Japan business lobby to oppose climate target

By Reuters


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Japan's biggest business group is set to lobby against greenhouse gas emissions targets pledged by the new ruling party ahead of an international climate conference, a Japanese newspaper said.

Business lobby Keidanren is keen to dissuade incoming Prime Minister Yukio Hatoyama from referring to a midterm target of 25 percent cuts at a UN climate change conference in New York on September 22, the Yomiuri newspaper said.

"It will be taken as a commitment and will put Japan in a disadvantageous position," the paper quoted a senior Keidanren official as saying.

A Keidanren spokesman declined to comment on the report.

Japan, the world's fifth-largest greenhouse gas emitter, is under pressure for a more aggressive climate policy as it seeks to play a bigger role in UN-backed climate talks in Copenhagen in December.

The Copenhagen talks will try to work out a new agreement on reducing emissions to succeed the current Kyoto Protocol, the first phase of which ends in 2012.

In its election manifesto, Hatoyama's Democratic Party of Japan (DPJ) promised to target a 25 percent cut in greenhouse gas emissions by 2020 compared with 1990 levels, a more ambitious target than the 8 percent the previous government had set.

Hatoyama has yet to make clear whether he would explain the target at this month's UN conference.

"The idea is of course part of our fundamental thinking, so I don't intend to change it substantially," he told reporters shortly after his party's weekend election win.

"But the content (of my speech) is something we will decide later."

Hatoyama faces resistance from industry groups as Japan struggles to shake off a deep recession.

The auto industry lobby said that it was concerned about the feasibility of the Democrats' target, while a power industry group said the target was "extremely tough."

Keidanren plans to include the issue in a package of policy demands to be submitted to the Democrats on September 14 and to step up negotiations with the party on the issue, the Yomiuri paper said.

Analysts doubt Hatoyama will back down from the emissions target after it was featured in the Democrats' campaign platform, but some are skeptical of the new government's ability to implement an array of promised green policies.

To reduce emissions, the party plans to create a domestic emissions trading market with compulsory volume caps on emitters and introduce a "feed-in" tariff for renewable energy to help expand capacity for clean energy sources, among other measures.

"The Democrats will be in a better position than the outgoing party in implementing measures such as the feed-in tariff and a gasoline tax because it will be free of ties to industry," said Yasushi Setoguchi, deputy general manager of environment, natural resources and energy at Mizuho Information & Research Institute.

"But it'll be harder to push through policies such as emissions trading, because it will be difficult to set caps."

Related News

Power bill cut for 22m Thailand houses

Thailand Covid-19 Electricity Bill Relief offers energy subsidies, tariff cuts, and free power for small meters, helping work-from-home users as authorities waive charges and discount kWh rates via EGAT, MEA, PEA for three months.

 

Key Points

Program waiving or cutting household electricity bills for 22 million homes in March-May, easing work-from-home costs.

✅ Free power for meters <= 5 amps; up to 10M homes

✅ Up to 800 kWh: pay February rate; above, 50% discount

✅ >3,000 kWh: 30% discount; program valid March-May

 

The Thailand cabinet has formally approved energy authorities' decision to either waive or cut electricity charges, similar to B.C. electricity relief measures, for 22 million households where people are working at home because of the coronavirus disease.

Energy Minister Sontirat Sontijirawong said after the cabinet meeting on Tuesday that the ministers acknowledged the step taken by from the Energy Regulatory Commission, the Electricity Generating Authority of Thailand, the Metropolitan Electricity Authority and the Provincial Electricity Authority and noted parallels with Ontario's COVID-19 hydro plan rolled out to support ratepayers.

The measure would be valid for three months, from March to May, and cover 22 million households. It would cost the state 23.68 billion baht in lost revenue, he said, a pattern also seen with Ontario rate reductions affecting provincial revenues.


"The measure reduces the electricity charges burden on households. It is the cost of living of the people who are working from home to support the government's control of Covid-19," Mr Sontirat said.

The business sector also wants similar assistance, echoing sentiments from Ontario manufacturers during recent price reduction efforts. He said their requests were being considered.

Free electricity is extended to households with a power meter of no more than 5 amps. Up to 10 million households are expected to benefit, although issues like electricity payment challenges in India highlight different market contexts.

For households with a power meter over 5 amps, if their consumption does not exceed 800 units (kilowat hours), they will pay as much as they did in their February bill. The amount over 800 units will be subject to a 50 per cent discount, while elsewhere B.C. commercial consumption has fallen sharply.

Large houses that consume more than 3,000 units will get a 30 per cent discount, at a time when BC Hydro demand is down 10%.

 

Related News

View more

Community-generated green electricity to be offered to all in UK

Community Power Tariff UK delivers clean electricity from community energy projects, sourcing renewable energy from local wind and solar farms, with carbon offset gas, transparent provenance, fair pricing, and reinvestment in local generators across Britain.

 

Key Points

UK energy plan delivering 100% community renewable power with carbon-offset gas, sourced from local wind and solar.

✅ 100% community-generated electricity from UK wind and solar

✅ Fair prices with profits reinvested in local projects

✅ Carbon-offset gas and verified, transparent provenance

 

UK homes will soon be able to plug into community wind and solar farms from anywhere in the country through the first energy tariff to offer clean electricity exclusively from community projects.

The deal from Co-op Energy comes as green energy suppliers race to prove their sustainability credentials amid rising competition for eco-conscious customers and “greenwashing” in the market.

The energy supplier will charge an extra £5 a month over Co-op’s regular tariff to provide electricity from community energy projects and gas which includes a carbon offset in the price.

Co-op, which is operated by Octopus Energy after it bought the business from the Midcounties Co-operative last year, will source the clean electricity for its new tariff directly from 90 local renewable energy generation projects across the UK, including the Westmill wind and solar farms in Oxfordshire. It plans to use all profits to reinvest in maintaining the community projects and building new ones.

Phil Ponsonby, the chief executive of Midcounties Co-operative, said the tariff is the UK’s only one to be powered by 100% community-generated electricity and would ensure a fair price is paid to community generators too, amid a renewable energy auction boost that supports wider deployment.

Customers on the Community Power tariff will be able to “see exactly where it is being generated at small scale sites across the UK, and, with new rights to sell solar power back to energy firms, they know it is benefiting local communities”, he said.

Co-op, which has about 300,000 customers, has set itself apart from a rising number of energy supply deals which are marked as 100% renewable, but are not as green as they seem, even as many renewable projects are on hold due to grid constraints.

Consumer group Which? has found that many suppliers offer renewable energy tariffs but do not generate renewable electricity themselves or have contracts to buy any renewable electricity directly from generators.

Instead, the “pale green” suppliers exploit a loophole in the energy market by snapping up cheap renewable energy certificates, without necessarily buying energy from renewables projects.

The certificates are issued by the regulator to renewable energy developers for each megawatt generated, but these can be sold separately from the electricity for a fraction of the price.

A survey conducted last year found that one in 10 people believe that a renewables tariff means that the supplier generates at least some of its electricity from its own renewable energy projects.

Ponsonby said the wind and solar schemes that generate electricity for the Community Power tariff “plough the profits they make back into their neighbourhoods or into helping other similar projects get off the ground”.

Greg Jackson, the chief executive of Octopus Energy, said being able to buy locally-sourced clean, green energy is “a massive jump in the right direction” which will help grow the UK’s green electricity capacity nationwide.

“Investing in more local energy infrastructure and getting Britain’s homes run by the sun when it’s shining and wind energy when it’s blowing can end our reliance on dirty fossil fuels sooner than we hoped,” he said.

 

Related News

View more

Crews have restored power to more than 32,000 Gulf Power customers

Gulf Power Hurricane Michael Response details rapid power restoration, grid rebuilding, and linemen support across the Florida Panhandle, Panama City, and coastal areas after catastrophic winds, rain, and storm surge damaged transmission lines and substations.

 

Key Points

Gulf Power's effort to restore electricity after Hurricane Michael, including grid rebuilding and storm recovery.

✅ 3,000+ crews deployed for restoration and rebuilding

✅ Transmission, distribution, and substations severely damaged

✅ Panhandle customers warned of multi-week outages

 

Less than 24 hours ago, Hurricane Micheal devastated the residents in the Florida Panhandle with its heavy winds, rainfall and storm surge, as reflected in impact numbers across the region.

Gulf Power crews worked quickly through the night to restore power to their customers.

Linemen crews were dispatched from numerous of cities all over the U. S., reflecting FPL's massive Irma response to help those impacted by Hurricane Michael.

According to Jeff Rogers, Gulf Power spokesperson; “This was an unprecedented storm, and our customers will see an unprecedented response from Gulf Power. The destruction we’ve seen so far to this community and our electrical system is devastating — we’re seeing damage across our system, including distribution lines, transmission lines and substations.”

Gulf Power told Channel 3 said they dealt with issues like trees and heavy debris blocking roads from strong winds, and communications down can slow down the rebuilding and restoration process, but Gulf Power said they are prepared for this type of storm devastation.

According to Gulf Power, Hurricane Micheal caused so much damage to Panama City's electrical grid that crews not only had repair the lines, they had to rebuild the electrical system, a scenario similar to a complete rebuild seen after Hurricane Laura in Louisiana.

Gulf Power officials say, "Less than 24 hours after the storm, more than 3,000 storm personnel from around the country arrived in the Panama City area Thursday to begin the restoration and rebuilding process. So far, more than 4,000 customers have been restored on Panama City Beach. Power has been restored to all customers in Escambia, Santa Rosa and Okaloosa counties, and it’s expected that customers in Walton County will be restored tonight. But customers in the hardest hit areas should prepare to be without power for weeks, not days in some areas. Initial evaluations by Gulf Power indicate widespread, heavy damage to the electrical system in the Panama City area."

According to Gulf Power, crews have restored power to more than 32,000 Gulf Power customers in the wake of Hurricane Michael, but the work is just beginning for power restoration in the Panama City area.

Rogers said, “We’re heartbroken for our customers and our teammates who live in and near the Panama City area,” said Rogers. “This is the type of storm that changes lives — so aside from restoring power to our customers quickly and safely, our focus in the coming days and weeks will also be to help restore hope to these communities and help give them a sense of normalcy as soon as possible.”

 

Related News

View more

China power cuts: What is causing the country's blackouts?

China Energy Crisis drives electricity shortages, power cuts, and blackouts as coal prices surge, carbon-neutrality rules tighten, and manufacturing hubs ration energy, disrupting supply chains and industrial output ahead of winter demand peaks.

 

Key Points

A power shortfall from costly coal, price caps, and emissions targets, causing blackouts and industrial rationing.

✅ Coal prices soar while electricity tariffs are capped

✅ Factories in northeast hubs face rationing and downtime

✅ Supply chains risk delays ahead of winter demand

 

China is struggling with a severe shortage of electricity which has left millions of homes and businesses hit by power cuts.

Blackouts are not that unusual in the country but this year a number of factors have contributed to a perfect storm for electricity suppliers, including surging electricity demand globally.

The problem is particularly serious in China's north eastern industrial hubs as winter approaches - and is something that could have implications for the rest of the world.

Why has China been hit by power shortages?
The country has in the past struggled to balance electricity supplies with demand, which has often left many of China's provinces at risk of power outages.

During times of peak power consumption in the summer and winter the problem becomes particularly acute.

But this year a number of factors have come together to make the issue especially serious.

As the world starts to reopen after the pandemic, demand for Chinese goods is surging and the factories making them need a lot more power, highlighting China's electricity appetite in recent months.

Rules imposed by Beijing as it attempts to make the country carbon neutral by 2060 have seen coal production slow, even as the country still relies on coal for more than half of its power and as low-emissions generation is set to cover most global demand growth.

And as electricity demand has risen, the price of coal has been pushed up.

But with the government strictly controlling electricity prices, coal-fired power plants are unwilling to operate at a loss, with many drastically reducing their output instead.

Who is being affected by the blackouts?
Homes and businesses have been affected by power cuts as electricity has been rationed in several provinces and regions.

A coal-burning power plant can be seen behind a factory in China"s Inner Mongolia Autonomous Region

The state-run Global Times newspaper said there had been outages in four provinces - Guangdong in the south and Heilongjiang, Jilin and Liaoning in the north east. There are also reports of power cuts in other parts of the country.

Companies in major manufacturing areas have been called on to reduce energy usage during periods of peak demand or limit the number of days that they operate.

Energy-intensive industries such as steel-making, aluminium smelting, cement manufacturing and fertiliser production are among the businesses hardest hit by the outages.

What has the impact been on China's economy?
Official figures have shown that in September 2021, Chinese factory activity shrunk to the lowest it had been since February 2020, when power demand dropped as coronavirus lockdowns crippled the economy.

Concerns over the power cuts have contributed to global investment banks cutting their forecasts for the country's economic growth.

Goldman Sachs has estimated that as much as 44% of the country's industrial activity has been affected by power shortages. It now expects the world's second largest economy to expand by 7.8% this year, down from its previous prediction of 8.2%.

Globally, the outages could affect supply chains, including solar supply chains as the end-of-the-year shopping season approaches.

Since economies have reopened, retailers around the world have already been facing widespread disruption amid a surge in demand for imports.

China's economic planner, the National Development and Reform Commission (NDRC), has outlined a number of measures to resolve the problem, with energy supplies in the northeast of the country as its main priority this winter.

The measures include working closely with generating firms to increase output, ensuring full supplies of coal and promoting the rationing of electricity.

The China Electricity Council, which represents generating firms, has also said that coal-fired power companies were now "expanding their procurement channels at any cost" in order to guarantee winter heat and electricity supplies.

However, finding new sources of coal imports may not be straightforward.

Russia is already focused on its customers in Europe, Indonesian output has been hit by heavy rains and nearby Mongolia is facing a shortage of road haulage capacity,

Are energy shortages around the world connected?
Power cuts in China, UK petrol stations running out of fuel, energy bills jumping in Europe, near-blackouts in Japan and soaring crude oil, natural gas and coal prices on wholesale markets - it would be tempting to assume the world is suddenly in the grip of a global energy drought.

However, it is not quite as simple as that - there are some distinctly different issues around the world.

For example, in the UK petrol stations have run dry as motorists rushed to fill up their vehicles over concerns that a shortage of tanker drivers would mean fuel would soon become scarce.

Meanwhile, mainland Europe's rising energy bills and record electricity prices are due to a number of local factors, including low stockpiles of natural gas, weak output from the region's windmills and solar farms and maintenance work that has put generating operations out of action.
 

 

Related News

View more

Solar Becomes #3 Renewable Electricity Source In USA

U.S. Solar Generation 2017 surpassed biomass, delivering 77 million MWh versus 64 million MWh, trailing only hydro and wind; driven by PV expansion, capacity additions, and utility-scale and small-scale growth, per EIA.

 

Key Points

It was the year U.S. solar electricity exceeded biomass, hitting 77 million MWh and trailing only hydro and wind.

✅ Solar: 77 million MWh; Biomass: 64 million MWh (2017, EIA)

✅ PV expansion; late-year capacity additions dampen annual generation

✅ Hydro: 300 and wind: 254 million MWh; solar thermal ~3 million MWh

 

Electricity generation from solar resources in the United States reached 77 million megawatthours (MWh) in 2017, surpassing for the first time annual generation from biomass resources, which generated 64 million MWh in 2017. Among renewable sources, only hydro and wind generated more electricity in 2017, at 300 million MWh and 254 million MWh, respectively. Biomass generating capacity has remained relatively unchanged in recent years, while solar generating capacity has consistently grown.

Annual growth in solar generation often lags annual capacity additions because generating capacity tends to be added late in the year. For example, in 2016, 29% of total utility-scale solar generating capacity additions occurred in December, leaving few days for an installed project to contribute to total annual generation despite being counted in annual generating capacity additions. In 2017, December solar additions accounted for 21% of the annual total. Overall, solar technologies operate at lower annual capacity factors and experience more seasonal variation than biomass technologies.

Biomass electricity generation comes from multiple fuel sources, such as wood solids (68% of total biomass electricity generation in 2017), landfill gas (17%), municipal solid waste (11%), and other biogenic and nonbiogenic materials (4%).These shares of biomass generation have remained relatively constant in recent years, even as renewables' rise in 2020 across the grid.

Solar can be divided into three types: solar thermal, which converts sunlight to steam to produce power; large-scale solar photovoltaic (PV), which uses PV cells to directly produce electricity from sunlight; and small-scale solar, which are PV installations of 1 megawatt or smaller. Generation from solar thermal sources has remained relatively flat in recent years, at about 3 million MWh, even as renewables surpassed coal in 2022 nationwide. The most recent addition of solar thermal capacity was the Crescent Dunes Solar Energy plant installed in Nevada in 2015, and currently no solar thermal generators are under construction in the United States.

Solar photovoltaic systems, however, have consistently grown in recent years, as indicated by 2022 U.S. solar growth metrics across the sector. In 2014, large-scale solar PV systems generated 15 million MWh, and small-scale PV systems generated 11 million MWh. By 2017, annual electricity from those sources had increased to 50 million MWh and 24 million MWh, respectively, with projections that solar could reach 20% by 2050 in the U.S. mix. By the end of 2018, EIA expects an additional 5,067 MW of large-scale PV to come online, according to EIA’s Preliminary Monthly Electric Generator Inventory, with solar and storage momentum expected to accelerate. Information about planned small-scale PV systems (one megawatt and below) is not collected in that survey.

 

Related News

View more

Climate change: Electrical industry's 'dirty secret' boosts warming

Sulphur Hexafluoride (SF6) Emissions drive rising greenhouse gas impacts in electrical switchgear, power grids, and renewables, with extreme global warming potential, long atmospheric lifetime, and leakage risks challenging climate targets and grid decarbonization.

 

Key Points

SF6 emissions are leaks from electrical switchgear and grids, a high-GWP gas with ~1,000-year lifetime.

✅ 23,500x CO2 global warming potential (GWP)

✅ Leaks from switchgear, breakers, gas-insulated substations

✅ Clean air and vacuum alternatives emerging for MV/HV

 

Sulphur hexafluoride, or SF6, is widely used in the electrical industry to prevent short circuits and accidents.

But leaks of the little-known gas in the UK and the rest of the EU in 2017 were the equivalent of putting an extra 1.3 million cars on the road.

Levels are rising as an unintended consequence of the green energy boom and the broader global energy transition worldwide.

Cheap and non-flammable, SF6 is a colourless, odourless, synthetic gas. It makes a hugely effective insulating material for medium and high-voltage electrical installations.

It is widely used across the industry, from large power stations to wind turbines to electrical sub-stations in towns and cities.

It prevents electrical accidents and fires.

However, the significant downside to using the gas is that it has the highest global warming potential of any known substance. It is 23,500 times more warming than carbon dioxide (CO2).

Just one kilogram of SF6 warms the Earth to the same extent as 24 people flying London to New York return.

It also persists in the atmosphere for a long time, warming the Earth for at least 1,000 years.

 

So why are we using more of this powerful warming gas?

The way we make electricity around the world is changing rapidly, with New Zealand's push to electrify in its energy system.

Where once large coal-fired power stations brought energy to millions, the drive to combat climate change and to move away from coal means they are now being replaced by mixed sources of power including wind, solar and gas.

This has resulted in many more connections to the electricity grid, and with EU electricity use could double by 2050, a rise in the number of electrical switches and circuit breakers that are needed to prevent serious accidents.

Collectively, these safety devices are called switchgear. The vast majority use SF6 gas to quench arcs and stop short circuits.

"As renewable projects are getting bigger and bigger, we have had to use it within wind turbines specifically," said Costa Pirgousis, an engineer with Scottish Power Renewables on its new East Anglia wind farm, which doesn't use SF6 in turbines.

"As we are putting in more and more turbines, we need more and more switchgear and, as a result, more SF6 is being introduced into big turbines off shore.

"It's been proven for years and we know how it works, and as a result it is very reliable and very low maintenance for us offshore."

 

How do we know that SF6 is increasing?

Across the entire UK network of power lines and substations, there are around one million kilograms of SF6 installed.

A study from the University of Cardiff found that across all transmission and distribution networks, the amount used was increasing by 30-40 tonnes per year.

This rise was also reflected across Europe with total emissions from the 28 member states in 2017 equivalent to 6.73 million tonnes of CO2. That's the same as the emissions from 1.3 million extra cars on the road for a year.

Researchers at the University of Bristol who monitor concentrations of warming gases in the atmosphere say they have seen significant rises in the last 20 years.

"We make measurements of SF6 in the background atmosphere," said Dr Matt Rigby, reader in atmospheric chemistry at Bristol.

"What we've seen is that the levels have increased substantially, and we've seen almost a doubling of the atmospheric concentration in the last two decades."

 

How does SF6 get into the atmosphere?

The most important means by which SF6 gets into the atmosphere is from leaks in the electricity industry.

Electrical company Eaton, which manufactures switchgear without SF6, says its research indicates that for the full life-cycle of the product, leaks could be as high as 15% - much higher than many other estimates.

Louis Schaeffer, electrical business manager at Eaton, said: "The newer gear has very low leak rates but the key question is do you have newer gear?

"We looked at all equipment and looked at the average of all those leak rates, and we didn't see people taking into account the filling of the gas. Plus, we looked at how you recycle it and return it and also included the catastrophic leaks."

 

How damaging to the climate is this gas?

Concentrations in the atmosphere are very small right now, just a fraction of the amount of CO2 in the air.

However, the global installed base of SF6 is expected to grow by 75% by 2030, as data-driven electricity demand surges worldwide.

Another concern is that SF6 is a synthetic gas and isn't absorbed or destroyed naturally. It will all have to be replaced and destroyed to limit the impact on the climate.

Developed countries are expected to report every year to the UN on how much SF6 they use, but developing countries do not face any restrictions on use.

Right now, scientists are detecting concentrations in the atmosphere that are 10 times the amount declared by countries in their reports. Scientists say this is not all coming from countries like India, China and South Korea.

One study found that the methods used to calculate emissions in richer countries "severely under-reported" emissions over the past two decades.

 

Why hasn't this been banned?

SF6 comes under a group of human-produced substances known as F-gases. The European Commission tried to prohibit a number of these environmentally harmful substances, including gases in refrigeration and air conditioning, back in 2014.

 

But they faced strong opposition from industries across Europe.

"In the end, the electrical industry lobby was too strong and we had to give in to them," said Dutch Green MEP Bas Eickhout, who was responsible for the attempt to regulate F-gases.

"The electric sector was very strong in arguing that if you want an energy transition, and you have to shift more to electricity, you will need more electric devices. And then you also will need more SF6.

"They used the argument that otherwise the energy transition would be slowed down."

 

What do regulator and electrical companies say about the gas?

Everyone is trying to reduce their dependence on the gas, and US control efforts suggest targeted policies can drive declines, as it is universally recognised as harmful to the climate.

In the UK, energy regulator Ofgem says it is working with utilities to try to limit leaks of the gas.

"We are using a range of tools to make sure that companies limit their use of SF6, a potent greenhouse gas, where this is in the interest of energy consumers," an Ofgem spokesperson told BBC News.

"This includes funding innovation trials and rewarding companies to research and find alternatives, setting emissions targets, rewarding companies that beat those targets, and penalising those that miss them."

 

Are there alternatives - and are they very expensive?

The question of alternatives to SF6 has been contentious over recent years.

For high-voltage applications, experts say there are very few solutions that have been rigorously tested.

"There is no real alternative that is proven," said Prof Manu Haddad from the school of engineering at Cardiff University.

"There are some that are being proposed now but to prove their operation over a long period of time is a risk that many companies don't want to take."

Medium voltage operations there are several tried-and-tested materials. Some in the industry say that the conservative nature of the electrical industry is the key reason that few want to change to a less harmful alternative.

 

"I will tell you, everyone in this industry knows you can do this; there is not a technical reason not to do it," said Louis Schaffer from Eaton.

"It's not really economic; it's more a question that change takes effort and if you don't have to, you won't do it."

 

Some companies are feeling the winds of change

Sitting in the North Sea some 43km from the Suffolk coast, Scottish Power Renewables has installed one of world's biggest wind farms, in line with a sustainable electric planet vision, where the turbines will be free of SF6 gas.

East Anglia One will see 102 of these towering generators erected, with the capacity to produce up to 714MW (megawatts) of power by 2020, enough to supply half a million homes.

Previously, an installation like this would have used switchgear supplied with SF6, to prevent the electrical accidents that can lead to fires.

Each turbine would normally have contained around 5kg of SF6, which, if it leaked into the atmosphere, would add the equivalent of around 117 tonnes of carbon dioxide. This is roughly the same as the annual emissions from 25 cars.

"In this case we are using a combination of clean air and vacuum technology within the turbine. It allows us to still have a very efficient, reliable, high-voltage network but to also be environmentally friendly," said Costa Pirgousis from Scottish Power Renewables.

"Once there are viable alternatives on the market, there is no reason not to use them. In this case, we've got a viable alternative and that's why we are using it."

But even for companies that are trying to limit the use of SF6, there are still limitations. At the heart of East Anglia One sits a giant offshore substation to which all 102 turbines will connect. It still uses significant quantities of the highly warming gas.

 

What happens next ?

The EU will review the use of SF6 next year and will examine whether alternatives are available. However, even the most optimistic experts don't think that any ban is likely to be put in place before 2025.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified