Ontario converts coal plant to biomass, creates 200 jobs

By Government of Ontario


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ontario is moving forward with the conversion of the Atikokan Generating Station from coal to biomass, creating 200 construction jobs and helping to protect existing jobs at the plant.

The conversion is the first of its kind in the province. The project is expected to create new economic opportunities for Ontario's forestry sector, which will provide the biomass fuel to the plant.

Demand for biomass pellets from the plant is expected to create or support about 200 jobs. Government officials are hopeful that the converted plant will be able to deliver more than 200 megawatts of clean, renewable power, and can take the province a step closer to eliminating coal-fired electricity generation by the end of 2014.

Building a clean energy system and a culture of conservation is part of the Ontario government's plan to create and support jobs for Ontario families while ensuring we have the electricity we need to power our homes, schools, hospitals and the economy.

The conversion of the plant will begin later this year and is expected to be complete in 2014.

Over its life, biomass from wood pellets emits about 90 percent less greenhouse gases and less smog-causing pollutants than coal. Eliminating coal-fired electricity in Ontario is the single largest greenhouse gas reduction measure in North America.

Since 2003, Ontario has brought more than 10,000 megawatts of new and refurbished clean energy online--enough to power both Ottawa and Toronto.

THEY SAID IT:

"Our plan to transform our electricity system and ensure a sustainable clean energy program is working. Together we are building a clean energy system in Ontario that is spurring new investment, creating jobs and providing Ontarians with cleaner air, healthier communities and a brighter future."

– Chris Bentley, Minister of Energy

"The conversion of Atikokan from dirty coal to biomass means we are reducing harmful emissions and building a modern, clean, reliable energy system. We'll keep energy jobs in the Town of Atikokan and create forestry jobs in northern Ontario while ensuring a cleaner, healthier Ontario for families and future generations."

– Bill Mauro, MPP Thunder Bay-Atikokan

Related News

US Dept. of Energy awards Washington state $23.4 million to strengthen infrastructure

Washington Grid Resilience Grant funds DOE-backed modernization to harden Washington's electric grid against extreme weather, advancing clean energy, affordable and reliable electricity, and community resilience under the Bipartisan Infrastructure Law via projects and utility partnerships.

 

Key Points

A $23.4M DOE grant to modernize Washington's grid, boost weather resilience, and deliver clean, reliable power.

✅ Targets outages, reliability, and community resilience statewide.

✅ Prioritizes disadvantaged areas and quality clean energy jobs.

✅ Backed by Bipartisan Infrastructure Law and DOE funding.

 

Washington state has received a $23.4 million Grid Resilience State and Tribal Formula Grant from the U.S. Department of Energy (DOE) to modernize the electric grid through smarter electricity infrastructure and reduce impacts due to extreme weather and natural disasters. Grid Resilience State and Tribal Formula Grants aim to ensure the reliability of power sector infrastructure so that communities have access to affordable, reliable, clean electricity.

“Electricity is an essential lifeline for communities. Improving our systems by reducing disruptive events is key as we cross the finish line of a 100% clean electricity grid and ensure equitable benefits from the clean energy economy reach every community,” said Gov. Jay Inslee.

The federal funding for energy resilience will enhance and expand ongoing current grid modernization and resilience efforts throughout the state. For example, working directly with rural and typical end-of-the-line customers to develop resilience plans and collaborating with communities and utilities, including smart city efforts in Spokane as examples, on building resilient and renewable infrastructure for essential services.

“This is a significant opportunity to supplement our state investments in building a robust, resilient electric grid that supports our long-term vision for clean, affordable and reliable electricity – the foundation for economic growth and job creation that strengthens our communities and keeps Washington globally competitive. It shows once again that we are maximizing the federal funding being made available by the Biden-Harris Administration to invest in the country’s infrastructure,” said Washington State Department of Commerce Director Mike Fong.

Across the border, British Columbia's clean energy shift adds regional momentum for resilient, low-carbon power.

Goals include:

Reducing the frequency, duration and impact of outages as climate change impacts on the grid intensify while enhancing resiliency in historically disadvantaged communities.
Strengthening prosperity by expanding well-paying, safe clean energy jobs accessible to all workers and ensuring investments have a positive effect on quality job creation and equitable economic development.

Building a community of practice and maximizing project scalability by identifying pathways for scaling innovations such as integrating solar into the grid across programs.

“The Grid Resilience Formula Grants will enable communities in Washington to protect households and businesses from blackouts or power shutdowns during extreme weather,” said Maria Robinson, Director, Grid Deployment Office, U.S. Department of Energy. “Projects selected through this program will benefit communities by creating good-paying jobs to deliver clean, affordable, and reliable energy across the country.”

DOE has also announced $34 million for grid improvements to bolster reliability nationwide.

“An innovative, reliable, and efficient power grid is vital to Washington’s continued economic growth and for community resilience especially in disadvantaged areas,” said U.S. Rep. Strickland, Co-Lead of the bipartisan Grid Innovation Caucus. “The funding announced today will invest in our energy grid, support good-paying jobs, and means a cleaner, more energy-efficient future.”

Funded through the Bipartisan Infrastructure Law and administered by DOE’s Grid Deployment Office, with related efforts such as California grid upgrades advancing nationwide, the Grid Resilience State and Tribal Formula Grants distribute funding to states, territories, and federally recognized Indian Tribes, over five years based on a formula that includes factors such as population size, land area, probability and severity of disruptive events, and a locality’s historical expenditures on mitigation efforts. Priority will be given to projects that generate the greatest community benefit providing clean, affordable, and reliable energy.

 

Related News

View more

Ontario Extends Off-Peak Electricity Rates to Provide Relief for Families, Small Businesses and Farms

Ontario Off-Peak Electricity Rate Relief extends 8.5 cents/kWh pricing 24/7 for residential, small business, and farm customers, covering Time-Of-Use and tiered plans to stabilize utility bills during COVID-19 Stay-at-Home measures across Ontario.

 

Key Points

A province-wide 8.5 cents/kWh price applied 24/7 until Feb 22, 2021 for TOU and tiered users to reduce electricity bills

✅ 8.5 cents/kWh, applied 24/7 through Feb 22, 2021

✅ Available to TOU and tiered OEB-regulated customers

✅ Automatic on bills for homes, small businesses, farms

 

The Ontario government is once again extending electricity rate relief for families, small businesses and farms to support those spending more time at home while the province maintains the Stay-at-Home Order in the majority of public health regions. The government will continue to hold electricity prices to the off-peak rate of 8.5 cents per kilowatt-hour, compared with higher peak rates elsewhere in the day, until February 22, 2021. This lower rate is available 24 hours per day, seven days a week for Time-Of-Use and tiered customers.

"We know staying at home means using more electricity during the day when electricity prices are higher, that's why we are once again extending the off-peak electricity rate to provide households, small businesses and farms with stable and predictable electricity bills when they need it most," said Greg Rickford, Minister of Energy, Northern Development and Mines, Minister of Indigenous Affairs. "We thank Ontarians for continuing to follow regional Stay-at-Home orders to help stop the spread of COVID-19."

The off-peak rate came into effect January 1, 2021, providing families, farms and small businesses with immediate electricity rate relief, and for industrial and commercial companies, stable pricing initiatives have provided additional certainty. The off-peak rate will now be extended until the end of day February 22, 2021, for a total of 53 days of emergency rate relief. During this period, and alongside temporary disconnect moratoriums for residential customers, the off-peak price will continue to be automatically applied to electricity bills of all residential, small business, and farm customers who pay regulated rates set by the Ontario Energy Board and get a bill from a utility.

"We extend our thanks to the Ontario Energy Board and local distribution companies across the province, including Hydro One, for implementing this extended emergency rate relief and supporting Ontarians as they continue to work and learn from home," said Bill Walker, Associate Minister of Energy.

 

Related News

View more

New Texas will bill electric vehicle drivers an extra $200 a year

Texas EV Registration Fee adds a $200 annual charge under Senate Bill 505, offsetting lost gasoline tax revenue to the State Highway Fund, impacting electric vehicle owners at registration and renewals across Texas.

 

Key Points

A $200 yearly charge on electric vehicles to replace lost gasoline tax revenue and support Texas Highway Fund road work.

✅ $200 due at registration or renewal; $400 upfront on new EVs.

✅ Enacted by Senate Bill 505 to offset lost gasoline tax revenue.

✅ Advocates propose mileage-based fees; limited $2,500 rebates exist.

 

Plano resident Tony Federico bought his Tesla five years ago in part because he hated spending lots of money on gas, and Supercharger billing changes have also influenced charging expenses. But that financial calculus will change slightly on Sept. 1, when Texas will start charging electric vehicle drivers an additional fee of $200 each year.

“It just seems like it’s arbitrary, with no real logic behind it,” said Federico, 51, who works in information technology. “But I’m going to have to pay it.”

Earlier this year, state lawmakers passed Senate Bill 505, which requires electric vehicle owners to pay the fee when they register a vehicle or renew their registration, even as fights for control over charging continue among utilities, automakers and retailers. It’s being imposed because lawmakers said EV drivers weren’t paying their fair share into a fund that helps cover road construction and repairs across Texas.

The cost will be especially high for those who purchase a new electric vehicle and have to pay two years of registration, or $400, up front.

Texas agencies estimated in a 2020 report that the state lost an average of $200 per year in federal and state gasoline tax dollars when an electric vehicle replaced a gas-fueled one. The agencies called the fee “the most straightforward” remedy.

Gasoline taxes go to the State Highway Fund, which the Texas Department of Transportation calls its “primary funding source.” Electric vehicle drivers don’t pay those taxes, though, because they don’t use gasoline.

Still, EV drivers do use the roads. And while electric vehicles make up a tiny portion of cars in Texas for now, that fraction is expected to increase, raising concerns about state power grids in the years ahead.

Many environmental and consumer advocates agreed with lawmakers that EV drivers should pay into the highway fund but argued over how much, and debates over fairer vehicle taxes are surfacing abroad as well.

Some thought the state should set the fee lower to cover only the lost state tax dollars, rather than both the state and federal money, because federal officials may devise their own scheme. Others argued the state should charge nothing because EVs help reduce greenhouse gas emissions that drive climate change and can offer budget benefits for many owners.

“We urgently need to get more electric vehicles on the road,” said Luke Metzger, executive director of Environment Texas. “Any increased fee could create an additional barrier for Texans, and particularly more moderate- to low-income Texans, to make that transition.”

Tom “Smitty” Smith, the executive director of the Texas Electric Transportation Resources Alliance, advocated for a fee based on how many miles a person drove their electric car, which would better mirror how the gas taxes are assessed.

Texas has a limited incentive that could offset the cost: It offers rebates of up to $2,500 for up to 2,000 new hydrogen fuel cell, electric or hybrid vehicles every two years. Adrian Shelley, Public Citizen’s Texas office director, recommended that the state expand the rebates, noting that state-level EV benefits can be significant.

In the Houston area, dealer Steven Wolf isn’t worried about the fee deterring potential customers from buying the electric Ford F-150 Lightning and Mustang Mach-E vehicles he sells. Electric cars are already more expensive than comparable gasoline-fueled cars, and charging networks compete for drivers, he said.

 

Related News

View more

Ambitious clean energy target will mean lower electricity prices, modelling says

Australia Clean Energy Target drives renewables in the National Electricity Market, with RepuTex modelling and the Finkel Review showing lower wholesale prices and emissions as gas generators set prices less often under ambitious targets.

 

Key Points

Policy boosting low emissions generation to cut electricity emissions and lower wholesale prices across Australia.

✅ Ambitious targets lower wholesale prices through added generation

✅ RepuTex modelling shows renewables displace costly gas peakers

✅ Finkel Review suggests CET cuts emissions and boosts reliability

 

The more ambitious a clean energy target is, the lower Australian wholesale electricity prices will be, according to new modelling by energy analysis firm RepuTex.

The Finkel review, released last month recommended the government introduce a clean energy target (CET), which it found would cut emissions from the national electricity market and put downward pressure on both wholesale and retail prices, aligning with calls to favor consumers over generators in market design.

The Finkel review only modelled a CET that would cut emissions from the electricity sector by 28% below 2005 levels by 2030. But all available analysis has demonstrated that such a cut would not be enough to meet Australia’s overall emissions reductions made as part of the Paris agreement, which themselves were too weak to help meet the central aim of that agreement – to keep global warming to “well below 2C”.

RepuTex modelled the effect of a CET that cut emissions from the electricity sector by 28% – like that modelled in the Finkel Review – as well as one it said was consistent with 2C of global warming, which would cut emissions from electricity by 45% below 2005 levels by 2030.

It found both scenarios caused wholesale prices to drop significantly compared to doing nothing, despite IEA warnings on falling energy investment that could lead to shortages, with the more ambitious scenario resulting in lower wholesale prices between 2025 and 2030.

In the “business as usual scenario”, RepuTex found wholesale prices would hover roughly around the current price of $100 per MWh.

Under a CET that reduced electricity emissions by 28%, prices would drop to under $40 around 2023, and then rise to nearly $60 by 2030.

The more ambitious CET had a broadly similar effect on wholesale prices. But RepuTex found it would drive prices down a little slower, but then keep them down for longer, stabilising at about $40 to $50 for most of the 2020s.

It found a CET would drive prices down by incentivising more generation into the market. The more ambitious CET would further suppress prices by introducing more renewable energy, resulting in expensive gas generators less often being able to set the price of electricity in the wholesale market, a dynamic seen with UK natural gas price pressures recently.

The downward pressure of a CET on wholesale prices was more dramatic in the RepuTex report than in Finkel’s own modelling. But that was largely because, as Alan Finkel himself acknowledged, the estimates of the costs of renewable energy in the Finkel review modelling were conservative.

Speaking at the National Press Club, Finkel said: “We were conservative in our estimates of wind and large-scale solar generator prices. Indeed, in recent months the prices for wind generation have already come in lower than what we modelled.”

The RepuTex modelling also found the economics of the national electricity market no longer supported traditional baseload generation – such as coal power plants that were unable to respond flexibly to demand, with debates over power market overhauls in Alberta underscoring similar tensions – and so they would not be built without the government distorting the market.

“With a premium placed on flexible generation that can ramp up or down, baseload only generation – irrespective of how clean or dirty it is – is likely to be too inflexible to compete in Australia’s future electricity system,” the report said.

“In this context, renewable energy remains attractive to the market given it is able to deliver energy reliability, with no emissions, at low cost prices, with clean grid and battery trends in Canada informing the shift for policymakers. This affirms that renewables are a lay down misere to out-compete traditionally fossil-fuel sources in Australia for the foreseeable future.”

 

Related News

View more

Berlin Geothermal Plant in El Salvador Set to Launch This Year

El Salvador Geothermal Expansion boosts renewable energy with a 7 MW Berlin binary ORC plant, upgrades at Ahuachapan, and pipeline projects, strengthening clean power capacity, grid reliability, and sustainable growth in Central America.

 

Key Points

A national push adding binary-cycle capacity at Berlin and Ahuachapan, boosting geothermal supply and advancing sites.

✅ 7 MW Berlin binary ORC plant entering service.

✅ Ahuachapan upgrade adds 2 MW, total geothermal 204 MW.

✅ Next: Chinameca, San Miguel, San Vicente, World Bank backed.

 

El Salvador is set to expand its renewable energy capacity with the inauguration of the 7-MW Berlin binary geothermal power plant, slated to go online later this year. This new addition marks a significant milestone in the country’s geothermal energy development, highlighting its commitment to sustainable energy solutions. The plant, which has already been installed and is currently undergoing testing, is expected to boost the nation’s geothermal capacity, contributing to its growing renewable energy portfolio.

The Role of Geothermal Energy in El Salvador’s Energy Mix

Geothermal energy plays a pivotal role in El Salvador's energy landscape. With the combined output from the Ahuachapan and Berlin geothermal plants, geothermal energy now accounts for about 21% of the country's net electricity supply. This makes geothermal the second-largest source of energy generation in El Salvador, underscoring its importance as a reliable and sustainable energy resource alongside emerging options like advanced nuclear microreactor technologies in the broader low-carbon mix.

In addition to the Berlin plant, El Salvador has made significant improvements to its Ahuachapan geothermal power plant. Recent upgrades have increased its generation capacity by 2 MW, further enhancing the country’s geothermal energy output. Together, the Ahuachapan and Berlin plants bring the total installed geothermal capacity to 204 MW, positioning El Salvador as a regional leader in geothermal energy development.

The Berlin Binary Geothermal Plant: A Technological Milestone

The Berlin binary geothermal power plant is especially noteworthy for several reasons. It is the first geothermal power plant to be constructed in El Salvador since 2007, marking a significant step in the country's ongoing efforts to expand its renewable energy infrastructure while reinforcing attention to risk management in light of Hawaii geothermal safety concerns reported elsewhere. The plant utilizes a binary cycle geothermal system, which is known for its efficiency in extracting energy from lower temperature geothermal resources, making it an ideal solution for regions like Berlin, where geothermal resources are abundant but at lower temperatures.

The plant was built by Turboden, an Italian company specializing in organic Rankine cycle (ORC) technology. The binary cycle system operates by transferring heat from the geothermal fluid to a secondary fluid, which then drives a turbine to generate electricity. This system allows for the efficient use of geothermal resources that might otherwise be too low in temperature for traditional geothermal plants, enabling pairing with thermal storage demonstration solutions to optimize output.

Future Geothermal Developments in El Salvador

El Salvador is not stopping with the Berlin geothermal plant. The country is actively working on other geothermal projects, including those in Chinameca, San Miguel, and San Vicente. These developments are expected to add 50 MW of additional capacity in their first phase, reflecting a broader shift as countries pursue hydrogen-ready power plants to reduce emissions, with a second phase, supported by the World Bank, planned to add another 100 MW.

The Chinameca, San Miguel, and San Vicente projects represent the next wave of geothermal development in El Salvador. When completed, these plants will significantly increase the country’s geothermal capacity, further diversifying its energy mix and reducing reliance on fossil fuels, and will require ongoing grid upgrades, a task complicated elsewhere by Germany grid expansion challenges highlighted in Europe.

International Support and Collaboration

El Salvador’s geothermal development efforts are supported by various international partners, including the World Bank, which has been instrumental in financing the expansion of geothermal projects, as utilities such as SaskPower geothermal plans in Canada explore comparable pathways. This collaboration highlights the global recognition of El Salvador’s potential in geothermal energy and its efforts to position itself as a hub for geothermal energy development in Central America.

Additionally, the country’s expertise in geothermal energy, especially in binary cycle technology, has attracted international attention. El Salvador’s progress in the geothermal sector could serve as a model for other countries in the region that are looking to harness their geothermal resources to reduce energy costs and promote sustainable energy development.

The upcoming launch of the Berlin binary geothermal power plant is a testament to El Salvador’s commitment to sustainable energy. As the country continues to expand its geothermal capacity, it is positioning itself as a leader in renewable energy in the region. The binary cycle technology employed at the Berlin plant not only enhances energy efficiency but also demonstrates El Salvador’s ability to adapt and innovate within the renewable energy sector.

With the continued development of projects in Chinameca, San Miguel, and San Vicente, and ongoing international collaboration, El Salvador’s geothermal energy sector is set to play a crucial role in the country’s energy future. As global demand for clean energy grows, exemplified by U.S. solar capacity additions this year, El Salvador’s investments in geothermal energy are helping to build a more sustainable, resilient, and energy-independent future.

 

Related News

View more

Construction of expanded Hoa Binh Hydropower Plant to start October 2020

Expanded Hoa Binh Hydropower Plant increases EVN capacity with 480MW turbines, commercial loan financing, grid stability, flood control, and Da River reliability, supported by PECC1 feasibility work and CMSC collaboration on site clearance.

 

Key Points

A 480MW EVN expansion on the Da River to enhance grid stability, flood control, and seasonal water supply in Vietnam.

✅ 480MW, two turbines, EVN-led financing without guarantees

✅ Improves frequency modulation and national grid stability

✅ Supports flood control and dry-season water supply

 

The extended Hoa Binh Hydropower Plant, which is expected to break ground in October 2020, is considered the largest power project to be constructed this year, even as Vietnam advances a mega wind project planned for 2025.

Covering an area of 99.2 hectares, the project is invested by Electricity of Vietnam (EVN). Besides, Vietnam Electricity Power Projects Management Board No.1 (EVNPMB1) is the representative of the investor and Power Engineering Consulting JSC 1 (EVNPECC1) is in charge of building the feasibility report for the project. The expanded Hoa Binh Hydro Power Plant has a total investment of VND9.22 trillion ($400.87 million), 30 per cent of which is EVN’s equity and the remaining 70 per cent comes from commercial loans without a government guarantee.

According to the initial plan, EVN will begin the construction of the project in the second quarter of this year and is expected to take the first unit into operation in the third quarter of 2023, a timeline reminiscent of Barakah Unit 1 reaching full power, and the second one in the fourth quarter of the same year.

Chairman of the Committee for Management of State Capital at Enterprises (CMSC) Nguyen Hoang Anh said that in order to start the construction in time, CMSC will co-operate with EVN to work with partners as well as local and foreign banks to mobilise capital, reflecting broader nuclear project milestones across the energy sector.

In addition, EVN will co-operate with Hoa Binh People’s Committee to implement site clearance, remove Ba Cap port and select contractors.

Once completed, the project will contribute to preventing floods in the rainy season and supply water in the dry season. The plant expansion will include two turbines with the total capacity of 480MW, similar in scale to the 525-MW hydropower station China is building on a Yangtze tributary, and electricity output of about 488.3 million kWh per year.

In addition, it will help improve frequency modulation capability and stabilise the frequency of the national electricity system through approaches like pumped storage capacity, and reduce the working intensity of available turbines of the plant, thus prolonging the life of the equipment and saving maintenance and repair costs.

Built in the Da River basin in the northern mountainous province of Hoa Binh, at the time of its conception in 1979, Hoa Binh was the largest hydropower plant in Southeast Asia, while projects such as China’s Lawa hydropower station now dwarf earlier benchmarks.

The construction was supported by the Soviet Union all the way through, designing, supplying equipment, supervising, and helping it go on stream. Construction began in November 1979 and was completed 15 years later in December 1994, when it was officially commissioned, similar to two new BC generating stations recently brought online.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.