With coal production, cleaner skies could mean more landfills

By Charleston Daily Mail


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
As the nation's coal-fired power plants work to create cleaner skies, they'll likely fill up landfills with millions more tons of potentially harmful ash.

More than one-third of the ash generated at the country's hundreds of coal-fired plants is now recycled - mixed with cement to build highways or used to stabilize embankments, among other things.

But in a process being used increasingly across the nation, chemicals are injected into plants' emissions to capture airborne pollutants.

That, in turn, changes the composition of the ash and cuts its usefulness. It can't be used in cement, for example, because the interaction of the chemicals may keep the concrete from hardening.

That ash has to go somewhere - so it usually ends up in landfills, along with the rest of the unusable waste.

"You're replacing an air problem with a land problem - a disposal problem,'' said Bruce Dockter, a research engineer with the Energy and Environmental Research Center at the University of North Dakota.

Coal ash naturally contains arsenic and mercury, and if the elements leach into groundwater they can contaminate drinking supplies. The EPA says ash disposed of in landfills could pose significant risks when mismanaged, and there are gaps in state regulation.

And the chemicals added to clean up emissions - such as ammonia, lime and calcium hydroxide - make the ash worse, environmental groups say, because they take toxins such as mercury out of the air but leave higher levels of it in the ash.

The U.S. Environmental Protection Agency doesn't classify coal ash - with or without the added chemicals - as a hazardous waste, although many environmental groups say it should.

"As a general rule, anything you do to make the air emissions cleaner makes the ash more toxic,'' said Lisa Evans, an attorney with Earthjustice, a nonprofit environmental law firm.

More than 120 million tons of ash and other leftovers come from coal combustion each year in the United States, and more than 46 million tons are reused, according to the American Coal Ash Association.

Environmental groups encourage reuse of the ash because it keeps most of the waste out of landfills. And substituting ash for cement means less mining for the materials typically used to make cement - consequently causing a drop in the amount of carbon dioxide that would be emitted by mining machinery.

But the EPA is pushing power companies to cut emissions of the sulfur dioxide and nitrogen oxides, which add to smog and acid rain and contribute to thousands of premature deaths, asthma and other respiratory ailments. A large portion of those emissions come from coal plants, the EPA says.

"If you live near a power plant, you want the cleanest air possible,'' said Dave Goss, executive director of the American Coal Ash Association. "If in exchange for clean air they have to dispose of material - that's the challenge. The only option may be putting it in a landfill.''

It's not clear how many plants already using or will use the new technology or how much ash may be affected, but the technique is becoming widespread as companies work to comply with federal guidelines, Goss said.

The issue was raised as the EPA developed air emissions rules, but the power sector has found ways to minimize the impact, said EPA spokesman John Millett, who said the agency doesn't believe the increased injection of the chemicals into ash will cause a significant drop-off in ash recycling.

But the effects are evident in Nebraska, for example, where the Omaha Public Power District sells about 135,000 tons of ash from its current plant near Nebraska City every year. Ash from a new plant being built nearby will be injected with chemicals to clean emissions, and it will be dumped in a 16-acre landfill to be built onsite at a cost of $2.7 million, said Mike Jones, a spokesman for the utility.

"You've got to do something with it,'' Jones said. "This was the best option.''

The landfill will fill up in about five years and likely have to be expanded.

Xcel Energy Inc. will use the injection equipment on a new plant near Pueblo, Colo., and also will install the equipment on two existing units there. The ash will be dumped in a 250-acre onsite landfill.

But even if there is a drop in recycling, the trade-off might be worth it.

"The benefits of the additional (emission) reductions from these controls is immense,'' Millett said.

In Nebraska, the dump sites are closely regulated, said Bill Gidley, a section supervisor with the state's Department of Environmental Quality. Landfills must have liners to collect seepage, and they are inspected every year.

This month, the Maryland Department of the Environment ordered the operator of an 80-acre Anne Arundel County coal ash dump to clean contaminated water detected near the site. Cancer-causing metals were discovered last fall in almost two dozen wells in the area. BBSS Inc. also was fined an undisclosed amount.

Related News

Investor: Hydro One has too many unknowns to be a good investment

Hydro One investment risk reflects Ontario government influence, board shakeup, Avista acquisition uncertainty, regulatory hearings, dividend growth prospects, and utility M&A moves in Peterborough, with stock volatility since the 2015 IPO.

 

Key Points

Hydro One investment risk stems from political control, governance turnover, regulatory outcomes, and uncertain M&A.

✅ Ontario retains near-50% stake, affecting autonomy and policy risk

✅ Board overhaul and CEO exit create governance uncertainty

✅ Avista deal, OEB hearings, local utility M&A drive outcomes

 

Hydro One may be only half-owned by the province on Ontario but that’s enough to cause uncertainty about the company’s future, thus making for an investment risk, says Douglas Kee of Leon Frazer & Associates.

Since its IPO in November of 2015, Hydro One has seen its share of ups and downs, including a Q2 profit decline earlier this year, mostly downs at this point. Currently trading at $19.87, the stock has lost 11 per cent of its value in 2018 and 12 per cent over the last 12 months, despite a one-time gain boosting Q2 profit that followed a court ruling.

This year has been a turbulent one, to say the least, as newly elected Ontario premier Doug Ford made good this summer on his campaign promise re Hydro One by forcing the resignation of the company’s 14-person board of directors along with the retirement of its chief executive, an event that saw Hydro One shares fall amid the turmoil. An interim CEO has been found and a new 10-person board and chairman put in place, but Kee says it’s unclear what impact the shakeup will ultimately have, other than delaying a promising-looking deal to purchase US utility Avista Corp, with the companies moving to ask the U.S. regulator to reconsider the order.

 

Douglas Kee’s take on Hydro One stock

“We looked at Hydro One a couple of times two years ago and just decided that with the Ontario government’s still owning a big chunk of the company … there are other public companies where you get the same kind of yield, the same kind of dividend growth, so we just avoided it,” says Kee, managing director and chief investment officer with Leon Frazer & Associates, to BNN Bloomberg.

“The old board versus the new board, I’m not sure that there’s much of an improvement. It was politics more than anything,” he says. “The unfortunate part is that the acquisition they were making in the United States is kind of on hold for now. The regulatory procedures have gone ahead but they are worried, and I guess the new board has to make a decision whether to go ahead with it or not.”

“Their transmissions side is coming up for regulatory hearings next year, which could be difficult in Ontario,” says Kee. “The offset to that is that there are a lot of municipal distributions systems in Ontario that may be sold — they bought one in Peterborough recently, which was a good deal for them. There may be more of that coming too.”

Last month, Hydro One reached an agreement with the City of Peterborough to buy its Peterborough Distribution utility which serves about 37,000 customers for $105 million. Another deal to purchase Orillia Power Distribution Corp for $41 million has been cancelled after an appeal to the Ontario Energy Board was denied in late August. Hydro One’s sought-after Avista Corp acquisition is reported to be worth $7 billion.

 

Related News

View more

Tesla CEO Elon Musk slams Texas energy agency as unreliable: "not earning that R"

ERCOT Texas Power Grid Crisis disrupts millions amid a winter storm, with rolling blackouts, power outages, and energy demand; Elon Musk criticizes ERCOT as Tesla owners use Camp Mode while wind turbines face icing

 

Key Points

A Texas blackout during a winter storm, exposing ERCOT failures, rolling blackouts, and urgent grid resilience measures.

✅ Millions without power amid record cold and energy demand

✅ Elon Musk criticizes ERCOT over grid reliability failures

✅ Tesla Camp Mode aids warmth during extended outages

 

Tesla CEO Elon Musk on Wednesday slammed the Texas agency responsible for a statewide blackout amid a U.S. grid with frequent outages that has left millions of people to fend for themselves in a freezing cold winter storm.

Musk tweeted that Texas’ power grid manager, the Electricity Reliability Council of Texas (ERCOT), is not earning the “R” in the acronym, highlighting broader grid vulnerabilities that critics have noted.

Musk moved to Texas from California in December and is building a new Tesla factory in Austin. His critique of the state’s electrical grid operator came after multiple Tesla owners in the state said they had slept in their vehicles to keep warm amid the lingering power outage.

In 2019, Tesla released a vehicle with a “Camp Mode,” which enables owners to use the vehicle’s features – like lights and climate control – without significantly depleting the battery.

“We had the power go out for 6 hours last night. Our house does not have gas, and we ran out of firewood... what are we going to do,” one Reddit user wrote on “r/TeslaMotors.”

“So my wife my dog and my newborn daughter slept in the garage in our Model3 all nice and cozy. If I didn't have this car, it would have been a very rough night.”

More than two dozen people have died in the extreme weather this week, some while struggling to find warmth inside their homes. In the Houston area, one family succumbed to carbon monoxide from car exhaust in their garage. Another perished as they used a fireplace to keep warm.

Utilities from Minnesota to Texas and Mississippi have implemented rolling blackouts to ease the burden on power grids straining to meet extreme demand for heat and electricity, as longer, more frequent outages hit systems nationwide.

More than 3 million customers remained without power in Texas, Louisiana and Mississippi, more than 200,000 more in four Appalachian states, and nearly that many in the Pacific Northwest, according to poweroutage.us, which tracks utility outage reports, and advocates warn that millions could face summer shut-offs without protections.

ERCOT said early Wednesday that electricity had been restored to 600,000 homes and businesses by Tuesday night, though nearly 3 million homes and businesses remained without power, as California turns to batteries to help balance demand. Officials did not know when power would be restored.

ERCOT President Bill Magness said he hoped many customers would see at least partial service restored soon but could not say definitively when that would be.

Magness has defended ERCOT’s decision, saying it prevented an “even more catastrophic than the terrible events we've seen this week."

Utility crews raced Wednesday to restore power to nearly 3.4 million customers around the U.S. who were still without electricity in the aftermath of a deadly winter storm, even as officials urge residents to prepare for summer blackouts that could tax systems further, and another blast of ice and snow threatened to sow more chaos.

The latest storm front was expected to bring more hardship to states that are unaccustomed to such frigid weather — parts of Texas, Arkansas and the Lower Mississippi Valley — before moving into the Northeast on Thursday.

"There's really no letup to some of the misery people are feeling across that area," said Bob Oravec, lead forecaster with the National Weather Service, referring to Texas.

Sweden, known for its brutally cold climate, has offered some advice to Texans unaccustomed to such freezing temperatures, as Canadian grids are increasingly exposed to harsh weather that strains reliability. Stefan Skarp of the Swedish power company told Bloomberg on Tuesday: “The problem with sub-zero temperatures and humid air is that ice will form on the wind turbines.”

“When ice freezes on to the wings, the aerodynamic changes for the worse so that wings catch less and less wind until they don't catch any wind at all,” he said.

 

Related News

View more

RBC agrees to buy electricity from new southern Alberta solar power farm project

RBC Renewable Energy PPA supports a 39 MW Alberta solar project, with Bullfrog Power and BluEarth Renewables, advancing clean energy in a deregulated market through a long-term power purchase agreement in Canada today.

 

Key Points

A long-term power purchase agreement where RBC buys most output from a 39 MW Alberta solar project via Bullfrog Power.

✅ 39 MW solar build in County of Forty Mile, Alberta

✅ Majority of output purchased by RBC via Bullfrog Power

✅ Supports cost-competitive renewables in deregulated market

 

The Royal Bank of Canada says it is the first Canadian bank to sign a long-term renewable energy power purchase agreement, a deal that will support the development of a 39-megawatt, $70-million solar project in southern Alberta, within an energy powerhouse province.

The bank has agreed with green energy retailer Bullfrog Power to buy the majority of the electricity produced by the project, as a recent federal green electricity contract highlights growing demand, to be designed and built by BluEarth Renewables of Calgary.

The project is to provide enough power for over 6,400 homes and the panel installations will cover 120 hectares, amid a provincial renewable energy surge that could create thousands of jobs, the size of 170 soccer fields.

The solar installation is to be built in the County of Forty Mile, a hot spot for renewable power that was also chosen by Suncor Energy Inc. for its $300-million 200-MW wind power project (approved last year and then put on hold during the COVID-19 pandemic), and home to another planned wind power farm in Alberta.

BluEarth says commercial operations at its Burdett and Yellow Lake Solar Project are expected to start up in April 2021, underscoring solar power growth in the province.

READ MORE: Wind power developers upbeat about Alberta despite end of power project auctions

It says the agreement shows that renewable energy can be cost-competitive, with lower-cost solar contracts in a deregulated electricity market like Alberta’s, adding the province has some of the best solar and wind resources in Canada.

“We’re proud to be the first Canadian bank to sign a long-term renewable energy power purchase agreement, demonstrating our commitment to clean, sustainable power, as Alberta explores selling renewable energy at scale,” said Scott Foster, senior vice-president and global head of corporate real estate at RBC.

 

Related News

View more

Extensive Disaster Planning at Electric & Gas Utilities Means Lights Will Stay On

Utility Pandemic Preparedness strengthens grid resilience through continuity planning, critical infrastructure protection, DOE-DHS coordination, onsite sequestration, skeleton crews, and deferred maintenance to ensure reliable electric and gas service for commercial and industrial customers.

 

Key Points

Plans that sustain grid operations during outbreaks using staffing limits, access controls, and deferred maintenance.

✅ Deferred maintenance and restricted site access

✅ Onsite sequestering and skeleton crew operations

✅ DOE-DHS coordination and control center staffing

 

Commercial and industrial businesses can rest assured that the current pandemic poses no real threat to our utilities, with the U.S. grid remaining reliable for now, as disaster planning has been key to electric and gas utilities in recent years, writes Forbes. Beginning a decade ago, the utility and energy industries evolved detailed pandemic plans, outlining what to know about the U.S. grid during outbreaks, which include putting off maintenance and routine activities until the worst of the pandemic has passed, restricting site access to essential personnel, and being able to run on a skeleton crew as more and more people become ill, a capability underscored by FPL's massive Irma response when crews faced prolonged outages.

One possible outcome of the current situation is that the US electric industry may require essential staff to live onsite at power plants and control centers, similar to Ontario work-site lockdown plans under consideration, if the outbreak worsens; bedding, food and other supplies are being stockpiled, reflecting local response preparations many utilities practice, Reuters reported. The Great River Energy cooperative, for example, has had a plan to sequester essential staff in place since the H1N1 bird flu crisis in 2009. The cooperative, which runs 10 power plants in Minnesota, says its disaster planning ensured it has enough cots, blankets and other necessities on site to keep staff healthy.

Electricity providers are now taking part in twice-weekly phone calls with officials at the DOE, the Department of Homeland Security, and other agencies, as Ontario demand shifts are monitored, according to the Los Angeles Times. By planning for a variety of worst case scenarios, including weeks-long restorations after major storms, “I have confidence that the sector will be prepared to respond no matter how this evolves,” says Scott Aaronson, VP of security and preparedness for the Edison Electric Institute.

 

Related News

View more

Advanced Reactors Will Stand On The Shoulders Of Giants

Advanced Nuclear Reactors redefine nuclear energy with SMRs, diverse fuels, passive safety, digital control rooms, and flexible heat and power, pairing veteran operator expertise with cost-efficient, carbon-free electricity for a resilient grid.

 

Key Points

SMR-based advanced reactors with passive cooling and digital controls deliver flexible power and process heat.

✅ Veteran operators transfer proven safety culture and risk management.

✅ SMRs, passive safety, and digital controls simplify operations.

✅ Flexible output: electricity, process heat, and grid support.

 

Advanced reactors will break the mold of what we think next-gen nuclear power can accomplish: some will be smaller, some will use different kinds of fuel and others will do more than just make electricity. This new technology may seem like uncharted waters, but when operators, technicians and other workers start up the first reactors of the new generation, they will bring with them years of nuclear experience to run machines that have been optimized with lessons from the current fleet.

While advanced reactors are often portrayed as the future of nuclear energy, and atomic energy is heating up across markets, its our current plants that have paved the way for these exciting innovations and which will be workhorses for years to come.

 

Reactor Veterans Bring Their Expertise to New Designs

Many of the workers who will operate the next generation of reactors come from a nuclear background. Even though the design of an advanced reactor may be different, the experience and instincts these operators have gained from working at the current fleet will help new plants get off to a more productive start.

They have a questioning attitude; they are always exploring what could go wrong and always understanding the notion of risk management in nuclear operations, whether its the oldest design or the newest design, said Chip Pardee, the president of Terrestrial Energy USA, who is the former chief operating officer at two nuclear utilities, Exelon Corp. and the Tennessee Valley Authority.

They have respect for the technology and a bias towards conservative decision-making.

Jhansi Kandasamy, vice president of engineering at GE Hitachi Nuclear Energy, agrees. She said that the presence of industry veterans will benefit the new modelslike the 300 megawatt boiling water reactor her company is developing.

From the beginning, a new reactor will have people who have touched it, worked on it, and experienced it, she said.

Theyre going to be able to tell you if something doesnt look right, because theyve lived through it.

 

Experience Informs New Reactor Design

Advanced reactors are designed by engineers who are fully familiar with existing plants and can use that experience to optimize the new ones, like a family building a house and wanting the kitchen just so. New reactors will be simpler to operate because of insights gained from years of operations of the current fleet, and some designs even integrate molten salt energy storage to enhance flexibility.

NuScale Power LLC, for example, has a very different design from the current fleet amid an advanced nuclear push that is reshaping development: up to 12 small reactorsinstead of one or two large reactorsmanaged from a single digital control roominstead of one full of analog switches and dials. When the company designed its control room, it brought in industry veterans who had collectively worked at more than two dozen nuclear plants.

The experts that NuScale brought in critiqued everything, even down to the shape of the symbols on the computer screens to make them easier to read for operators who sometimes need to quickly interpret lots of incoming data. The control panels for NuScales small modular reactor (SMR) present information according to its importance and automatically call up appropriate procedures for operators.

Many advanced reactors are also smaller than those currently operating, which makes their components simpler and less expensive. Kandasamy pointed out that the giant mechanical pumps in todays reactors generate a lot of heat and require a lot of supporting systems, including air conditioning in the rooms that house them.

GE Hitachis SMR design relies more on passive cooling so it needs fewer pumps, and those that remain use magnets, so they generate less heat. Fewer, smaller pumps means a smaller building and less cost.

 

Advanced Nuclear Will Further the Work of Current Reactors

Advanced reactors promise improved flexibility and the ability to do more kinds of work, including nuclear beyond electricity applications, to displace carbon and stabilize the climate. And they will continue nuclear energys legacy of providing reliable, carbon-free electricity, as a recent new U.S. reactor startup illustrates in practice. As new designs come on line over the next decade, we will continue to rely on operating plants which provide nearly 55 percent of the countrys carbon-free electricity.

The world will need all the carbon-free generation it can get for many years to come, as companies, states and countries aim for zero emissions by mid-century and pursue strategies like the green industrial revolution to accelerate deployment. That means it will need wind, solar, advanced reactors and current plants.

 

Related News

View more

BC residents split on going nuclear for electricity generation: survey

BC Energy Debate: Nuclear Power and LNG divides British Columbia, as a new survey weighs zero-emission clean energy, hydroelectric capacity, the Site C dam, EV mandates, energy security, rising costs, and blackout risks.

 

Key Points

A BC-wide debate on power choices balancing nuclear, LNG, hydro, costs, climate goals, EVs, and grid reliability.

✅ Survey: 43% support nuclear, 40% oppose in BC

✅ 55% back LNG expansion, led by Southern BC

✅ Hydro at 90%; Site C adds 1,100 MW by 2025

 

There is a long-term need to produce more electricity to meet population and economic growth needs and, in particular, create new clean energy sources, with two new BC generating stations recently commissioned contributing to capacity.

Increasingly, in the worldwide discourse on climate change, nuclear power plants are being touted as a zero-emission clean energy source, with Ontario exploring large-scale nuclear to expand capacity, and a key solution towards meeting reduced emissions goals. New technological advancements could make nuclear power far safer than existing plant designs.

When queried on whether British Columbia should support nuclear power for electricity generation, respondents in a new province-wide survey by Research Co. were split, with 43% in favour and 40% against.

Levels of support reached 46% in Metro Vancouver, 41% in the Fraser Valley, 44% in Southern BC, 39% in Northern BC, and 36% on Vancouver Island.

The closest nuclear power plant to BC is the Columbia Generating Station, located in southern Washington State.

The safe use of nuclear power came to the forefront following the 2011 Fukushima nuclear disaster when the most powerful earthquake ever recorded in Japan triggered a large tsunami that damaged the plant’s emergency generators. Japan subsequently shut off many of its nuclear power plants and increased its reliance on fossil fuel imports, but in recent years there has been a policy reversal to restart shuttered nuclear plants to provide the nation with improved energy security.

Over the past decade, Germany has also been undergoing a transition away from nuclear power. But in an effort to replace Russian natural gas, Germany is now using more coal for power generation than ever before in decades, while Ontario’s electricity outlook suggests a shift to a dirtier mix, and it is looking to expand its use of liquefied natural gas (LNG).

Last summer, German chancellor Olaf Scholz told the CBC he wants Canada to increase its shipments of LNG gas to Europe. LNG, which is greener compared to coal and oil, is generally seen as a transitionary fuel source for parts of the world that currently depend on heavy polluting fuels for power generation.

When the Research Co. survey asked BC residents whether they support the further development of the province’s LNG industry, including LNG electricity demand that BC Hydro says justifies Site C, 55% of respondents were supportive, while 29% were opposed and 17% undecided.

Support for the expansion of the LNG is highest in Southern BC (67%), followed by the Fraser Valley (56%), Metro Vancouver (also 56%), Northern BC (55%), and Vancouver Island (41%).

A larger proportion of BC residents are against any idea of the provincial government moving to ban the use of natural gas for stoves and heating in new buildings, with 45% opposed and 39% in support.

Significant majorities of BC residents are concerned that energy costs could become too expensive, and a report on coal phase-outs underscores potential cost and effectiveness concerns, with 84% expressing concern for residents and 66% for businesses. As well, 70% are concerned that energy shortages could lead to measures such as rationing and rolling blackouts.

Currently, about 90% of BC’s electricity is produced by hydroelectric dams, but this fluctuates throughout the year — at times, BC imports coal- and gas-generated power from the United States when hydro output is low.

According to BC Hydro’s five-year electrification plan released in September 2021, it is estimated BC has a sufficient supply of clean electricity only by 2030, including the capacity of the Site C dam, which is slated to open in 2025. The $16 billion dam will have an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes.

The provincial government’s strategy for pushing vehicles towards becoming dependent on the electrical grid also necessitates a reliable supply of power, prompting BC Hydro’s first call for power in 15 years to prepare for electrification. Most BC residents support the provincial government’s requirement for all new car and passenger truck sales to be zero-emission by 2035, with 75% supporting the goal and 21% opposed.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.