NREL’s Electric Vehicle Infrastructure Projection Tool Helps Utilities, Agencies, and Researchers Predict Hour-by-Hour Impact of Charging on the Grid


NREL’s Electric Vehicle Infrastructure Projection Tool

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

EVI-Pro Lite EV Load Forecasting helps utilities model EV charging infrastructure, grid load shapes, and resilient energy systems, factoring home, workplace, and public charging behavior to inform planning, capacity upgrades, and flexible demand strategies.

 

Key Points

A NREL tool projecting EV charging demand and load shapes to help utilities plan the grid and right-size infrastructure.

✅ Visualizes weekday/weekend EV load by charger type.

✅ Tests home, workplace, and public charging access scenarios.

✅ Supports utility planning, demand flexibility, and capacity upgrades.

 

As electric vehicles (EVs) continue to grow in popularity, utilities and community planners are increasingly focused on building resilient energy systems that can support the added electric load from EV charging, including a possible EV-driven demand increase across the grid.

But forecasting the best ways to adapt to increased EV charging can be a difficult task as EV adoption will challenge state power grids in diverse ways. Planners need to consider when consumers charge, how fast they charge, and where they charge, among other factors.

To support that effort, researchers at the National Renewable Energy Laboratory (NREL) have expanded the Electric Vehicle Infrastructure Projection (EVI-Pro) Lite tool with more analytic capabilities. EVI-Pro Lite is a simplified version of EVI-Pro, the more complex, original version of the tool developed by NREL and the California Energy Commission to inform detailed infrastructure requirements to support a growing EV fleet in California, where EVs bolster grid stability through coordinated planning.

EVI-Pro Lite’s estimated weekday electric load by charger type for El Paso, Texas, assuming a fleet of 10,000 plug-in electric vehicles, an average of 35 daily miles traveled, and 50% access to home charging, among other variables, as well as potential roles for vehicle-to-grid power in future scenarios. The order of the legend items matches the order of the series stacked in the chart.

Previously, the tool was limited to letting users estimate how many chargers and what kind of chargers a city, region, or state may need to support an influx of EVs. In the added online application, those same users can take it a step further to predict how that added EV charging will impact electricity demand, or load shapes, in their area at any given time and inform grid coordination for EV flexibility strategies.

“EV charging is going to look different across the country, depending on the prevalence of EVs, access to home charging, and the kind of chargers most used,” said Eric Wood, an NREL researcher who led model development. “Our expansion gives stakeholders—especially small- to medium-size electric utilities and co-ops—an easy way to analyze key factors for developing a flexible energy strategy that can respond to what’s happening on the ground.”

Tools to forecast EV loads have existed for some time, but Wood said that EVI-Pro Lite appeals to a wider audience, including planners tracking EVs' impact on utilities in many markets. The tool is a user-friendly, free online application that displays a clear graphic of daily projected electric loads from EV charging for regions across the country.

After selecting a U.S. metropolitan area and entering the number of EVs in the light-duty fleet, users can change a range of variables to see how they affect electricity demand on a typical weekday or weekend. Reducing access to home charging by half, for example, results in higher electric loads earlier in the day, although energy storage and mobile charging can help moderate peaks in some cases. That is because under such a scenario, EV owners might rely more on public or workplace charging instead of plugging in at home later in the evening or at night.

“Our goal with the lite version of EVI-Pro is to make estimating loads across thousands of scenarios fast and intuitive,” Wood said. “And if utilities or stakeholders want to take that analysis even deeper, our team at NREL can fill that gap through partnership agreements, too. The full version of EVI-Pro can be tailored to develop detailed studies for individual planners, agencies, or utilities.”

 

Related News

Related News

World renewable power on course to shatter more records

Global Renewable Capacity Additions 2023 surge on policy momentum, high fossil prices, and energy security, with solar PV and wind leading growth as grids expand and manufacturing scales across China, Europe, India, and the US.

 

Key Points

Record solar PV and wind growth from policy and energy security, adding 440+ GW toward 4,500 GW total capacity in 2024.

✅ Solar PV to supply two-thirds of additions; rooftop demand rising.

✅ Wind rebounds ~70% as delayed projects complete in China, EU, US.

✅ Grid upgrades and better permitting, auctions key for 2024 growth.

 

Global additions of renewable power capacity are expected to jump by a third this year as growing policy momentum, higher fossil fuel prices and energy security concerns drive strong deployment of solar PV and wind power, building on a record year for renewables in 2016, according to the latest update from the International Energy Agency.

The growth is set to continue next year with the world’s total renewable electricity capacity rising to 4 500 gigawatts (GW), equal to the total power output of China and the United States combined, and in the United States wind power has surged in the electricity mix, says the IEA’s new Renewable Energy Market Update, which was published today.

Global renewable capacity additions are set to soar by 107 gigawatts (GW), the largest absolute increase ever, to more than 440 GW in 2023. The dynamic expansion is taking place across the world’s major markets. Renewables are at the forefront of Europe’s response to the energy crisis, accelerating their growth there. New policy measures are also helping drive significant increases in the United States, where solar and wind growth remains strong, and India over the next two years. China, meanwhile, is consolidating its leading position and is set to account for almost 55% of global additions of renewable power capacity in both 2023 and 2024.

“Solar and wind are leading the rapid expansion of the new global energy economy. This year, the world is set to add a record-breaking amount of renewables to electricity systems – more than the total power capacity of Germany and Spain combined,” said IEA Executive Director Fatih Birol. “The global energy crisis has shown renewables are critical for making energy supplies not just cleaner but also more secure and affordable – and governments are responding with efforts to deploy them faster. But achieving stronger growth means addressing some key challenges. Policies need to adapt to changing market conditions, and we need to upgrade and expand power grids to ensure we can take full advantage of solar and wind’s huge potential.”

Solar PV additions will account for two-thirds of this year’s increase in renewable power capacity and are expected to keep growing in 2024, according to the new report. The expansion of large-scale solar PV plants is being accompanied by the growth of smaller systems. Higher electricity prices are stimulating faster growth of rooftop solar PV, which is empowering consumers to slash their energy bills, and in the United States renewables' share is projected to approach one-fourth of electricity generation.

At the same time, manufacturing capacity for all solar PV production segments is expected to more than double to 1 000 GW by 2024, led by China's solar PV growth and increasing supply diversification in the United States, where wind, solar and battery projects dominate the 2023 pipeline, India and Europe. Based on those trends, the world will have enough solar PV manufacturing capacity in 2030 to comfortably meet the level of annual demand envisaged in the IEA’s Net Zero Emissions by 2050 Scenario.

Wind power additions are forecast to rebound sharply in 2023 growing by almost 70% year-on-year after a difficult couple of years in which growth was slugging, even as wind power still grew despite Covid-19 challenges. The faster growth is mainly due to the completion of projects that had been delayed by Covid-19 restrictions in China and by supply chain issues in Europe and the United States. However, further growth in 2024 will depend on whether governments can provide greater policy support to address challenges in terms of permitting and auction design. In contrast to solar PV, wind turbine supply chains are not growing fast enough to match accelerating demand over the medium-term. This is mainly due to rising commodity prices and supply chain challenges, which are reducing the profitability of manufacturers.

The forecast for renewable capacity additions in Europe has been revised upwards by 40% from before Russia’s invasion of Ukraine, which led many countries to boost solar and wind uptake to reduce their reliance on Russian natural gas. The growth is driven by high electricity prices that have made small-scale rooftop solar PV systems more financially attractive and by increased policy support in key European markets, especially in Germany, Italy and the Netherlands.

 

Related News

View more

Centrica acquires battery storage project that could "unlock North Sea wind energy potential"

Centrica Dyce Battery Storage will deliver 30MW 2hr capacity in Aberdeenshire, capturing North Sea offshore wind to reduce curtailment, enhance grid flexibility, and strengthen UK energy independence with reliable renewable energy balancing.

 

Key Points

A 30MW 2hr battery in Dyce, Aberdeenshire, storing North Sea wind to cut curtailment and ease UK grid constraints.

✅ 30MW 2hr system near North Sea offshore wind connection

✅ Cuts curtailment and boosts grid flexibility and reliability

✅ Can power 70,000 homes for an hour with daily cycles

 

CENTRICA Business Solutions has secured the development rights for a fully consented 30MW 2hr battery storage plant in Aberdeenshire that will help maximise the use of renewable energy in the Scottish North Sea.

The site in Dyce, near Aberdeen is located near a connection for North Sea UK offshore wind farms and will contribute towards managing network constraints – by storing electricity when it is abundant for times when it is not, helping improve the energy independence of the UK and reduce our reliance on fossil fuels. 

Last year, the National Grid paid £244million to wind farm operators to shut down turbines, as they risked overloading the Scottish grid, a process known as curtailment. Battery storage is one method of helping to utilise that wasted energy resource, ensuring fewer green electrons are curtailed. 

Once built, the 30MW 2hr Dyce battery storage plant will store enough energy to power 70,000 homes for an hour. This discharge happens up to four hours per day, as seen in other large-scale deployments like France's largest battery platform that optimise grid balancing.

The project was developed by Cragside Energy Limited, backed by Omni Partners LLP, and obtained planning consent in November 2021. The go-live date for the project is mid-2024, construction should last eight months and will be aligned with the grid connection date.

“Battery storage can play a strategic role in helping to transition away from fossil fuels, by smoothing out the peak demand and troughs associated with renewable energy generation,” said Bill Rees, Director of Centrica Energy Assets. “We should treat renewable energy like a precious resource and projects like this can help to maximise its efficacy.” 

The project forms part of Centrica Energy Assets’ plan to deliver 900MW of solar and battery storage assets by 2026, increasingly paired with solar in global deployments. Centrica already owns and operates the 49MW fast response battery at Roosecote, Cumbria. 

Centrica Business Solutions Managing Director Greg McKenna, said: “Improving the energy independence of the UK is essential to help manage energy costs and move away from fossil fuels. The Government has set a target of a green electricity grid by 2035 – that’s only achievable if we build out the level of flexibility in the system, to help manage supply and demand.”

Centrica Energy Assets will work with Cragside Energy to identify new opportunities in the energy storage space. Cragside Energy’s growing pipeline exceeds 200MW, and focuses on low carbon and flexible assets, including energy storage, solar and peaking plant schemes, supported by falling battery costs across the sector.

Ben Coulston, Director of Cragside Energy, added: “Targeted investment into a complementary mix of diverse energy sources and infrastructure is crucial if the UK is to fully harness its renewable energy potential. Battery storage, such as the project in Dyce, will contribute to the upkeep of a stable and resilient network and we have enjoyed partnering with Centrica as the project transitions into the next phase”.

 

Related News

View more

Solar Power Becomes EU’s Top Electricity Source

Solar has become the EU’s main source of electricity, marking a historic turning point in Europe’s energy mix as solar power surpasses nuclear and wind, accelerates renewable expansion, lowers carbon emissions, and strengthens the EU’s clean energy transition.

 

Why has Solar Become the EU’s Main Source of Electricity?

Solar has become the EU’s primary source of electricity due to rapid solar expansion, lower installation costs, and robust clean energy policies, which have boosted generation, reduced fossil fuel dependence, and accelerated Europe’s transition toward sustainability.

✅ Surging solar capacity and falling costs

✅ Policy support for renewable energy growth

✅ Reduced reliance on oil, gas, and coal

 

For the first time in history, solar energy became the leading source of electricity generation in the European Union in June 2025, marking a major milestone in the continent’s transition toward renewable energy, as renewables surpassed fossil fuels across the bloc this year. According to new data from Eurostat, more than half of the EU's net electricity production in the second quarter of the year came from renewable sources, with solar power leading the way.

Between April and June 2025, renewables accounted for 54 percent of the EU’s electricity generation, a 1.3 percent increase compared to the same period in 2024. The rise was driven primarily by solar energy, with countries like Germany seeing a solar boost amid the energy crisis, which generated 122,317 gigawatt-hours (GWh) in the second quarter—enough, in theory, to power around three million homes.

Rob Stait, a spokesperson for Alight, one of Europe’s leading solar developers, described the achievement as “heartening.” He said, “Solar’s boom is because it can generate huge energy cost savings, and it's easy and quick to install and scale. A solar farm can be developed in a year, compared to at least five years for wind and at least ten for nuclear. But most importantly, it provides clean, renewable power, and its increased adoption drastically reduces the reliance of Europe on Russian oil and gas supplies.”

Eurostat’s data shows that June 2025 was the first month ever when solar overtook all other energy sources, accounting for 22 percent of the EU’s energy mix, reflecting a broader renewables surge across the region. Nuclear power followed closely at 21.6 percent, wind at 15.8 percent, hydro at 14.1 percent, and natural gas at 13.8 percent.

The shift comes at a critical time as Europe continues to navigate the economic and energy challenges brought on by Russia’s ongoing war in Ukraine. With fossil fuel markets remaining volatile, countries have increasingly viewed investment in renewables as both an environmental and strategic imperative. As Stait noted, energy resilience and renewable infrastructure have now become a “strategic necessity.”

Denmark led the EU in renewable energy generation during the second quarter, producing 94.7% of its electricity from renewable sources. It was followed by Latvia (93.4%), Austria (91.8%), Croatia (89.5%), and Portugal (85.6%). Luxembourg recorded the largest year-on-year increase, up 13.5 percent, largely due to a surge in solar production. Belgium also saw strong growth, with a 9.1 percent rise in renewable generation compared to 2024, while Ireland targets over one-third green electricity within four years.

At the other end of the spectrum, Slovakia, Malta, and the Czech Republic lagged behind, producing just 19.9%, 21.2%, and 22.1% of their electricity from renewable sources, respectively.

Stait believes the continued expansion of renewables will help stabilize and eventually lower electricity prices across Europe. “The accelerated buildout of renewables will ultimately lower bills for both businesses and other users—but slower buildouts mean sky-high prices may linger,” he said.

He added a call for decisive action: “My advice to European nations would be to keep going further and faster. There needs to be political action to solve grid congestion, and to create opportunities for innovation and manufacturing in Europe will be critical to keep momentum.”

With solar energy now taking the lead for the first time, Europe’s clean energy transformation appears to be entering a new phase, as global renewables set new records and momentum builds—one that combines environmental sustainability with energy security and economic opportunity.

 

Related Articles

View more

Canada's largest electricity battery storage project coming to southwestern Ontario

Oneida Energy Storage Project, a 250 MW lithium-ion battery in Haldimand County, enhances Ontario's clean energy capacity, grid reliability, and peak demand management, developed with Six Nations partners and private-public collaboration.

 

Key Points

A 250 MW lithium-ion battery in Ontario storing power to stabilize the grid and deliver clean electricity.

✅ 250 MW lithium-ion grid-scale battery in Haldimand County

✅ Developed with Six Nations, Northland Power, NRStor, Aecon

✅ Enhances grid reliability, peak shaving, emissions reduction

 

The Ontario government announced it is working to build Canada's largest electricity battery storage project in Haldimand County, part of Ontario's push into energy storage amid a looming supply crunch. Ontario Premier Doug Ford and Deputy Prime Minister Chrystia Freeland made the announcement in Ohsweken, Ont.

The 250-megawatt Oneida Energy storage project is being developed in partnership with the Six Nations of the Grand River Development Corporation, Northland Power, NRStor and Aecon Group.

The Ontario government announced on Friday it is working to build Canada's largest electricity battery storage project in Haldimand County.

On Friday, Ontario Premier Doug Ford and Deputy Prime Minister Chrystia Freeland made the announcement in Ohsweken, Ont.

The 250-megawatt Oneida Energy storage project is being developed in partnership with the Six Nations of the Grand River Development Corporation, Northland Power, NRStor and Aecon Group.

“It will more than double the province's energy storage resources and provide enough electricity to power a city approximately the size of Oshawa,” said Ford, noting Ontario's growing battery storage expansion across the grid.

“We need to continue to find ways to keep our energy clean and green,” said Ford, including initiatives like the Hydrogen Innovation Fund to spur innovation.

The federal government said they are providing a further $50 million in funding, coinciding with national investments such as the B.C. battery plant to scale capacity.

The premier said the project will begin operating in 2025 and will more than double the amount of clean energy storage.

Officials with the Six Nations said they have invested in the project that will provide economic returns and 97 per cent of the construction workforce to build it.

"This project is an example of what is possible when private and public companies, multiple levels of government, and their agencies work alongside a progressive Indigenous partner in pursuit of innovative solutions,” said Matt Jamieson, President and CEO of Six nations of the Grand River Development Corporation. “As with all our development efforts, we have studied the project to ensure it aligns with our community values, we are confident the outcome will create ratepayer savings, and move us closer to a Net Zero future for our coming generations."

According to the province, it has directed the independent electricity system operator to enter into a 20-year contract for this project with a goal to grow the province's clean energy supply, alongside transmission efforts like the Lake Erie Connector to enhance reliability.

The province said the Oneida Energy storage project is expected to reduce emissions by between 2.2 to 4.1 million tonnes, the equivalent to taking up to 40,000 cars off the road.

The project will use large scale lithium batteries, with regional supply bolstered by the Niagara battery plant, to store surplus energy from the power grid then feed it back into the system when it’s needed.

“Power that is generated and it can’t be utilized, this system will help harness that, store it for a period of time, and it will maximize value for the rate payer,” said Jamieson.

Jamieson said he is proud that the Six Nations is a founding developer in the project.

The facility will not actually be in Six Nations. It will be near the community of Jarvis in Haldimand County.
For Six Nationals elected Chief Mark Hill, it’s a major win as Ontario's EV sector grows with the Oakville EV deal and related projects.

“We want to continue to be a driver. We want to show Canada that we can also be a part of green solution,” Hill said.

But Hill admitted the Six Nations Community remains deeply divided over a number of longstanding issues.

“We still have a lot of internal affairs within our own community that we have to deal with. I think it’s really time once and for all to come together and figure this out,” said Hill.

The traditional leadership said they were left out of the decision making.

“No voice of ours was even heard today in that building,” said Deyohowe:to, the chief of the Cayuga Snipe Clan.

According to the Cayuga Snipe Clan, consultation with the Haudenasauene council is required for this type of development but they said it didn't happen.

“We’ve never heard of this before. No one came to the community and said this was going to happen and for the community we are not going to let that happen,” said Deyohowe:to.

The Six Nations Development Corporation said it did reach out to the Haudenosaunee chiefs and sent multiple letters in 2021 inviting them to participate.

 

 

Related News

View more

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

The Spanish inventor creating electricity from plants

Bioo Soil-Generated Electricity turns biological batteries and photosynthesis into renewable energy, powering IoT sensors for smart farming and lighting, using microbe-powered soil electrochemistry to cut battery waste, reduce costs, and scale sustainable agritech infrastructure.

 

Key Points

Bioo Soil-Generated Electricity powers IoT sensors and lighting using soil microbes, delivering clean renewable energy.

✅ Microbe-driven soil batteries replace disposable chemical cells

✅ Powers IoT agritech sensors for moisture, pH, and temperature

✅ Cuts maintenance and costs while enabling sustainable farming

 

SCENES shines a spotlight on youth around the world that are breaking down barriers and creating change. The character-driven short films will inspire and amaze, as these young change-makers tell their remarkable stories.

Pablo Vidarte is a born inventor. At the age of eight, he was programming video games. By 16, he was challenging NASA and competing with the Spanish army to enhance the efficiency of external combustion engines. "I wanted to perfect a system that NASA did in 2002 oriented to powering cars. I was able to increase that efficiency by 60 per cent, which was pretty cool," Pablo explained. Aged 18, he created his first company specialising in artificial intelligence. A year later, he founded Bioo, a revolutionary startup that generates electricity from plants' photosynthesis.

"Imagine, being in the middle of a park or a street and being able to touch a plant and turn on the lights of that specific area," Pablo told Scenes. "Imagine storing the memories of humanity itself in nature. Imagine storing voice messages in a library that is an open field where you can go and touch the plants and communicate and interact with them. That's what we do at Bioo," he added.

The creation of Bioo, however, was not a walk in the park. Pablo relied on nanotechnology engineers and biologists volunteering their time to turn his idea of biological batteries, inspired by biological design, into a reality. It took a year for a prototype to be created and an investor to come on board. Today, Bioo is turning plants into biological switches, generating renewable energy from nature, and transforming the environment.

"We realised that we were basically killing the planet, and then we invented things like solar panels and solutions like peer-to-peer energy that we're able to prevent things from getting worse, but the next step is to be able to reverse the whole equation to revive that planet that we're starting to lose," the 25-year-old explained.

Batteries creating electricity from soil
Bioo has designed biological batteries that generate electricity from the energy released when organic soil decomposes. Like traditional batteries, they have an anode and a cathode, but instead of using materials like lithium to power them, organic matter is used as fuel. When microorganisms break down the organic soil, electrons are released. These electrons are then transported from the anode to the cathode, and a current of electricity is created. The batteries come in the shape of a rectangular box and can be dug into any fertile soil. They produce up to 200Wh a year per square metre, and just as some tidal projects use underwater kites to harvest energy, these systems tap natural processes.

Bioo's batteries are limited to low-power applications, but they have grown in popularity and are set to transform the agriculture industry.

Cost savings for farmers
Farmers can monitor their crops using a large network of sensors. The sensors allow them to analyse growing conditions, such as soil moisture, PH levels and air temperature. Almost 90 per cent of the power used to run the sensors come from chemical batteries, which deplete, underscoring the renewable energy storage problem that new solutions target.

"The huge issue is that chemical batteries need to be replaced every single year. But the problem is that you literally need an army of people replacing batteries and recalibrating them," Pablo explains. "What we do, it's literally a solution that is hidden, and that's nourishing from the soil itself and has the same cost as using chemical batteries. So the investment is basically returned in the first year," Pablo added.

Bioo has partnered with Bayer, a leading agricultural producer, to trial their soil-powered sensors on 50 million hectares of agricultural land. If successful, the corporation could save €1.5 billion each year. Making it a game-changer for farmers around the world.

A BioTech World
In addition to agriculture, Bioo's batteries are now being installed in shopping centres, offices and hospitals to generate clean power for lighting, while other companies are using ocean and river power to diversify clean generation portfolios.

Pablo's goal is to create a more environmentally efficient world, so shares his technology with international tech companies as green hydrogen projects scale globally. "I wanted to do something that could really mean a change for our world. Our ambition right now is to create a biotech world, a world that is totally interconnected with nature," he said.

As Bioo continues to develop its technology, Pablo believes that soil-generated electricity will become a leader in the global energy market, aligning with progress toward cheap, abundant electricity becoming a reality worldwide.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified