NuclearÂ’s lost generation of workers

By Reuters


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
On a flat, low-lying island nestled in crisp waters off the west coast of Finland, the first nuclear power plant ordered in Western Europe since 1986 is inching toward start-up.

Over 4,000 builders and engineers are at work on the sprawling Olkiluoto 3 project, whose turbine hall is so cavernous it could house two Boeing 747 jets stacked on top of each other.

When it is dark, which in winter is most of the day, enormous spotlights throw into focus scores of scaffolding towers and the red hauling equipment that encircle the grey, unfinished reactor building.

The heavy reactor vessel, made to withstand temperatures over 350 degrees Celsius, has been gingerly lifted into place by two cranes.

Inside the building, a dozen workers carrying a single pipe across their shoulders create a human caterpillar that carefully wends its way through tarpaulin-covered tunnels lit by lamps and chinks of daylight.

Walking through the expansive complex, still missing a domed cover on the reactor building, it takes a while to make out a peculiar but important detail: many of the engineers and building experts working here are in their late 50s and early 60s some are in their 30s, but few are in between.

There's a hole in the nuclear workforce, not just in Finland but across the Western world. For the moment, the operator of the Olkiluoto 3 plant, power utility Teollisuuden Voima Oyj TVO, is getting by with its most experienced staff. As those workers retire, though, the skills shortage could become a crisis.

"The nuclear industry has been in the desert for years and years and the question is how to revamp it and how to revamp human resources," says Colette Lewiner from Cap Gemini, a consultancy firm which raised concerns about the aging nuclear workforce in a report in 2008 and has warned "there will be no nuclear power renaissance" without efforts to tackle the problem. "The industry needs to ramp up and it needs to do it quickly."

Like a growing number of nations, Finland sees nuclear power as vital to its future prosperity. Olkiluoto 3 is the biggest investment in the history of Finnish industry. Helsinki wants nuclear power to provide more than a third of the country's electricity by 2020, reducing its dependence on carbon-emitting fossil fuels and energy imports from Russia. Globally, 15 countries are currently building 63 nuclear power plants, according to the International Atomic Energy Agency IAEA, the UN's atomic body. More than 65 additional states, newcomers to the technology, are jostling for advice on nuclear power.

Completion of Finland's new 1,600 megawatt reactor, built by French energy giant Areva and designed to withstand a plane crashing into it, is running four years late and will turn out far more expensive than its original 3 billion euro price tag. Areva alone has already taken 2.7 billion euros in writedowns on the project.

But delays and cost overruns are nothing compared to the skills crisis the project has helped expose, which is already affecting the nuclear sector around the world. "The global community is facing this big problem — where is this human resource?" says Yanko Yanev, head of the IAEA's nuclear knowledge management unit, set up 10 years ago when the Vienna-based agency first sounded the alarm. "When we started this program, people said, 'Ah, give us a break!' Now they are realizing the problem is more complex than they had first thought."

Simply put, the cause of the looming shortage can be pinned on two events: Three Mile Island in 1979 and Chernobyl in 1986.

In its first few decades, full of optimism and hope, the nuclear age was run and staffed by workers who had graduated between the early 1940s and late 1960s. People like Esa Mannola, who is responsible for nuclear safety at Olkiluoto. Mannola studied technical physics in the late 1960s and after a brief stint of military service, took a job working on the first two nuclear units based on Olkiluoto, which went online in 1979 and 1982. Like about 40 percent of TVO's staff, Mannola, 62, is over 50.

"Nuclear was a brand new technology and it was exciting," he says, sitting in a bright conference room not far from where enormous parts for the reactor have been shipped in and hauled into place. "I felt it would be important for the country's future."

Now head of a specialist team of around 20 people at TVO, the wry, softly spoken manager says he is always on the lookout for potential new hires, but has struggled at times to find young people to fill highly specialized roles.

That's not surprising. After Long Island and Chernobyl, many countries put their nuclear plans on ice or even phased out nuclear altogether, moving instead to more affordable fossil fuels. Students turned away from the nuclear sector, recruitment stagnated and many workers left. "Nuclear did not create a permanent demand on the market so that people could see it as a prospective career," IAEA's Yanev says.

The malaise lasted for well over a decade and created what Jorma Aurela, 51, chief engineer in Finland's energy department, calls a 'lost generation.' "Many of us were paralyzed. The people in this generation did not have a good future in front of them," says Aurela, who graduated just before the Chernobyl accident and as a young worker, used to occasionally tell people he was studying history because he was embarrassed to be associated with nuclear power. Around half his classmates quit the sector, he estimates. "Some have been found again but some are lost," he says. "They are lost to other parts of the industry or are mentally lost — they do not want to work for this industry again."

That's left older workers running Finland's plants, and could threaten the country's planned nuclear growth, especially as Helsinki has just okayed plans for two more new plants.

It's a similar story in other parts of the Western world. French utility EDF says around 50 percent of employees in its nuclear branch will retire by 2015 and that its workers are on average 43-44 years old.

In the United States, the peak age of workers in the nuclear sector is 48-52 while Britain estimates that up to two-thirds of its top-tier nuclear managers will retire by 2025. Worldwide, the nuclear industry employs around 250,000 people. Many first-generation nuclear staff have just retired or will do so in the next few years, taking with them skills and knowledge of complex, costly projects — just as the nuclear renaissance gets underway.

Sometimes referred to as a "silver tsunami," the departure of the first generation of nuclear workers is a big concern for the IAEA, which promotes civilian nuclear technology alongside its role as atomic watchdog. Many countries and private firms have new units planned or under construction, the agency said in a September report for a conference of its 151 member states. "They are facing shortages of experienced personnel and loss of knowledge as they look to replace retiring staff for their existing fleet while at the same time staffing new projects."

Finnish nuclear regulator Stuk says the lack of skilled workers is at least partly to blame for the delays at Olkiluoto. So many experienced nuclear manufacturers have left the business that project managers have been forced to look for subcontractors who then need nuclear training, the regulator said in a presentation in August. Building the next generation of power plants will be demanding, "because much of the earlier experience and resources have been lost from the nuclear industry."

And it's not just a lack of engineers. The global shortage runs from uranium miners to the waste-disposal experts who tidy up at the end of the nuclear cycle. "I've got colleagues running around Florida trying to find people to take their knowledge before they die," says Peter Waggitt, a uranium production consultant to the IAEA. "Most of the senior experts in uranium mining are pushing 50 and some of the best are over 70."

A fall in uranium prices in the late 1980s left scant incentive to enter the mining industry, while leaky, badly constructed mines gave uranium mining a bad name. But the ore is now trading at around $60 per pound, in real terms more than four times the 1990 price. More than 500 companies are involved in the sector and the IAEA says at least 30 new uranium mines will open before 2015. The workforce, says Waggitt, is struggling to keep pace.

In May 2008, BHP-Billiton said it would take longer than originally estimated to expand its Olympic Dam copper-uranium mine in Australia because the worldwide mining boom had created greater competition among skilled workers, higher prices and shortages of equipment. A skills shortage still hangs over the site, the world's biggest uranium deposit. The Australian government has estimated the country needs around 6,000 extra skilled workers during construction. Analysts have put the full expansion cost at $20 billion or more. Waggitt sees these problems as a warning to the wider industry: "Uranium mining is at the very beginning. If there is a problem in this sector it is a problem for the entire nuclear cycle."

In an attempt to tackle the shortfall, Finland is rushing out a blueprint that outlines how to get more young people studying nuclear energy. From his offices next to the presidential palace in Helsinki, chief engineer Aurela heads a 20-person committee which is assessing the needs of Finland's future nuclear workforce. The country wants to build another large plant at Olkiluoto by 2020. To staff such grand plans, Aurela says Finland will need to produce at least 100 nuclear specialists a year. At the moment it produces just 20 to 30.

After talks with industry, university and government officials, the committee will soon present a detailed report on what to do next. "It will come out in spring," Aurela says. "We don't have time for a year. We need to get the measures in place. We know some of them already — we only have two nuclear physics professors in Finland and we already know that that is too few."

One of those professors is Rainer Salomaa, who first got into nuclear as a way to escape the isolated southwestern port city of Turku where he grew up, 160 km 99 miles from where he now teaches near the capital. Producing the next generation of nuclear experts, says Salomaa, 62, should not be left to chance.

"With the development at Olkiluoto, people are much more excited," he says, sitting in his Aalto University office with its stacks of curled papers and heavy textbooks. "But when you are training new people, just to get an ordinary professional it takes around five years. It's a very slow process — and to get a professor it takes 15 years — that's one of the bottlenecks."

Student numbers in basic nuclear engineering at the university have gone up, to around 30 a year from about 12 in 2000, the low-point of the industry in Finland. Masters students in the field — who it is hoped will become the next generation of top-notch nuclear specialists — have risen to 6-10 per year from 2-3 a decade ago. That's an improvement, but nothing like what Salomaa says is needed. "For the moment we will survive, but once the two new units start at full speed the burning need will continue.

"The difficulty is that the number in the new generation anywhere is getting smaller. There's huge global competition for the bright students — they are wanted in economics, law — and engineering is not as fashionable as it used to be."

Finding the right people to fill all those jobs will not be easy. Before padding in flipflops and socks to a lecture theater, Salomaa explains what he is looking for in a student. "The courage to tackle non-definable problems," he says. "With nuclear engineering, you really have to have the courage not to give up."

At the same time, he wants students with a deep respect for safety and rules. His generation was rattled by two major nuclear accidents and had safety taught to them like a mantra. "The safety culture is a question of attitude. It has to be there from the start."

Few people have that mix: mathematically gifted, able to think outside the box, but also happy to abide by rules. On a grey, mild day in late September, some 30 young Finns who have at least some of those attributes listen to a lecture in a boxy, functional building on Aalto University's sprawling science and technology campus. "I could work in the nuclear industry, I think it has a future," says Karita Kajanto, a 21-year-old energy technology student in crisp, word-perfect English.

Like her other classmates, though, Kajanto notes that some are not so upbeat about nuclear physics. "Here at this university people have positive views but some friends studying humanities — and some people who don't really know about it — they have quite aggressive views that what we are doing is wrong," she says. To give them choices after graduation, many of her classmates also take classes in the much trendier renewable energies such as solar and hydropower.

One problem is cultural. "The way nuclear companies are managed and the way young people want to work are different," Cap Gemini's Lewiner says. "Nuclear companies can be quite hierarchical, it is very controlled — you are allowed to do this and not that. Some of that is needed of course, but it has to be softened."

Changing that image will take time — but it is possible. A recent study by polling company Gallup showed nearly one third of young Finns are in favor of nuclear power, the highest since the survey began in 1982. Ten percent were against it and the rest were neutral.

The country that has done the best job of promoting atomic power is France, which began its nuclear power program in the 1960s and now gets more than 75 percent of its electricity from nuclear. French firms, which have rounded up new employees at breakneck pace in the past half decade, say that drive combined with an increased involvement in training makes them less worried by potential staff shortages than they were in the mid-2000s. Areva, for instance, says that while it has recruited 53,000 people since 2005, the urgency has slowed: in part due to the economic crisis and in part because its needs are fairly well filled.

France even sees opportunity in others' problems. French universities have decided to teach some nuclear courses in English to prepare students for an international career and attract non-French speakers. "There has been renewed interest in training because of France's own needs and a worldwide nuclear rebirth," says Laurent Turpin, head of the Institute for Nuclear Sciences and Technology INSTN outside of Paris.

Several students, interestingly, said that having anti-nuclear parents pushed them to study the subject. "People around me were ecologists," said Olivier, a 24-year old masters student. "Because I questioned this complete refusal, I wanted to study nuclear by scientific pragmatism. I then realized it was a sector which had a future."

Rediscovering some of its original optimism and raising the industry's profile may help. "In some ways it has been kept pretty secret," says the IAEA's Yanev, 60, who became excited about nuclear power in his native Bulgaria as a teenager watching the space race in the 1960s. "It was definitely not explained properly to the public and it is complex. It is not so easy to understand the nuclear processes without the proper education."

Some governments have begun targeting female students and minorities. In Britain, where the government has plans for eight new nuclear plants to replace those due for closure over the next decade, the decommissioning authority has launched a drive to recruit young people.

"It was very much an image of a man in a white coat and a hard hat standing next to a big piece of machinery or a waste pond," says Carl Dawson, manager of Britain's nuclear graduate program which has taken in 35 people since it started in 2008. Dawson says the scheme focuses on students from different academic backgrounds who can then be "nuclearized" once on board.

One such graduate is 25-year-old Becky Read, who studied chemistry and biology at Birmingham University and met Dawson at a careers fair before she graduated two years ago. "Imagine, everyone else there had a little stall with brochures and his scheme had a massive silver inflatable igloo," she says. "The program sounded so different to everything else."

Now Read has done everything from assessing how nuclear buildings withstand earthquakes to explaining atomic waste storage to the public. She has been working in Vienna at the IAEA, learning about technical cooperation between member countries. Enthusiastic about the future of nuclear power, she nonetheless feels some in the industry could do more to pass on their knowledge to the new generation.

"Some people seem scared of change. They want things to stay the same. They might worry when they see some 'bright young spark' coming in," she says, sipping coffee on the flag-decked UN plaza in Vienna. "These are the people who built the reactors, so it feels like their baby."

Whatever efforts countries make, things might get even tougher. Some worry that China and India, which are rapidly expanding their nuclear power programs, could begin snapping up workers from Europe and North America.

More than two-thirds of reactors under construction worldwide are in Asia — primarily in China, which is building more than 20 and has around 40 more planned. According to statistics collected by the IAEA, China needs 1,200 graduates in nuclear engineering and technology a year. Chinese statistics suggest overall enrolment is matching demand but that it is struggling to recruit graduates in specialized areas of nuclear chemistry and the atomic fuel cycle as well as top managers. Nuclear power plant managers in Asia have told the IAEA that their best engineers are often poached to work on new projects, underlining the demand. "The problem in China is that they have too many young people but not the older ones," the IAEA's Yanev says, referring to the nuclear workforce. "The expansion is so fast that they don't have the necessary experience."

Fierce competition for skilled workers might force companies to entice older workers out of retirement in the Western world. "The industry cannot only count on the fresh minds that will be trained. That is not possible, it takes too long. It takes four to five years for initial education and some time inside the company before they are operational," says Cap Gemini's Lewiner.

Hans-Holger Rogner, head of nuclear energy planning and economics studies at the IAEA, agrees, and says the industry cannot afford any age prejudice. When uranium prices went through the roof in 2007, companies "really went to the old people's homes and said, 'Well, you can sit in your armchair rocking back-and-forth or you can get back in the field at 75 years old.' I guess a similar thing will happen — you bring back the old knowledge."

Rogner, 61, will leave the IAEA soon. Beginning his career in systems analysis after the oil price crisis in the 1970s, he says he plans to continue in the nuclear sector even if he officially retires.

"I am certainly not going to sit and twiddle my thumbs," he says. "There is a lot to do."

Related News

Surging electricity demand is putting power systems under strain around the world

Global Electricity Demand Surge strains power markets, fuels price volatility, and boosts coal and gas generation as renewables lag, driving emissions, according to the IEA, with grids and clean energy investment crucial through 2024.

 

Key Points

A surge in power use that strained supply, raised prices, and drove power-sector CO2 emissions to record highs.

✅ 6% demand growth in 2021; largest absolute rise ever

✅ Coal up 9%; gas +2%; renewables +6% could not meet demand

✅ Prices doubled vs 2020; volatility hit EU, China, India

 

Global electricity demand surged above pre-pandemic levels in 2021, creating strains in major markets, pushing prices to unprecedented levels and driving the power sector’s emissions to a record high. Electricity is central to modern life and clean electricity is pivotal to energy transitions, but in the absence of faster structural change in the sector, rising demand over the next three years could result in additional market volatility and continued high emissions, according an IEA report released today.

Driven by the rapid economic rebound, and more extreme weather conditions than in 2020, including a colder than average winter, last year’s 6% rise in global electricity demand was the largest in percentage terms since 2010 when the world was recovering from the global financial crisis. In absolute terms, last year’s increase of over 1 500 terawatt-hours was the largest ever, according to the January 2022 edition of the IEA’s semi-annual Electricity Market Report.

The steep increase in demand outstripped the ability of sources of electricity supply to keep pace in some major markets, with shortages of natural gas and coal leading to volatile prices, demand destruction and negative effects on power generators, retailers and end users, notably in China, Europe and India. Around half of last year’s global growth in electricity demand took place in China, where demand grew by an estimated 10%, highlighting that Asia is set to use half of global electricity by 2025 according to the IEA. China and India suffered from power cuts at certain points in the second half of the year because of coal shortages.

“Sharp spikes in electricity prices in recent times have been causing hardship for many households and businesses around the world and risk becoming a driver of social and political tensions,” said IEA Executive Director Fatih Birol. “Policy makers should be taking action now to soften the impacts on the most vulnerable and to address the underlying causes. Higher investment in low-carbon energy technologies including renewables, energy efficiency and nuclear power – alongside an expansion of robust and smart electricity grids – can help us get out of today’s difficulties.”

The IEA’s price index for major wholesale electricity markets almost doubled compared with 2020 and was up 64% from the 2016-2020 average. In Europe, average wholesale electricity prices in the fourth quarter of 2021 were more than four times their 2015-2020 average, and wind and solar generated more electricity than gas in the EU during the year.  Besides Europe, there were also sharp price increases in Japan and India, while they were more moderate in the United States where gas supplies were less perturbed.

Electricity produced from renewable sources grew by 6% in 2021, but it was not enough to keep up with galloping demand. Coal-fired generation grew by 9%, with soaring electricity and coal use serving more than half of the increase in demand and reaching a new all-time peak as high natural gas prices led to gas-to-coal switching. Gas-fired generation grew by 2%, while nuclear increased by 3.5%, almost reaching its 2019 levels. In total, carbon dioxide (CO2) emissions from power generation rose by 7%, also reaching a record high, after having declined the two previous years.

“Emissions from electricity need to decline by 55% by 2030 to meet our Net Zero Emissions by 2050 Scenario, but in the absence of major policy action from governments, those emissions are set to remain around the same level for the next three years,” said Dr Birol. “Not only does this highlight how far off track we currently are from a pathway to net zero emissions by 2050, but it also underscores the massive changes needed for the electricity sector to fulfil its critical role in decarbonising the broader energy system.”

For 2022-2024, the report anticipates electricity demand growing 2.7% a year on average, although the Covid-19 pandemic and high energy prices bring some uncertainty to this outlook. Renewables are set to grow by 8% per year on average, and low-emissions sources are expected to serve more than 90% of net demand growth during this period. We expect nuclear-based generation to grow by 1% annually during the same period.

As a consequence of slowing electricity demand growth and significant renewables additions, fossil fuel-based generation is expected to stagnate in the coming years, and renewables are set to surpass coal by 2025 with coal-fired generation falling slightly as phase-outs and declining competitiveness in the United States and Europe are balanced by growth in markets like China, where electricity demand trends remain a puzzle in recent analyses, and India. Gas-fired generation is seen growing by around 1% a year.

 

Related News

View more

Rooftop Solar Grids

Rooftop solar grids transform urban infrastructure with distributed generation, photovoltaic panels, smart grid integration and energy storage, cutting greenhouse gas emissions, lowering utility costs, enabling net metering and community solar for low-carbon energy systems.

 

Key Points

Rooftop solar grids are PV systems on buildings that generate power, cut emissions, and enable smart grid integration.

✅ Lowers utility bills via net metering and demand offset

✅ Reduces greenhouse gases and urban air pollution

✅ Enables resiliency with storage, smart inverters, and microgrids

 

As urban areas expand and the climate crisis intensifies, cities are seeking innovative ways to integrate renewable energy sources into their infrastructure. One such solution gaining traction is the installation of rooftop solar grids. A recent CBC News article highlights the significant impact of these solar systems on urban environments, showcasing their benefits and the challenges they present.

Harnessing Unused Space for Sustainable Energy

Rooftop solar panels are revolutionizing how cities approach energy consumption and environmental sustainability. By utilizing the often-overlooked space on rooftops, these systems provide a practical solution for generating renewable energy in densely populated areas. The CBC article emphasizes that this approach not only makes efficient use of available space but also contributes to reducing a city's reliance on non-renewable energy sources.

The ability to generate clean energy directly from buildings helps decrease greenhouse gas emissions and, as scientists work to improve solar and wind power, promotes a shift towards a more sustainable energy model. Solar panels absorb sunlight and convert it into electricity, reducing the need for fossil fuels and lowering overall carbon footprints. This transition is crucial as cities grapple with rising temperatures and air pollution.

Economic and Environmental Advantages

The economic benefits of rooftop solar grids are considerable. For homeowners and businesses, installing solar panels can lead to substantial savings on electricity bills. The initial investment in solar technology is often balanced by long-term energy savings and financial incentives, such as tax credits or rebates, and evidence that solar is cheaper than grid electricity in Chinese cities further illustrates the trend toward affordability. According to the CBC report, these financial benefits make solar energy a compelling option for many urban residents and enterprises.

Environmentally, the advantages are equally compelling. Solar energy is a renewable and clean resource, and increasing the number of rooftop solar installations can play a pivotal role in meeting local and national renewable energy targets, as illustrated when New York met its solar goals early in a recent milestone. The reduction in greenhouse gas emissions from fossil fuel energy sources directly contributes to mitigating climate change and improving air quality.

Challenges in Widespread Adoption

Despite the clear benefits, the adoption of rooftop solar grids is not without its challenges. One of the primary hurdles is the upfront cost of installation. While prices for solar panels have decreased over time, the initial financial outlay remains a barrier for some property owners, and regions like Alberta have faced solar expansion challenges that highlight these constraints. Additionally, the effectiveness of solar panels can vary based on factors such as geographic location, roof orientation, and local weather patterns.

The CBC article also highlights the importance of supportive infrastructure and policies for the success of rooftop solar grids. Cities need to invest in modernizing their energy grids to accommodate the influx of solar-generated electricity, and, in the U.S., record clean energy purchases by Southeast cities have signaled growing institutional demand. Furthermore, policies and regulations must support solar adoption, including issues related to net metering, which allows solar panel owners to sell excess energy back to the grid.

Innovative Solutions and Future Prospects

The future of rooftop solar grids looks promising, thanks to ongoing technological advancements. Innovations in photovoltaic cells and energy storage solutions are expected to enhance the efficiency and affordability of solar systems. The development of smart grid technology and advanced energy management systems, including peer-to-peer energy sharing, will also play a critical role in integrating solar power into urban infrastructures.

The CBC report also mentions the rise of community solar projects as a significant development. These projects allow multiple households or businesses to share a single solar installation, making solar energy more accessible to those who may not have suitable rooftops for solar panels. This model expands the reach of solar technology and fosters greater community engagement in renewable energy initiatives.

Conclusion

Rooftop solar grids are emerging as a key element in the transition to sustainable urban energy systems. By leveraging unused rooftop space, cities can harness clean, renewable energy, reduce greenhouse gas emissions, and, as developers learn that more energy sources make better projects, achieve long-term economic savings. While there are challenges to overcome, such as initial costs and regulatory hurdles, the benefits of rooftop solar grids make them a crucial component of the future energy landscape. As technology advances and policies evolve, rooftop solar grids will play an increasingly vital role in shaping greener, more resilient urban environments.

 

Related News

View more

Demise of nuclear plant plans ‘devastating’ to Welsh economy, MP claims

Wylfa Nuclear Project Cancellation reflects Hitachi's withdrawal, pulling £16bn from North Wales, risking jobs, reshaping UK nuclear power plans as renewables grow and Chinese involvement rises amid shifting energy market policies.

 

Key Points

An indefinite halt to Hitachi's Wylfa Newydd nuclear plant, removing about £16bn investment and jobs from North Wales.

✅ Hitachi withdraws funding amid changing energy market costs

✅ Puts 400 local roles and up to 10,000 construction jobs at risk

✅ UK shifts toward renewables as nuclear project support stalls

 

Chris Ruane said Japanese firm Hitachi’s announcement this morning about the Wylfa project would take £16 billion of investment out of the region.

He said it was the latest in a list of energy projects which had been scrapped as he responded to a statement from business secretary Greg Clark.

Mr Ruane, the Labour member for the Vale of Clywd, said: “In his statement he said the Government are relying now more on renewables, can I put the North Wales picture to him; 1,500 wind turbines were planned off the coast of North Wales. They were removed, those plans were cancelled by the private sector.

“The tidal lagoons for Wales were key to the development of the Welsh economy – the Government itself pulled the support for the Swansea Bay tidal lagoon. That had a knock-on effect for the huge lagoon planned off the coast of North Wales.

“And now today we hear of the cancellation of a £16 billion investment in the North Wales economy. This will devastate the North Wales economy. The people of North Wales need to know that the Prime Minister is batting for them and batting for the UK.”

Mr Clark blamed the changing landscape of the energy market for today’s announcement, and said Wales has been a “substantial and proud leader” in renewable energy during the UK’s green industrial revolution over recent years.

But another Labour MP from North Wales, Albert Owen, of Ynys Mon, said the Wylfa plant’s cancellation in his constituency is putting 400 jobs at risk, as well as the “potential of 8-10,000 construction jobs”, as well as hundreds of operational jobs and 33 apprenticeships.

He asked Mr Clark: “Can I say straightly can we work together to keep this project alive, to ensure that we create the momentum so it can be ready for a future developer or this developer with the right mechanism?”

The minister replied that he and his officials would “work together in a completely open-book way on the options” to try and salvage the project.

But in the Lords, Labour former security minister Lord West of Spithead said the UK’s nuclear industry was in crisis, noting that Europe is losing nuclear power as well.

“In the 1950s our nation led the world in nuclear power generation and decisions by successive governments, of all hues, have got us in the position today where we cannot even construct a large civil nuclear reaction,” he told peers at question time.

Lord West asked: “Are we content that now the only player seems to be Chinese and that by 2035… we are happy for the Chinese to control one third of the energy supply of our nation?”

Business, Energy and Industrial Strategy minister Lord Henley said the Government had hoped for a better announcement from Hitachi but that was not the case.

He said costs in the nuclear sector were rising, amid setbacks at Hinkley Point C, while costs for many renewables were coming down and this was one of the reasons for the problem.

Tory former energy secretary Lord Howell of Guildford said the Chinese were in “pole position” for the rebuilding and replacement “of our nuclear fleet” and this would have a major impact on UK energy policy and plans to meet net zero targets in the 2030s.

Plaid Cymru’s Lord Wigley warned that putting the Wylfa Newydd on indefinite hold would cause economic planning blight in north-west Wales and urged the Government to raise the level of support allocated to the region.

Lord Henley acknowledged the announcement was not welcome but added: “We remain committed to nuclear power. We will look to see what we can do. We still have a great deal of expertise in this country and we can work on that.”

 

Related News

View more

Nelson, B.C. Gets Charged Up on a New EV Fast-Charging Station

Nelson DC Fast-Charging EV Station delivers 50-kilowatt DCFC service at the community complex, expanding EV infrastructure in British Columbia with FortisBC, faster than Level 2 chargers, supporting clean transportation, range confidence, and highway corridor travel.

 

Key Points

A 50 kW public DC fast charger in Nelson, BC, run by FortisBC, providing rapid EV charging at the community complex.

✅ 50 kW DCFC cuts charge time to about 30 minutes

✅ $9 per half hour session; convenient downtown location

✅ Funded by NRCan, BC government, and FortisBC

 

FortisBC and the City of Nelson celebrated the opening of Nelson's first publicly available direct current fast-charging (DCFC) electric vehicle (EV) station on Friday.

"Adopting EV's is one of many ways for individuals to reduce carbon emissions," said Mayor John Dooley, City of Nelson. "We hope that the added convenience of this fast-charging station helps grow EV adoption among our community, and we appreciate the support from FortisBC, the province and the federal government."

The new station, located at the Nelson and District Community Complex, provides a convenient and faster charge option right in the heart of the commercial district and makes Nelson more accessible for both local and out-of-town EV drivers. The 50-kilowatt station is expected to bring a compact EV from zero to 80 per cent charged in about a half an hour, as compared to the four Level-2 charging stations located in downtown Nelson that require from three to four hours. The cost for a half hour charge at the new DC fast-charging station is $9 per half hour.

This fast-charging station was made possible through a partnership between FortisBC, the City of Nelson, Nelson Hydro, the Province of British Columbia and Natural Resources Canada. As part of the partnership, the City of Nelson is providing the location and FortisBC will own and manage the station.

This is the latest of 12 fast-charging stations FortisBC has built over the last year with support from municipalities and all levels of government, and adds to the five FortisBC-owned Kootenay stations that were opened as part of the accelerate Kootenays initiative in 2018.

All 12 stations were 50 per cent funded by Natural Resources Canada, 25 per cent by BC Ministry of Energy, Mines and Petroleum Resources and the remaining 25 per cent by FortisBC. The funding is provided by Natural Resources Canada's Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative, which aims to establish a coast-to-coast network of fast-chargers along the national highway system, natural gas refueling stations along key freight corridors and hydrogen refueling stations in major metropolitan areas. It is part of the Government of Canada's more than $180-billion Investing in Canada infrastructure plan. The Government of British Columbia is also contributing $300,000 towards the fast-chargers through its Clean Energy Vehicle Public Fast Charging Program.

This station brings the total DCFC chargers FortisBC owns and operates to 17 stations across 14 communities in the southern interior. FortisBC continues to look for opportunities to expand this network as part of its 30BY30 goal of reducing emissions from its customers by 30 per cent by 2030. For more information about the FortisBC electric vehicle fast-charging network, visit: fortisbc.com/electricvehicle.

"Electric vehicles play a key role in building a cleaner future. We are pleased to work with partners like FortisBC and the City of Nelson to give Canadians greener options to drive where they need to go, " said The Honourable Seamus O'Regan, Canada's Minister of Natural Resources.

"Nelson's first public fast-charging EV station increases EV infrastructure in the city, making it easier than ever to make the switch to cleaner transportation. Along with a range of rebates and financial incentives available to EV drivers, it is now more convenient and affordable to go electric and this station is a welcome addition to our EV charging infrastructure," said Michelle Mungall, BC's Minister of Jobs, Economic Development and Competitiveness, and MLA for Nelson Creston.

"Building the necessary DC fast-charging infrastructure, such as the Lillooet fast-charging site in British Columbia, close to highways and local amenities where drivers need them most is a critical step in growing electric vehicle adoption. Collaborations like this are proving to be an effective way to achieve this, and I'd like to thank all the program partners for their commitment in opening this important station, " said Mark Warren, Director of Business Innovation, FortisBC.

 

Related News

View more

Hydro wants B.C. residents to pay an extra $2 a month for electricity

BC Hydro Rate Increase proposes a 2.3% hike from April, with BCUC review, aligning below inflation and funding clean energy, electrification, and grid upgrades across British Columbia while keeping electricity prices among North America's lowest.

 

Key Points

A proposed 2.3% BC Hydro hike from April, under BCUC review, funds clean energy and keeps average bills below inflation.

✅ Adds about $2 per month to average residential bill

✅ Sixth straight increase below inflation since 2018

✅ Supports renewable projects and grid modernization

 

The British Columbia government says the province’s Crown power utility is applying for a 2.3-per-cent rate increase starting in April, with higher BC Hydro rates previously outlined, adding about $2 a month to the average residential bill.

A statement from the Energy Ministry says it’s the sixth year in a row that BC Hydro has applied for an increase below the rate of inflation, similar to a 3 per cent rise noted in a separate approval, which still trailed inflation.

It says rates are currently 15.6 per cent lower than the cumulative rate of inflation over the last seven years, starting in 2017-2018, with a provincial rate freeze among past measures, and 12.4 per cent lower than the 10-year rates plan established by the previous government in 2013.

The ministry says the “modest” rate increase application comes after consideration of a variety of options and their long-term impacts, including scenarios like a 3.75% two-year path evaluated alongside others, and the B.C. Utilities Commission is expected to decide on the plan by the end of February.

Chris O’Riley, president of BC Hydro, says the rates application would keep electricity costs in the province among the lowest in North America, even as a BC Hydro fund surplus prompted calls for changes, while supporting investments in clean energy to power vehicles, homes and businesses.

Energy Minister Josie Osborne says it’s more important than ever to keep electricity bills down, especially as Ontario hydro rates increase in a separate jurisdiction, as the cost of living rises at rates that are unsustainable for many.

“Affordable, stable BC Hydro rates are good for people, businesses and climate as we work together to power our growing economy with renewable energy instead of fossil fuels,” Osborne says in a statement issued Monday.

Earlier this year, the ministry said BC Hydro provided $315 million in cost-of-living bill credits, while in another province Manitoba Hydro scaled back an increase to ease pressure, to families and small businesses in the province, including those who receive their electricity service from FortisBC or a municipal utility.

 

Related News

View more

As New Zealand gets serious about climate change, can electricity replace fossil fuels in time?

New Zealand Energy Transition will electrify transport and industry with renewables, grid-scale solar, wind farms, geothermal, batteries, demand response, pumped hydro, and transmission upgrades to manage dry-year risk and winter peak loads.

 

Key Points

A shift to renewables and smart demand to decarbonise transport and industry while ensuring reliable, affordable power.

✅ Electrifies transport and industrial heat with renewables

✅ Uses demand response, batteries, and pumped hydro for resilience

✅ Targets 99%+ renewable supply, managing dry-year and peak loads

 

As fossil fuels are phased out over the coming decades, the Climate Change Commission (CCC) suggests electricity will take up much of the slack, aligning with the vision of a sustainable electric planet powering our vehicle fleet and replacing coal and gas in industrial processes.

But can the electricity system really provide for this increased load where and when it is needed? The answer is “yes”, with some caveats.

Our research examines climate change impacts on the New Zealand energy system. It shows we’ll need to pay close attention to demand as well as supply. And we’ll have to factor in the impacts of climate change when we plan for growth in the energy sector.

 

Demand for electricity to grow
While electricity use has not increased in NZ in the past decade, many agencies project steeply rising demand in coming years. This is partly due to both increasing population and gross domestic product, but mostly due to the anticipated electrification of transport and industry, which could result in a doubling of demand by mid-century.

It’s hard to get a sense of the scale of the new generation required, but if wind was the sole technology employed to meet demand by 2050, between 10 and 60 new wind farms would be needed nationwide.

Of course, we won’t only build wind farms, as renewables are coming on strong and grid-scale solar, rooftop solar, new geothermal, some new small hydro plant and possibly tidal and wave power will all have a part to play.

 

Managing the demand
As well as providing more electricity supply, demand management and batteries will also be important. Our modelling shows peak demand (which usually occurs when everyone turns on their heaters and ovens at 6pm in winter) could be up to 40% higher by 2050 than it is now.

But meeting this daily period of high demand could see expensive plant sitting idle for much of the time (with the last 25% of generation capacity only used about 10% of the time).

This is particularly a problem in a renewable electricity system when the hydro lakes are dry, as hydro is one of the few renewable electricity sources that can be stored during the day (as water behind the dam) and used over the evening peak (by generating with that stored water).

Demand response will therefore be needed. For example, this might involve an industrial plant turning off when there is too much load on the electricity grid.

 

But by 2050, a significant number of households will also need smart appliances and meters that automatically use cheaper electricity at non-peak times. For example, washing machines and electric car chargers could run automatically at 2am, rather than 6pm when demand is high.

Our modelling shows a well set up demand response system could mitigate dry-year risk (when hydro lakes are low on water) in coming decades, where currently gas and coal generation is often used.

Instead of (or as well as) having demand response and battery systems to combat dry-year risk, a pumped storage system could be built. This is where water is pumped uphill when hydro lake inflows are plentiful, and used to generate electricity during dry periods.

The NZ Battery project is currently considering the potential for this in New Zealand, and debates such as whether we would use Site C's electricity offer relevant lessons.

 

Almost (but not quite) 100% renewable
Dry-year risk would be greatly reduced and there would be “greater greenhouse gas emissions savings” if the Interim Climate Change Committee’s (ICCC) 2019 recommendation to aim for 99% renewable electricity was adopted, rather than aiming for 100%.

A small amount of gas-peaking plant would therefore be retained. The ICCC said going from 99% to 100% renewable electricity by overbuilding would only avoid a very small amount of carbon emissions, at a very high cost.

Our modelling supports this view. The CCC’s draft advice on the issue also makes the point that, although 100% renewable electricity is the “desired end point”, timing is important to enable a smooth transition.

Despite these views, Energy Minister Megan Woods has said the government will be keeping the target of a 100% renewable electricity sector by 2030.

 

Impacts of climate change
In future, the electricity system will have to respond to changing climate patterns as well, becoming resilient to climate risks over time.

The National Institute of Water and Atmospheric Research predicts winds will increase in the South Island and decrease in the far north in coming decades.

Inflows to the biggest hydro lakes will get wetter (more rain in their headwaters), and their seasonality will change due to changes in the amount of snow in these catchments.

Our modelling shows the electricity system can adapt to those changing conditions. One good news story (unless you’re a skier) is that warmer temperatures will mean less snow storage at lower elevations, and therefore higher lake inflows in the big hydro catchments in winter, leading to a better match between times of high electricity demand and higher inflows.

 

The price is right
The modelling also shows the cost of generating electricity is not likely to increase, because the price of building new sources of renewable energy continues to fall globally.

Because the cost of building new renewables is now cheaper than non-renewables (such as coal-fired plants), investing in carbon-free electricity is increasingly compelling, and renewables are more likely to be built to meet new demand in the near term.

While New Zealand’s electricity system can enable the rapid decarbonisation of (at least) our transport and industrial heat sectors, international efforts like cleaning up Canada's electricity underline the need for certainty so the electricity industry can start building to meet demand everywhere.

Bipartisan cooperation at government level will be important to encourage significant investment in generation and transmission projects with long lead times and life expectancies, as analyses of climate policy and grid implications underscore in comparable markets.

Infrastructure and markets are needed to support demand response uptake, as well as certainty around the Tiwai exit in 2024 and whether pumped storage is likely to be built.

Our electricity system can support the rapid decarbonisation needed if New Zealand is to do its fair share globally to tackle climate change.

But sound planning, firm decisions and a supportive and relatively stable regulatory framework are all required before shovels can hit the ground.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified