply chain disruptions.

 

Key Points

U.S. power grid cyberattacks target utility control systems, risking outages, disruption, requiring stronger defenses.

✅ Russian access to utilities and SCADA raises outage risk

✅ NERC CIP, DHS, and utilities expand cyber defenses

✅ Microgrids and renewables enhance resilience, islanding capability

 

The U.S. Department of Homeland Security has revealed that Russian government hackers accessed control rooms at hundreds of U.S. electrical utility companies, gaining far more access to the operations of many more companies than previously disclosed by federal officials.

Securing the electrical grid, upon which is built almost the entirety of modern society, is a monumental challenge. Several experts have explained aspects of the task, potential solutions and the risks of failure for The Conversation:

 

1. What’s at stake?

The scale of disruption would depend, in part, on how much damage the attackers wanted to do. But a major cyberattack on the electricity grid could send surges through the grid, much as solar storms have done.

Those events, explains Rochester Institute of Technology space weather scholar Roger Dube, cause power surges, damaging transmission equipment. One solar storm in March 1989, he writes, left “6 million people without power for nine hours … [and] destroyed a large transformer at a New Jersey nuclear plant. Even though a spare transformer was nearby, it still took six months to remove and replace the melted unit.”

More serious attacks, like larger solar storms, could knock out manufacturing plants that build replacement electrical equipment, gas pumps to fuel trucks to deliver the material and even “the machinery that extracts oil from the ground and refines it into usable fuel. … Even systems that seem non-technological, like public water supplies, would shut down: Their pumps and purification systems need electricity.”

In the most severe cases, with fuel-starved transportation stalled and other basic infrastructure not working, “[p]eople in developed countries would find themselves with no running water, no sewage systems, no refrigerated food, and no way to get any food or other necessities transported from far away. People in places with more basic economies would also be without needed supplies from afar.”

 

2. It wouldn’t be the first time

Russia has penetrated other countries’ electricity grids in the past, and used its access to do real damage. In the middle of winter 2015, for instance, a Russian cyberattack shut off the power to Ukraine’s capital in the middle of winter 2015.

Power grid scholar Michael McElfresh at Santa Clara University discusses what happened to cause hundreds of thousands of Ukrainians to lose power for several hours, and notes that U.S. utilities use software similar to their Ukrainian counterparts – and therefore share the same vulnerabilities.

 

3. Security work is ongoing

These threats aren’t new, write grid security experts Manimaran Govindarasu from Iowa State and Adam Hahn from Washington State University. There are a lot of people planning defenses, including the U.S. government, as substation attacks are growing across the country. And the “North American Electric Reliability Corporation, which oversees the grid in the U.S. and Canada, has rules … for how electric companies must protect the power grid both physically and electronically.” The group holds training exercises in which utility companies practice responding to attacks.

 

4. There are more vulnerabilities now

Grid researcher McElfresh also explains that the grid is increasingly complex, with with thousands of companies responsible for different aspects of generating, transmission, and delivery to customers. In addition, new technologies have led companies to incorporate more sensors and other “smart grid” technologies. He describes how that, as a recent power grid report card underscores, “has created many more access points for penetrating into the grid computer systems.”

 

5. It’s time to ramp up efforts

The depth of access and potential control over electrical systems means there has never been a better time than right now to step up grid security amid a renewed focus on protecting the grid among policymakers and utilities, writes public-utility researcher Theodore Kury at the University of Florida. He notes that many of those efforts may also help protect the grid from storm damage and other disasters.

 

6. A possible solution could be smaller grids

One protective effort was identified by electrical engineer Joshua Pearce at Michigan Technological University, who has studied ways to protect electricity supplies to U.S. military bases both within the country and abroad. He found that the Pentagon has already begun testing systems, as the military ramps up preparation for major grid hacks, that combine solar-panel arrays with large-capacity batteries. “The equipment is connected together – and to buildings it serves – in what is called a ‘microgrid,’ which is normally connected to the regular commercial power grid but can be disconnected and become self-sustaining when disaster strikes.”

He found that microgrid systems could make military bases more resilient in the face of cyberattacks, criminals or terrorists and natural disasters – and even help the military “generate all of its electricity from distributed renewable sources by 2025 … which would provide energy reliability and decrease costs, [and] largely eliminate a major group of very real threats to national security.”

 

Related News

View more

Several Milestones Reached at Nuclear Power Projects Around the World

Nuclear Power Construction Milestones spotlight EPR builds, Hualong One steam generators, APR-1400 grid integration, and VVER startups, with hot functional testing, hydrostatic checks, and commissioning advancing toward fuel loading and commercial operation.

 

Key Points

Key reactor project steps, from testing and grid readiness to startup, marking progress toward safe commercial operation.

✅ EPR units advance through cold and hot functional testing

✅ Hualong One installs 365-ton steam generators at Fuqing 5

✅ APR-1400 and VVER projects progress toward grid connection

 

The world’s nuclear power industry has been busy in the new year, with several construction projects, including U.S. reactor builds, reaching key milestones as 2018 began.

 

EPR Units Making Progress

Four EPR nuclear units are under construction in three countries: Olkiluoto 3 in Finland began construction in August 2005, Flamanville 3 in France began construction in December 2007, and Taishan 1 and 2 in China began construction in November 2009. Each of the new units is behind schedule and over budget, but recent progress may signal an end to some of the construction difficulties.

EDF reported that cold functional tests were completed at Flamanville 3 on January 6. The main purpose of the testing was to confirm the integrity of primary systems, and verify that components important to reactor safety were properly installed and ready to operate. More than 500 welds were inspected while pressure was held greater than 240 bar (3,480 psi) during the hydrostatic testing, which was conducted under the supervision of the French Nuclear Safety Authority.

With cold testing successfully completed, EDF can now begin preparing for hot functional tests, which verify equipment performance under normal operating temperatures and pressures. Hot testing is expected to begin in July, with fuel loading and reactor startup possible by year end. The company also reported that the total cost for the unit is projected to be €10.5 billion (in 2015 Euros, excluding interim interest).

Olkiluoto 3 began hot functional testing in December. Teollisuuden Voima Oyj—owner and operator of the site—expects the unit to produce its first power by the end of this year, with commercial operation now slated to begin in May 2019.

Although work on Taishan 1 began years after Olkiluoto 3 and Flamanville 3, it is the furthest along of the EPR units. Reports surfaced on January 2 that China General Nuclear (CGN) had completed hot functional testing on Taishan 1, and that the company expects the unit to be the first EPR to startup. CGN said Taishan 1 would begin commercial operation later this year, with Taishan 2 following in 2019.

 

Hualong One Steam Generators Installed

Another Chinese project reached a notable milestone on January 8. China National Nuclear Corp. announced the third of three steam generators had been installed at the Hualong One demonstration project, which is being constructed as Unit 5 at the Fuqing nuclear power plant.

The Hualong One pressurized water reactor unit, also known as the HPR 1000, is a domestically developed design, part of China’s nuclear program, based on a French predecessor. It has a 1,090 MW capacity. The steam generators reportedly weigh 365 metric tons and stand more than 21 meters tall. The first steam generator was installed at Fuqing 5 on November 10, with the second placed on Christmas Eve.

 

Barakah Switchyard Energized

In the United Arab Emirates, more progress has been made on the four South Korean–designed APR-1400 units under construction at the Barakah nuclear power plant. On January 4, Emirates Nuclear Energy Corp. (ENEC) announced that the switchyard for Units 3 and 4 had been energized and connected to the power grid, a crucial step in Abu Dhabi toward completion. Unit 2’s main power transformer, excitation transformer, and auxiliary power transformer were also energized in preparation for hot functional testing on that unit.

“These milestones are a result of our extensive collaboration with our Prime Contractor and Joint Venture partner, the Korea Electric Power Corporation (KEPCO),” ENEC CEO Mohamed Al Hammadi said in a press release. “Working together and benefitting from the experience gained when conducting the same work on Unit 1, the teams continue to make significant progress while continuing to implement the highest international standards of safety, security and quality.”

In 2017, ENEC and KEPCO achieved several construction milestones including installation and concrete pouring for the reactor containment building liner dome section on Unit 3, and installation of the reactor containment liner plate rings, reactor vessel, steam generators, and condenser on Unit 4.

Construction began on the four units (Figure 1) in July 2012, May 2013, September 2014, and September 2015, respectively. Unit 1 is currently undergoing commissioning and testing activities while awaiting regulatory review and receipt of the unit’s operating license from the Federal Authority for Nuclear Regulation, before achieving 100% power in a later phase. According to ENEC, Unit 2 is 90% complete, Unit 3 is 79% complete, and Unit 4 is 60% complete.

 

VVER Units Power Up

On December 29, Russia’s latest reactor to commence operation—Rostov 4 near the city of Volgodonsk—reached criticality, as other projects like Leningrad II-1 advance across the fleet, and was operated at its minimum controlled reactor power (MCRP). Criticality is a term used in the nuclear industry to indicate that each fission event in the reactor is releasing a sufficient number of neutrons to sustain an ongoing series of reactions, which means the neutron population is constant and the chain reaction is stable.

“The transfer to the MCRP allows [specialists] to carry out all necessary physical experiments in the critical condition of [the] reactor unit (RU) to prove its design criteria,” Aleksey Deriy, vice president of Russian projects for ASE Engineering Co., said in a press release. “Upon the results of the experiments the specialists will decide on the RU powerup.”

Rostov 4 is a VVER-1000 reactor with a capacity of 1,000 MW. The site is home to three other VVER units: Unit 1 began commercial operation in 2001, Unit 2 in 2010, and Unit 3 in 2015.

 

Related News

View more

Dewa in China to woo renewable energy firms

Dewa-China Renewable Energy Partnership advances solar, clean energy, smart grid, 5G, cloud, and Big Data, linking Dewa with Hanergy and Huawei for R&D, smart meters, demand management, and resilient network infrastructure.

 

Key Points

A Dewa collaboration with Hanergy and Huawei to co-develop solar, smart grid, 5G, cloud, and resilient utility networks.

✅ MoU expands solar PV and distributed generation in Dubai and China

✅ Smart grid R&D: smart meters, demand response, self-healing networks

✅ 5G, cloud, and Big Data enable secure, scalable smart city services

 

A high-level delegation from Dubai Electricity and Water Authority (Dewa) recently visited China in bid to build closer ties with Chinese renewable and clean energy and smart services and smart grid companies, amid broader power grid modernization in Asia trends.

The team led by the managing director and CEO Saeed Mohammed Al Tayer visited the headquarters of Hanergy Holding Group, one of the largest international companies in alternative and renewable energy, in Beijing.

The visit complements the co-operation between Dewa and Hanergy after the signing MoU between the two sides last May, said a statement from Dewa.

The two parties focused on renewable and clean energy and its development, including efforts to integrate solar into the grid through advanced programs, and enhancing opportunities for joint investment.

Al Tayer also visited the Exhibition Hall and Exhibition Centre of the Hanergy Clean Energy Exhibition spread over a 7,000-sq-m area at the Beijing Olympic Park.

He discussed solar power technologies and applications, which included integrated photovoltaic panels and their distribution on the roofs of industrial and residential buildings, residential and mobile power systems, micro-grid installations in remote regions, solar-powered vehicles, and various elements of the exhibition.

Al Tayer and the accompanying delegation later visited the Beijing R&D Centre, which is one of Huaweis largest research institutes, known for Huawei smart grid initiatives across global markets, that employs over 12,000 people. The centre covers the latest pre-5G solutions, Cloud, Big Data, as well as vertical solutions for a smart and safe city.

"The visit is part of a joint venture with Huawei, which includes R&D projects to develop smart network infrastructures and various mechanisms and technologies, aligned with recent U.S. grid improvement funding initiatives, such as smart meters for electricity and water services, energy demand management, and self-recovery mechanisms from errors and disasters," he added.

 

Related News

View more

After alert on Russian hacking, a renewed focus on protecting U.S. power grid

U.S. Power Grid Cybersecurity combats DHS-FBI flagged threats to energy infrastructure, with PJM Interconnection using ICS/SCADA segmentation, phishing defenses, incident response, and resilience exercises against Russia-linked attacks and pipeline intrusions.

 

Key Points

Strategies, controls, and training that protect U.S. electric infrastructure from cyber threats and disruptions.

✅ ICS/SCADA network segmentation and zero-trust architecture

✅ Employee phishing drills and incident response playbooks

✅ DOE-led grid exercises and threat intelligence sharing

 

The joint alert from the FBI and Department of Homeland Security last month warning that Russia was hacking into critical U.S. energy infrastructure, as outlined in six essential reads on Russian hacks from recent coverage, came as no surprise to the nation’s largest grid operator, PJM Interconnection.

“You will never stop people from trying to get into your systems. That isn’t even something we try to do.” said PJM Chief Information Officer, Tom O’Brien. “People will always try to get into your systems. The question is, what controls do you have to not allow them to penetrate? And how do you respond in the event they actually do get into your system?”

PJM is the regional transmission organization for 65 million people, covering 13 states, including Pennsylvania, and Washington D.C.

On a rainy day in early April, about 10 people were working inside PJM’s main control center, outside Philadelphia, closely monitoring floor-to-ceiling digital displays showing real-time information from the electric power sector throughout PJM’s territory in the mid-Atlantic and parts of the midwest, amid reports that hackers accessed control rooms at U.S. utilities.

#google#

Donnie Bielak, a reliability engineering manager, was overseeing things from his office, perched one floor up.

“This is a very large, orchestrated effort that goes unnoticed most of the time,” Bielak said. “That’s a good thing.”

But the industry certainly did take notice in late 2015 and early 2016, when hackers successfully disrupted power to the Ukrainian grid. The outages lasted a few hours and affected about 225,000 customers. It was the first publicly-known case of a cyber attack causing major disruptions to a power grid. It was widely blamed on Russia.

One of the many lessons of the Ukraine attacks was a reminder to people who work on critical infrastructure to keep an eye out for odd communications.

“A very large percentage of entry points to attacks are coming through emails,” O’Brien said. “That’s why PJM, as well as many others, have aggressive phishing campaigns. We’re training our employees.”

O’Brien doesn’t want to get into specifics about how PJM deals with cyber threats. But one common way to limit exposure is by having separate systems: For example, industrial controls in a power plant are not connected to corporate business networks, a separation underscored after breaches at U.S. power plants prompted reviews across the sector.

Since 2011, North American grid operators and government agencies have also done large, security exercises every two years. Thousands of people practice how they’d respond to a coordinated physical or cyber event, including rising substation attacks that highlight resilience gaps.

So far, nothing like that has happened in the U.S. It’s possible, but not likely, according to Robert M. Lee, a former military intelligence analyst, who runs the industrial cybersecurity firm Dragos.

“The more complex the system, the harder it is to have a scalable attack,” said Lee, who co-authored a report analyzing the Ukraine attacks. “If you wanted to take out a power generation station– that isn’t the most complex thing. Let’s say you cause an hour of outage. But now you want to cause two months of outages? That’s an exponential increase in effort required.”

For example, he said, it would very difficult for hackers to knock out power to the entire east coast for a long time. But briefly disrupting a major city is easier. That’s the sort of thing that keeps him up at night.

“I worry about an adversary getting into, maybe, Washington D.C.’s portion of the grid, taking down power for 30 minutes,” he said.

The Department of Energy is creating a new office focused on cybersecurity and emergency response, following the U.S. government’s condemnation of power grid hacking by Russia.

Deterrence may be one reason why there has not yet been a major attack on the U.S. grid, said John MacWilliams, a former senior DOE official who’s now a fellow at Columbia University’s Center on Global Energy Policy.

“That’s obviously an act of war,” he said. “We have the capability of responding either through cyber mechanisms or kinetic military.”

In the meantime, small-scale incidents keep happening.

This spring, another cyber attack targeted natural gas pipelines. Four companies shut down their computer systems, just in case, but they say no service was disrupted.

 

Related News

View more

PG&E Supports Local Communities as It Pays More Than $230 Million in Property Taxes to 50 California Counties

PG&E property tax payments bolster counties, education, public safety, and infrastructure across Northern and Central California, reflecting semi-annual levies tied to utility assets, capital investments, and economic development that serve 16 million customers.

 

Key Points

PG&E property tax payments are semi-annual county taxes funding public services and linked to utility infrastructure.

✅ $230M paid for Jul-Dec 2017 across 50 California counties

✅ Estimated $461M for FY 2017-2018, up 12% year over year

✅ Investments: $5.9B in grid, Gas Safety Academy, control center

 

Pacific Gas and Electric Company (PG&E) paid property taxes of more than $230 million this fall to the 50 counties where the energy company owns property and operates gas and electric infrastructure that serves 16 million Californians. The tax payments help support essential public services like education and public health and safety actions across the region.

The semi-annual property tax payments made today cover the period from July 1 to December 31, 2017.

Total payments for the full tax year of July 1, 2017 to June 30, 2018 are estimated to total more than $461 million—an increase of $50 million, or 12 percent, compared with the prior fiscal year, even as customer rates are expected to stabilize in the years ahead.

“Property tax payments provide crucial resources to the many communities where we live and work, supporting everything from education to public safety. By continuing to make local investments in gas and electric infrastructure, we are not only creating one of the safest and most reliable energy systems in the country, including wildfire risk reduction programs and related efforts, we’re investing in the local economy and helping our communities thrive,” said Jason Wells, senior vice president and chief financial officer for PG&E.

PG&E invested more than $5.7 billion last year and expects to invest $5.9 billion this year to enhance and upgrade its gas and electrical infrastructure amid power line fire risks across Northern and Central California.

Some recent investments include the construction of PG&E’s $75 millionGas Safety Academy in Winters in Yolo County, which opened in September. Last year, PG&E opened a $36 million, state-of-the-art electric distribution control center in Rocklin.

PG&E supports the communities it serves in a variety of ways. In 2016, PG&E provided more than $28 million in charitable contributions to enrich local educational opportunities, preserve the environment, and support economic vitality and emergency preparedness and safety, including its Wildfire Assistance Program for impacted residents. PG&E employees provide thousands of hours of volunteer service in their local communities. The company also offers a broad spectrum of economic development services to help local businesses grow.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified