"Remarkable" New Contract Award Adds 10 GW of Renewables to UK Grid


Arc Flash Training - CSA Z462 Electrical Safety

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

UK Renewable Energy Auction secures 10 GW for the grid at record-low costs, led by offshore wind, floating wind, solar, and onshore wind, with inflation-indexed CfDs delivering £37/MWh strike prices and enhanced energy security.

 

Key Points

Government CfDs add 10 GW of low-cost renewables to the UK grid via offshore wind, floating wind, and solar.

✅ 10 GW capacity: 7 GW offshore wind, 2.2 GW solar, 0.9 GW onshore wind

✅ Record-low £37/MWh offshore; floating wind at £87/MWh CfD strikes

✅ 15-year indexed contracts cut exposure to volatile gas prices

 

The United Kingdom will add 10 gigawatts (GW) of renewable energy capacity to its power grid at one-quarter the cost of fossil gas after concluding its biggest-ever renewable energy auction for new renewable supplies.

The “remarkable new UK renewable auction” will meet one-eighth of the country’s current electricity demand at record low prices of just £37 per megawatt-hour for offshore wind and £87 for floating offshore systems (a dynamic echoed as wind power gains in Canada across other markets), tweeted Carbon Brief Deputy Editor Simon Evans.

“The government is increasing its reliance on a local supply of renewables amid soaring UK power prices driven by a surge in the cost of natural gas following Russia’s invasion of Ukraine,” Bloomberg Green reports. Offshore wind energy “will add about seven gigawatts of clean power capacity to the nation’s fleet from 2026, bringing Britain closer to its target of installing 50 gigawatts by the end of the decade.”

The awards also include 2.2 gigawatts (that’s 2.2 billion watts) of solar and 900 megawatts of onshore wind, even as the UK faces a renewables backlog on some projects, Bloomberg says.

“Eye-watering gas prices are hitting consumers across Europe,” said UK Business and Energy Secretary Kwasi Kwarteng. “The more cheap, clean power we generate within our own borders, the better protected we will be from volatile gas prices that are pushing up bills.”

Citing government figures, Bloomberg says wind generation costs came in 5.8% lower than the previous auction in 2019, reflecting momentum in a sector set to become a trillion-dollar business this decade. Some of the winning bidders included Ørsted, Iberdrola’s Scottish Power unit, Vattenfall, and a consortium of AB Ignitis Grupe, EDP Renovaveis, and Engie.

Offshore wind power costs have fallen dramatically in recent years as the UK supported the industry to scale up and industrialize production of larger, more efficient turbines,” the news story states. Now, “the decline in price developers are willing to accept comes even after the cost of wind turbines rose in recent months as prices increased for key metals like steel and supply chain disruptions created expensive delays.”

The 15-year, fixed-price contracts will be adjusted for inflation when the turbines are ready to start delivering electricity, offering lessons for the U.S. wind sector on contract design.

 

Related News

Related News

Spread of Electric Cars Sparks Fights for Control Over Charging

Utility-Controlled EV Charging shapes who builds charging stations as utilities, regulators, and private networks compete over infrastructure, grid upgrades, and pricing, impacting ratepayers, competition, and EV adoption across states seeking cleaner transport.

 

Key Points

Utility-controlled EV charging is utilities building charging networks affecting rates, competition and grid costs.

✅ Regulated investment may raise rates before broader savings.

✅ Private firms warn monopolies stifle competition and innovation.

✅ Regulators balance access, equity, and grid upgrade needs.

 

Electric vehicles are widely seen as the automobile industry’s future, but a battle is unfolding in states across America over who should control the charging stations that could gradually replace fuel pumps.

From Exelon Corp. to Southern California Edison, utilities have sought regulatory approval to invest millions of dollars in upgrading their infrastructure as state power grids adapt to increased charging demand, and, in some cases, to own and operate chargers.

The proposals are sparking concerns from consumer advocates about higher electric rates and oil companies about subsidizing rivals. They are also drawing opposition from startups that say the successors to gas stations should be open to private-sector competition, not controlled by monopoly utilities.

That debate is playing out in regulatory commissions throughout the U.S. as states and utilities promote wider adoption of electric vehicles. At stake are charging infrastructure investments expected to total more than $13 billion over the next five years, as an American EV boom accelerates, according to energy consulting firm Wood Mackenzie. That would cover roughly 3.2 million charging outlets.

Calvin Butler Jr., who leads Exelon’s utilities business, said many states have grown more open to the idea of utilities becoming bigger players in charging as electric vehicles have struggled to take off in the U.S., where they make up only around 2% of new car sales.

“When the utilities are engaged, there’s quicker adoption because the infrastructure is there,” he said.

Major auto makers including General Motors Co. and Ford Motor Co. are accelerating production of electric vehicles, and models like Tesla’s Model 3 are shaping utility planning, and a number of states have set ambitious EV goals—most recently California, which aims to ban the sale of new gasoline-powered cars by 2035. But a patchy charging-station network remains a huge impediment to mass EV adoption.

Democratic presidential candidate Joe Biden has called for building more than 500,000 new public charging outlets in a decade as part of his plan to combat climate change, amid Biden’s push to electrify the transportation sector. But exactly how that would happen is unclear. The U.S. currently has fewer than 100,000 public outlets, according to the Energy Department. President Trump, who has weakened federal tailpipe emissions targets, hasn’t put forward an electric-vehicle charging plan, though he backed a 2019 transportation bill that would have provided $1 billion in grants to build alternative fueling infrastructure, including for electric vehicles.

Charging access currently varies widely by state, as does utility involvement, with many utilities bullish course on EV charging to support growth, which can range from providing rebates on home chargers to preparing sites for public charging—and even owning and operating the equipment needed to juice up electric vehicles.

As of September, regulators in 24 states had signed off on roughly $2.6 billion of utility investment in transportation electrification, according to Atlas Public Policy, a Washington, D.C., policy firm. More than half of that spending was authorized in California, where electric vehicle adoption is highest.

Nearly a decade ago, California blocked utilities from owning most charging equipment, citing concerns about potentially stifling competition. But the nation’s most populous state reversed course in 2014, seeking to spur electrification.

Regulators across the country have since been wrestling with similar questions, generating a patchwork of rules.

Maryland regulators signed off last year on a pilot program allowing subsidiaries of Exelon and FirstEnergy Corp. to own and operate public charging stations on government property, provided that the drivers who use them cover at least some of the costs.

Months later, the District of Columbia rejected an Exelon subsidiary’s request to own public chargers, saying independent charging companies had it covered.

Some charging firms argue utilities shouldn’t be given monopolies on car charging, though they might need to play a role in connecting rural customers and building stations where they would otherwise be uneconomical.

“Maybe the utility should be the supplier of last resort,” said Cathy Zoi, chief executive of charging network EVgo Services LLC, which operates more than 800 charging stations in 34 states.

Utility charging investments generally are expected to raise customers’ electricity bills, at least initially. California recently approved the largest charging program by a single utility to date: a $436 million initiative by Southern California Edison, an arm of Edison International, as the state also explores grid stability opportunities from EVs. The company said it expects the program to increase the average residential customer’s bill by around 50 cents a month.

But utilities and other advocates of electrification point to studies indicating greater EV adoption could help reduce electricity rates over time, by giving utilities more revenue to help cover system upgrades.

Proponents of having utilities build charging networks also argue that they have the scale to do so more quickly, which would lead to faster EV adoption and environmental improvements such as lower greenhouse gas emissions and cleaner air. While the investments most directly help EV owners, “they accrue immediate benefits for everyone,” said Jill Anderson, a Southern California Edison senior vice president.

Some consumer advocates are wary of approving extensive utility investment in charging, citing the cost to ratepayers.

“It’s like, ‘Pay me now, and maybe someday your rates will be less,’” said Stefanie Brand, who advocates on behalf of ratepayers for the state of New Jersey, where regulators have yet to sign off on any utility proposals to invest in electric vehicle charging. “I don’t think it makes sense to build it hoping that they will come.”

Groups representing oil-and-gas companies, which stand to lose market share as people embrace electric vehicles, also have criticized utility charging proposals.

“These utilities should not be able to use their monopoly power to use all of their customers’ resources to build investments that definitely won’t benefit everybody, and may or may not be economical at this point,” said Derrick Morgan, who leads federal and regulatory affairs at the American Fuel & Petrochemical Manufacturers, a trade organization.

Utility executives said their companies have long been used to further government policy objectives deemed to be in the public interest, drawing on lessons from 2021 to guide next steps, such as improving energy efficiency.

“This isn’t just about letting market forces work,” said Mike Calviou, senior vice president for strategy and regulation at National Grid PLC’s U.S. division.

 

Related News

View more

The Age of Electric Cars Is Dawning Ahead of Schedule

EV Price Parity is nearing reality in Europe as subsidies, falling battery costs, higher energy density, and expanding charging infrastructure push Tesla, Volkswagen, and Renault to compete under EU CO2 regulations and fleet targets.

 

Key Points

EV price parity means EVs match ICE cars on total ownership cost as subsidies fade and batteries get cheaper.

✅ Battery pack costs trending toward $100/kWh

✅ EU CO2 rules and incentives accelerate adoption

✅ Charging networks reduce range anxiety and TCO

 

An electric Volkswagen ID.3 for the same price as a Golf. A Tesla Model 3 that costs as much as a BMW 3 Series. A Renault Zoe electric subcompact whose monthly lease payment might equal a nice dinner for two in Paris.

As car sales collapsed in Europe because of the pandemic, one category grew rapidly: electric vehicles, a shift that some analysts say could put most drivers within a decade on battery power. One reason is that purchase prices in Europe are coming tantalizingly close to the prices for cars with gasoline or diesel engines.

At the moment this near parity is possible only with government subsidies that, depending on the country, can cut more than $10,000 from the final price. Carmakers are offering deals on electric cars to meet stricter European Union regulations on carbon dioxide emissions. In Germany, an electric Renault Zoe can be leased for 139 euros a month, or $164.

Electric vehicles are not yet as popular in the United States, largely because government incentives are less generous, but an emerging American EV boom could change that trajectory. Battery-powered cars account for about 2 percent of new car sales in America, while in Europe the market share is approaching 5 percent. Including hybrids, the share rises to nearly 9 percent in Europe, according to Matthias Schmidt, an independent analyst in Berlin.

As electric cars become more mainstream, the automobile industry is rapidly approaching the tipping point, an inflection point for the market, when, even without subsidies, it will be as cheap, and maybe cheaper, to own a plug-in vehicle than one that burns fossil fuels. The carmaker that reaches price parity first may be positioned to dominate the segment.

A few years ago, industry experts expected 2025 would be the turning point. But technology is advancing faster than expected, and could be poised for a quantum leap. Elon Musk is expected to announce a breakthrough at Tesla’s “Battery Day” event on Tuesday that would allow electric cars to travel significantly farther without adding weight.

The balance of power in the auto industry may depend on which carmaker, electronics company or start-up succeeds in squeezing the most power per pound into a battery, what’s known as energy density. A battery with high energy density is inherently cheaper because it requires fewer raw materials and less weight to deliver the same range.

“We’re seeing energy density increase faster than ever before,” said Milan Thakore, a senior research analyst at Wood Mackenzie, an energy consultant which recently pushed its prediction of the tipping point ahead by a year, to 2024.

Some industry experts are even more bullish. Hui Zhang, managing director in Germany of NIO, a Chinese electric carmaker with global ambitions, said he thought parity could be achieved in 2023.

Venkat Viswanathan, an associate professor at Carnegie Mellon University who closely follows the industry, is more cautious, though EV revolution skeptics argue the revolution is overstated. But he said: “We are already on a very accelerated timeline. If you asked anyone in 2010 whether we would have price parity by 2025, they would have said that was impossible.”

This transition will probably arrive at different times for different segments of the market. High-end electric vehicles are pretty close to parity already. The Tesla Model 3 and the gas-powered BMW 3 Series both sell for about $41,000 in the United States.

A Tesla may even be cheaper to own than a BMW because it never needs oil changes or new spark plugs and electricity is cheaper, per mile, than gasoline. Which car a customer chooses is more a matter of preference, particularly whether an owner is willing to trade the convenience of gas stations for charging points that take more time. (On the other hand, owners can also charge their Teslas at home.)

Consumers tend to focus on sticker prices, and it will take longer before unsubsidized electric cars cost as little to drive off a dealer’s lot as an economy car, even for shoppers weighing whether it’s the right time to buy an electric car now.

The race to build a better battery
The holy grail in the electric vehicle industry has been to push the cost of battery packs — the rechargeable system that stores energy — below $100 per kilowatt-hour, the standard measure of battery power. That is the point, more or less, at which propelling a vehicle with electricity will be as cheap as it is with gasoline.

Current battery packs cost around $150 to $200 per kilowatt-hour, depending on the technology. That means a battery pack costs around $20,000. But the price has dropped 80 percent since 2008, according to the United States Department of Energy.

All electric cars use lithium-ion batteries, but there are many variations on that basic chemistry, and intense competition to find the combination of materials that stores the most power for the least weight.

For traditional car companies, this is all very scary. Internal combustion engines have not changed fundamentally for decades, but battery technology is still wide open. There are even geopolitical implications. China is pouring resources into battery research, seeing the shift to electric power as a chance for companies like NIO to make their move on Europe and someday, American, markets. In less than a decade, the Chinese battery maker CATL has become one of the world’s biggest manufacturers.


Everyone is trying to catch Tesla
The California company has been selling electric cars since 2008 and can draw on years of data to calculate how far it can safely push a battery’s performance without causing overheating or excessive wear. That knowledge allows Tesla to offer better range than competitors who have to be more careful. Tesla’s four models are the only widely available electric cars that can go more than 300 miles on a charge, according to Kelley Blue Book.

On Tuesday, Mr. Musk could unveil a technology offering 50 percent more storage per pound at lower cost, according to analysts at the Swiss bank UBS. If so, competitors could recede even further in the rearview mirror.

“The traditional car industry is still behind,” said Peter Carlsson, who ran Tesla’s supplier network in the company’s early days and is now chief executive of Northvolt, a new Swedish company that has contracts to manufacture batteries for Volkswagen and BMW.

“But,” Mr. Carlsson said, “there is a massive amount of resources going into the race to beat Tesla. A number, not all, of the big carmakers are going to catch up.”

The traditional carmakers’ best hope to avoid oblivion will be to exploit their expertise in supply chains and mass production to churn out economical electrical cars by the millions.

A key test of the traditional automakers’ ability to survive will be Volkswagen’s new battery-powered ID.3, which will start at under €30,000, or $35,000, after subsidies and is arriving at European dealerships now. By using its global manufacturing and sales network, Volkswagen hopes to sell electric vehicles by the millions within a few years. It plans to begin selling the ID.4, an electric sport utility vehicle, in the United States next year. (ID stands for “intelligent design.”)

But there is a steep learning curve.

“We have been mass-producing internal combustion vehicles since Henry Ford. We don’t have that for battery vehicles. It’s a very new technology,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology in southwestern Germany whose research focuses on battery manufacturing. “The question will be how fast can we can get through this learning curve?”

It’s not just about the batteries
Peter Rawlinson, who led design of the Tesla Model S and is now chief executive of the electric car start-up Lucid, likes to wow audiences by showing up at events dragging a rolling carry-on bag containing the company’s supercompact drive unit. Electric motor, transmission and differential in one, the unit saves space and, along with hundreds of other weight-saving tweaks, will allow the company’s Lucid Air luxury car — which the company unveiled on Sept. 9 — to travel more than 400 miles on a charge, Mr. Rawlinson said.

His point is that designers should focus on things like aerodynamic drag and weight to avoid the need for big, expensive batteries in the first place. “There is kind of a myopia,” Mr. Rawlinson said. “Everyone is talking about batteries. It’s the whole system.”

“We have been mass-producing internal combustion vehicles since Henry Ford,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology. “We don’t have that for battery vehicles.”

A charger on every corner would help
When Jana Höffner bought an electric Renault Zoe in 2013, driving anywhere outside her home in Stuttgart was an adventure. Charging stations were rare, and didn’t always work. Ms. Höffner drove her Zoe to places like Norway or Sicily just to see if she could make it without having to call for a tow.

Ms. Höffner, who works in online communication for the state of Baden-Württemberg, has since traded up to a Tesla Model 3 equipped with software that guides her to the company’s own network of chargers, which can fill the battery to 80 percent capacity in about half an hour. She sounds almost nostalgic when she remembers how hard it was to recharge back in the electric-vehicle stone age.

“Now, it’s boring,” Ms. Höffner said. “You say where you want to go and the car takes care of the rest.”

The European Union has nearly 200,000 chargers, far short of the three million that will be needed when electric cars become ubiquitous, according to Transport & Environment, an advocacy group. The United States remains far behind, with less than half as many as Europe, even as charging networks jostle under federal electrification efforts.

But the European network is already dense enough that owning and charging an electric car is “no problem,” said Ms. Höffner, who can’t charge at home and depends on public infrastructure.
 

 

Related News

View more

GE to create 300 new jobs at French offshore wind blade factory

LM Wind Power Cherbourg Recruitment 2021 targets 300 new hires for offshore wind manufacturing, wind turbine blade production, Haliade-X components, and operations in France, with Center of Excellence training and second 107-meter blade mold expansion.

 

Key Points

A hiring drive to add 300 staff for offshore wind blade manufacturing in Cherbourg, with Center of Excellence training.

✅ 300 hires to scale offshore wind blade production

✅ 6-week Center of Excellence training for all recruits

✅ Second 107-meter blade mold boosts capacity

 

GE Renewable Energy plans to recruit 300 employees in 2021 at its LM Wind Power wind turbine blade factory in Cherbourg, France / Opened almost three years ago in April 2018, the factory today counts more than 450 employees / Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes / Site has produced the first offshore wind turbine blade longer than 100 meters, 107-meters long / Second 107-meter blade manufacturing mold is being installed at the plant today

GE Renewable Energy announced today its plan to recruit 300 employees at its LM Wind Power wind turbine blade manufacturing site in Cherbourg, France, in 2021. Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes supporting offshore wind energy growth in Europe. The expanded production workforce will allow LM Wind Power to meet the growing industry demand for offshore wind equipment, including emerging offshore green hydrogen applications across the sector.

The factory currently has more than 450 employees, with 34 percent being women. The facility became the first wind turbine blade manufacturing site in France when it was opened almost three years ago in April 2018, while Spanish wind factories faced temporary closures due to COVID-19 restrictions.

The facility has produced the first offshore wind turbine blade longer than 100 meters, a 107-meters long blade that will be used in GE’s Haliade-X offshore wind turbine. A second 107-meter blade manufacturing mold is currently being installed at the plant to support growing project pipelines like those planned off Massachusetts' South Coast in the U.S.

Florence Martinez Flores, the site’s Human Resources Director, said: "The arrival of the second mold within the factory marks an increased activity for LM Wind Power in Cherbourg, and we are happy to welcome a large wave of new employees, allowing us to participate in social development and create more jobs in the surrounding community, but also to bring new skills to the region."

Recent investments such as EDF Irish offshore wind stake news underscore the broader market momentum.

The Cherbourg team is mostly looking to expand its production workforce, with positions that are open to all profiles and backgrounds. Every new employee will be trained to manufacture wind turbine blades through LM Wind Power's ‘Center of Excellence' training program – a six-week theoretical and practical training course, which will develop the skills and technical expertise required to produce high-quality wind turbine blades and support wind turbine operations and maintenance across the industry. The site will also be looking for production supervisors, quality controllers and maintenance technicians.

 

Related News

View more

Nova Scotia Power increases use of biomass for generating electricity

Nova Scotia Biomass Electricity Policy increases dispatchable renewable generation from Port Hawkesbury and Brooklyn Energy, raising MWh output while critics cite clearcutting, carbon emissions, high costs to ratepayers, and delays replacing Muskrat Falls hydro.

 

Key Points

Policy directing utilities to maximize biomass power as dispatchable renewable supply during hydro delays.

✅ Port Hawkesbury biomass output up 35% year over year

✅ Brooklyn Energy used as dispatchable renewable supply

✅ Critics cite clearcutting, emissions, high ratepayer costs

 

A boiler owned by Nova Scotia Power on the grounds of the Port Hawkesbury paper plant, whose discount power rate request has drawn attention, is burning 35% more woody biomass this year than last. 

The year-to-date figures show 126,810 megawatt hours (MWh) of electricity was generated over the first nine months of 2021 compared to 93,934 MWh for the same period in 2020 and 65,891 MWh in 2019. 

The information is contained in monthly fuel cost reports Nova Scotia Power must make to the Utility and Review Board, which regulates how much consumers ultimately pay for electricity and has received a call for major grid changes in Nova Scotia.

Burning biomass  — which includes everything from low-grade pulpwood to bark, shavings, and wood chip waste from sawmills — for the purpose of generating electricity is only about 22% efficient, even as some coal stations have switched to biomass abroad. Nova Scotia Power’s boiler at Port Hawkesbury supplies about 3% of the total electricity used in the province. 

Citizens concerned about climate change have for years opposed the government classifying biomass as “renewable energy” and have echoed calls to reduce biomass use for electricity, because clearcutting, which releases carbon from the ground, remains the dominant form of harvesting on Crown and private land. That’s despite ongoing work to begin implementing 2018 recommendations from Professor Bill Lahey to move toward a more ecological approach. 

In May 2020, after it became obvious renewable hydroelectricity from Muskrat Falls was going to be delayed yet again, the McNeil government passed an Order-in-Council extending until December 2022 the deadline to generate 40% of electricity from renewable sources as it moved to increase wind and solar projects across Nova Scotia. 

To help with the shortfall, Nova Scotia Power was told to “maximize” its use of biomass at both the facility it owns in Port Hawkesbury and another one in Brooklyn owned by its parent company, Emera.

In a letter to Nova Scotia Power dated May 15, then-Energy Minister Derek Mombourquette, amid debate over independent energy planning, added: “Nova Scotia Power shall also maximize the use of dispatchable renewable electricity from its own facilities, as well as those of renewable electricity power producers in Nova Scotia (excluding COMFIT generation sources).” 

By definition, “dispatchable” excludes wind and hydro sources, which are not available 24/7, though a new attempt to harness the Bay of Fundy's tides is underway. Nova Scotia Power claims the only “dispatchable renewable electricity power producer” in the province is Brooklyn Energy, the 35 MW biomass plant near Liverpool. 

The government capped at $7 million a year how much electricity Nova Scotia Power could buy from its affiliate company. Critics of the deal — such as auditors hired by the regulator and the province’s consumer advocate — say electricity generated by Brooklyn is the most expensive power and question why the province would burden ratepayers with its purchase.

The answer became apparent in September 2020 when then-Intergovernmental Affairs Minister Kelliann Dean appeared before the legislature’s standing committee on Natural Resources and Economic Development to praise the Order-in-Council for helping rescue the forestry industry four months after the closure of the Northern Pulp mill. 

“The change to Renewable Energy Standards (May,2020) is enabling Nova Scotia Power to generate more electricity from wood chips and sawmill residuals by operating two biomass plants at capacity until electricity from Muskrat Falls comes onstream,” she said. “We are using all the policy levers at our disposal to support the sector.”

Nova Scotia Power is not required to report to the UARB how much electricity is being produced or how much biomass is being burned at Brooklyn Energy. The company pleads “commercial confidentiality” when asked by The Halifax Examiner. 

Nova Scotia Power does report how much it spends each month to buy power from independent producers — a small group which includes Brooklyn but excludes all wind farms. That dollar amount has also increased over the past year — from $15.9 million for 10 months ending October 2020 compared to $23.3 million for 10 months ending October 2021. Unfortunately, the lack of transparency makes it impossible to know exactly how much of that increase is attributable to purchasing more biomass.

Radio silence
The current Minister of Natural Resources and Renewable Energy ,Tory Rushton, has the authority to reduce the amount of biomass being burned to generate electricity and by extension, the rate of clearcutting.

With a stroke of the pen, the PC government of Tim Houston could issue another Order-in-Council capping the amount of metric tonnes that could be used in the boilers, or, direct Nova Scotia Power to use biomass only when it is the most economical fuel choice. 

But so far, Rushton has not responded to the Halifax Examiner’s question about whether he intends to make any change to stop “maximizing” the use of biomass to produce electricity.

 The Examiner isn’t the only one pushing the Minister for answers to difficult issues. At noon today, Citizens opposed to a controversial clearcut on Crown land near Rocky Point Lake in Digby County will stage a demonstration outside the Department of Natural Resources and Renewable Energy on Hollis Street. The protest led by members of Extinction Rebellion and the Healthy Forest Coalition is to pressure the government to take action to protect the habitat of the mainland moose, an endangered species that ranges overs the Crown land currently being cut by the Westfor consortium. 

 

Related News

View more

US Moving Towards 30% Electricity From Wind & Solar

US Wind and Solar Outlook 2026 projects cheap renewables displacing coal and gas, with utility-scale additions, rooftop solar growth, improved grid reliability, and EV V2G integration accelerating decarbonization across the electricity market.

 

Key Points

An analysis forecasting wind and solar growth, displacing coal and gas as utility-scale and rooftop solar expand.

✅ Utility-scale solar installs avg 21 GW/yr through 2026.

✅ 37.7 GW wind in pipeline; 127.8 GW already online.

✅ Small-scale solar could near 100 TWh in 2026.

 

A recent report from the Institute for Energy Economics and Financial Analysis (IEEFA) predicts that cheap renewables in the form of wind and solar will push coal and gas out of the energy market space. Already at 9% of US generation, the report predicts that wind and solar will supply almost 30% of US electricity demand by 2026, consistent with renewables nearing one-fourth of U.S. generation projections for the near term.

“The Solar Energy Industries Association now expects utility-scale installations to average more than 21,000MW a year through 2026, following a year when U.S. solar generation rose 25% and with a peak of 25,000MW in 2023,” IEEFA writes. “Continued growth is also expected in U.S. wind generation, mirroring global trends where China's solar PV expansion outpaced all other fuels in 2016, with 37.7GW of new capacity already under construction or in advanced development, which would be added to 127.8GW in existing installed capacity.”

Meanwhile, with wind and solar growth booming, fossil fuels are declining, as renewables surpassed coal in 2022 nationwide. “Coal and natural gas are now locked into an essentially zero-sum game where increases in one fuel’s generation comes at the expense of the other. Together, they are not gaining market share, rather they are trading it back and forth, and the rapid growth in renewable generation will cut even deeper into the market share of both.”

And what of rooftop solar? Some states in Australia now have periods where the entire state grid is powered just by solar on the roofs of private citizens. As this revolution progresses in the USA, especially if a tenfold national solar push moves forward, what impact will it make on fossil fuel generators — which are expensive to build, expensive to maintain, expensive to fuel, and rely on an expensive distribution network.

“EIA estimates that this ‘small-scale solar’ produced 41.7 million MWh of power in 2020, when solar accounted for about 3% of U.S. electricity, a 19 percent increase from 2019. This growth will likely continue in the years ahead as costs continue to fall and concerns about grid reliability rise. Assuming a conservative 15 percent annual increase in small-scale solar going forward would push the sector’s generation to almost 100 million MWh in 2026.”

The Joker in the story might be the impact from electric vehicle adoption. Sales are set to surge and there’s more and more interest in V2G technology, even as wind and solar could provide 50% by 2050 in broader forecasts.

 

Related News

View more

Climate change, not renewables, threaten grid

New Mexico Energy Transition Act advances renewable energy, battery storage, energy efficiency, and demand response to boost grid reliability during climate change-fueled heatwaves, reducing emissions while supporting solar and wind deployment.

 

Key Points

A state policy phasing out power emissions, scaling renewables and storage, bolstering grid reliability in extreme heat.

✅ Replaces coal generation with solar plus battery storage

✅ Enhances grid reliability during climate-driven heatwaves

✅ Promotes energy efficiency and demand response programs

 

While temperatures hit record highs across much of the West in recent weeks and California was forced to curb electricity service amid heat-driven grid strain that week, the power stayed on in New Mexico thanks to proactive energy efficiency and conservation measures.

Public Service Company of New Mexico on Aug. 19 did ask customers to cut back on power use during the peak demand time until 9 p.m., to offset energy supply issues due to the record-breaking heatwave that was one of the most severe to hit the West since 2006. But the Albuquerque Journal's Aug. 28 editorial, "PRC should see the light with record heat and blackouts," confuses the problem with the solution. Record temperatures fueled by climate change – not renewable energy – were to blame for the power challenges last month. And thanks to the Energy Transition Act, New Mexico is reducing climate change-causing pollution and better positioned to prevent the worst impacts of global warming.

During those August days, more than 80 million U.S. residents were under excessive heat warnings. As the Journal's editorial pointed out, California experienced blackouts on Aug. 14 and 15 as wildfires swept across the state and temperatures rose. In fact, a recent report by the University of Chicago's Climate Impact Lab found the world has experienced record heat this summer due to climate change, and heat-related deaths will continue to rise in the future.

As the recent California energy incidents show, climate change is a threat to a reliable electricity system and our health as soaring temperatures and heatwaves strain our grid, as seen in Texas grid challenges this year as well. Demand for electricity rises as people depend more on energy-intensive air conditioning. High temperatures also can decrease transmission line efficiency and cause power plant operators to scale back or even temporarily stop electricity generation.

Lobbyists for the fossil fuel industry may claim that the service interruptions and the conservation requests in New Mexico demonstrate the need for keeping fossil-fueled power generation for electricity reliability, echoing policy blame narratives in California that fault climate policies. But fossil fuel combustion still is subject to the factors that cause blackouts – while also driving climate change and making resulting heatwaves more common. After an investigation, California's own energy agencies found no substance to the claim that renewable energy use was a factor in the situation there, and it's not to blame in New Mexico, either.

New Mexico's Energy Transition Act is a bold, necessary step to limit the damage caused by climate change in the future. It creates a reasonable, cost-saving path to eliminating greenhouse gas emissions associated with generating electricity.

The New Mexico Public Regulation Commission properly applied this law when it recently voted unanimously to replace PNM's coal-fired generation at San Juan Generating Station with carbon-free solar energy and battery storage located in the Four Corners communities, a prudent step given California's looming electricity shortage warnings across the West. The development will create jobs and provide resources for the local school district and help ensure a stronger economy and a healthier future for the region.

As we expand solar and wind energy here in New Mexico, we can help ensure reliable electricity service by building out greater battery storage for renewable energy resources. Expanding regional energy markets that can dispatch the lowest-cost energy from across the region to places where it is needed most would make renewable energy more available and reduce costs, despite concerns over policy exports raised by some observers.

Energy efficiency and demand response are important when we are facing extraordinary conditions, and proven strategies to improve electricity reliability show how demand-side tools complement the grid, so it is unfortunate that the Albuquerque Journal made the unsubstantiated claim that a stray cloud will put out the lights. It was hot, supplies were tight on the electric grid, and in those moments, we should conserve. We should not use those moments to turn our back on progress.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified