Transitioning ground support vehicle fleets to electric

By Cygnus Business Media


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Electrification of ground support vehicles and equipment is part of a global effort toward cleaner airport transportation. There has been much discussion about the benefits.

Airports and airlines save significantly in operating costs by implementing green transportation because it is far less expensive in the long term, according to some industry estimates. Naturally, the environmental benefit is immense, as fuel consumption is reduced and air quality is improved, especially in indoor facilities. With the growing trend toward electric equipment, the focus is now on transitioning fleets.

How do you begin to approach this transformation? How can you justify and sustain the expense? The good news is, you can ease into electrification and not get caught short when legislation begins to demand it. The even better news is, your shift to electrically powered GSE will pay for itself within a few yearsÂ… and can then start producing significant operational savings.

If you are looking to board this movement early, you will need solid support from reliable experts.

You might get some guidance from the FAAÂ’s Office of Airports Community and Environmental Needs Division or state and local based nonprofits such as the New York Power Authority, for example. It is also beneficial to cooperate with a supplier that specializes in electric vehicle systems.

It is still early in the process of electrification. There are approximately 72,000 GSE units currently in use in the United States, a mere 10 percent of which are electric; but the opportunities to go electric are everywhere. From tugs, tractors, baggage handlers, cargo loaders, belt-loaders, personnel carriers to mobile stairways, ground power units and free-standing generators, all support equipment and infrastructure will ultimately be involved in the changeover.

Conversions of combustion sources to clean electric vehicle (EV) technologies will have a major positive impact on the environment and the bottom line. As mentioned in the March 2008 edition of Ground Support Worldwide, research conducted by the New York Power Authority (NYPA) showed that a single internal combustion (IC) powered tug emits 54 tons of greenhouse gases, burning 3,248 gallons of diesel per year. And, according to John Markowitz, electric transportation engineer for NYPA, electric GSE are 90 percent cleaner and 75 percent less expensive to operate — even after taking power plant emissions into account.

Replacing existing IC-powered GSE with new EVs is best done as equipment is decommissioned. In the meantime, it is very feasible to retrofit. For example, Sacramento International Airport instituted a program to deploy 54 alternative fuel vehicles of various types. Among these vehicles were 20 belt loaders converted from gasoline to electric power, saving the airlines that owned them $10,000 per vehicle compared to purchasing new. EPRI offers a tool to assess the cost effectiveness of retrofitting from diesel to electric, based on your application. This tool can be found at http://avt.inel.gov/groundsupport.shtml.

Using the tug as an example, all the working components of an IC system can be replaced by electric. Thus, the vehicle continues to perform for its full life-span, while beginning to deliver real benefits in operational and cost efficiency, as well as the environmental benefits.

The benefits of the electric “evolution” are many. Before assessing the global impact, think about the advantages to your operation:

• Maintenance, repairs and equipment downtime are minimized, because AC motor technology is more efficient and produces less wear and tear. There is less heat and vibration generated in comparison to IC systems, and fewer moveable parts. Since electric motors do not “idle,” the hours on the hour meter are lower. They only reflect the actual work the vehicle did. Many diesel GSE spend a lot of time idling while staff load bags. In cold weather they are often left to idle for extended periods. Maintenance is based on hour meter readings.

• The ease of diagnostics is exceptional. Any maintenance issues are immediately flagged; there is no need to dismantle equipment and search manually for the source of a problem.

• The overall cost of operating an electric fleet is lower than IC. A recent study in Industrial & Utility Vehicle (IUV) Magazine of comparable industrial equipment utilized in similar circumstances to airport conditions demonstrated a break-even point of just two-and-a-quarter years. At that point, the switch to electric technology not only paid for itself, but began to generate positive cash flow versus projected fuel costs. This payback period varies depending on fuel prices, lead prices of batteries, whether rapid chargers are required, and the cost of electricity.

A study by Jeff Bowles published in IUV Sept/Oct 2008 of industrial trucks in similar operating environments to GSE, demonstrates the cost advantages of EVs. Total initial investments for EV trucks may be higher than IC, but the long-term costs for EVs are lower. Total yearly hourly operating costs per truck, per hour, were calculated to be significantly less, at $1.48 for EVs, compared to $4.93 for IC powered vehicles.

The zero emissions aspect of electrification creates measurable indoor air quality improvements. IC engines produce carbon monoxide (CO), which can accumulate in indoor areas and can cause serious health problems, including death. While it is too early to quantify the savings in productivity and paid employee sick days, it is safe to assume this is another area of significant cost reduction with important human resources ramifications.

Operators will experience these advantages while achieving equal or better performance from their electric equipment. Of course, there is the consideration of the reduction of fossil fuel consumption for global environmental benefits.

Careful planning is needed to meet the very different requirements of an electric fleet. The airport facilities need to plan for new infrastructure requirements, such as power lines for charging stations, traffic routing to and from chargers, etc. Maintenance cycles and charging methodologies must be considered when planning for the electric fleet.

To avoid equipment downtime, “opportunity-charging” methods coupled with “fast-charge technology” is the solution. While a standard charge profile is 8-12 hours, fast chargers can put back 80 percent of charge in two hours or less. In fact, this rapid-charge profile is a requirement of the FAA’s Electric Aircraft Push-Back Tractor Tech specification. Rapid-charge power stations need to be logistically placed so equipment operators can conveniently plug in whenever the vehicle is not in use.

To determine the best strategic locations, GSE planners need to consider:

• Airport configuration and regulations

• Traffic patterns to and from stations

• Sufficient power supply (In airports without sufficient power a technology called bridge power sharing is used. The jetway used to board passengers has a large electric motor that is only used about two minutes per hour. That electrical circuit can support rapid battery chargers when the jetway motor is not being used. This technology also reduces installation cost significantly since wire and conduit runs are shorter.)

• Appropriate operational room

In the meantime, careful planning and training will optimize both vehicle and driver productivity. The payback is significant. In addition, the cleaner-running GSE operation can collect Air Quality Credits from the airport authorities.

Service fleet operators will need training on:

• Differences in driving and operating

• Maintenance, trouble-shooting and diagnostics

• Charging methods and habits

• Instruments, controls, etc.

• Air Quality Credits

• New mindset: embracing change

No getting around it — electrification encompasses major initiatives, such as the removal of gas tanks. Government support is available and more incentives can be anticipated.

Current FAA initiatives include:

• VALE (Voluntary Airport Low-Emission) Program, begun 2005, is focused on lowering ground emissions at commercial service airports in designated air quality non-attainment areas.

• ARB (California Air Resources Board) programs include Public Interest Energy Research (PIER), which supports R&D via contracts and grants for energy technology and related scientific activities.

While we are still in the infancy of this initiative, there has been nearly a decade of progress in North America. One of the first markers of the evolution was an electric ground support equipment roundtable held in 2000 by the Electric Power Research Institute in Sacramento, California. In fact, the state of California continues to be a major force in the changeover. As of 2009, it is requiring forklift fleet owners to maintain specified average emission levels per truck. It is logical to expect other states to follow suit.

The switchover to electric GSE is clearly underway and here to stay. Many voluntary incentives are available from state governments and the FAA. Starting the switch to electric technology for GSE demonstrates the airportÂ’s commitment to a cleaner environment. ItÂ’s good public relations and good business, too.

Curtis Instruments is a manufacturer of motor control, instrumentation and power conversion products for electric vehicles. The company was established in 1960 and serves the worldwide vehicle OEM market.

Southwest Airlines: in the past seven years, saved millions of dollars in a 14 million gallon fuel reduction achieved by switching gate procedures to electric power.

Continental Airlines: met the 2007 Emission Reduction goal of the Texas Commission on Environmental Quality in 2005, gaining Air Quality Credits and enhancing their brand image in the very competitive consumer marketplace.

American Airlines: an EPRI-organized pilot project at Detroit Metro Airport electrified 132 GSE in 2000 and is on the way to completing the entire fleet changeover of nearly 1,100 vehicles.

Related News

Coal demand dropped in Europe over winter despite energy crisis

EU Winter Energy Mix 2022-2023 shows renewables, wind, solar, and hydro overtaking coal and gas, as demand fell amid high prices; Ember and IEA confirm lower emissions across Europe during the energy crisis.

 

Key Points

It describes Europe's winter power mix: reduced coal and gas, and record wind, solar, and hydro output.

✅ Coal generation fell 11% YoY; gas output declined even more.

✅ Renewables supplied 40%: wind, solar, and hydro outpaced fossil fuels.

✅ Ember and IEA confirm trends; mild winter tempered demand.

 

The EU burned less coal this winter during the energy crisis than in previous years, according to an analysis, quashing fears that consumption of the most polluting fossil fuel would soar as countries scrambled to find substitutes for lost supplies of Russian gas.

The study from energy think-tank Ember shows that between October 2022 and March 2023 coal generation fell 27 terawatt hours, or almost 11 per cent year on year, while gas generation fell 38 terawatt hours, as renewables crowded out gas and consumers cut electricity consumption in response to soaring prices.

Renewable energy supplies also rose, with combined wind and solar power and hydroelectric output outstripping fossil fuel generation for the first time, providing 40 per cent of all electricity supplies. The Financial Times checked Ember’s findings with the International Energy Agency, which said they broadly matched its own preliminary analysis of Europe’s electricity generation over the winter.

The study demonstrates that fears of a steep rebound in coal usage in Europe’s power mix were overstated, despite the continent’s worst energy crisis in 40 years following Russia’s full-scale invasion of Ukraine, even as stunted hydro and nuclear output in parts of Europe posed challenges.

While Russia slashed gas supplies to Europe and succeeded in boosting energy prices for consumers to record levels, the push by governments to rejuvenate old coal plants, including Germany's coal generation, to ensure the lights stayed on ultimately did not lead to increased consumption.

“With Europe successfully on the other side of this winter and major supply disruptions avoided, it is clear the threatened coal comeback did not materialise,” analysts at Ember said in the report.

“With fossil fuel generation down, EU power sector emissions during winter were the lowest they have ever been.”

Ember cautioned, however, that Europe had been assisted by a mild winter that helped cut electricity demand for heating and there was no guarantee of such weather next winter. Companies and households had also endured a lot of pain as a result of the higher prices that had led them to cut consumption, even though in some periods, such as the latest lockdown, power demand held firm in parts of Europe.

Total electricity consumption between October and March declined 94 terawatt hours, or 7 per cent, compared with the same period in winter 2021/22, continuing post-Covid transition dynamics across Europe.

“For a lot of people this winter was really hard with electricity prices that were extraordinarily high and we shouldn’t lose sight of that,” said Ember analyst Harriet Fox.

 

Related News

View more

Adani Electricity's Power Supply Cuts in Mumbai

Adani Electricity Mumbai Power Cuts follow non-payment rules, reflecting billing disputes, regulatory compliance, consumer impact, and affordability concerns, while prompting mitigation measures like flexible payment plans, assistance programs, and clearer communication for residents.

 

Key Points

AEML cutoffs for unpaid bills per rules, raising affordability worries, billing issues, and calls for flexible aid.

✅ Triggered by unpaid bills under regulatory guidelines

✅ Affordability and billing transparency concerns raised

✅ Mitigation: flexible plans, aid for low-income users

 

Adani Electricity Mumbai Limited (AEML) recently made headlines by cutting power supply to around 100 homes in Mumbai, sparking discussions about the reasons behind this action and its implications for consumers, especially as reports like the Northeast D.C. outage continue to surface.

Background of the Incident

The power supply disconnections by AEML were reportedly due to non-payment of electricity bills by the affected households. This action, although necessary under AEML's policies and in accordance with regulatory guidelines, has raised concerns about the impact on residents, particularly during challenging economic times when pandemic electricity shut-offs highlighted energy insecurity.

Reasons for Non-Payment

Non-payment of electricity bills can stem from various reasons, including financial hardships, disputes over billing accuracy, or unforeseen circumstances affecting household finances. In Mumbai, where the cost of living is high, utility bills constitute a significant portion of monthly expenses for many households, mirroring trends of rising electricity bills seen elsewhere.

Regulatory and Legal Framework

AEML's decision to disconnect power supply aligns with regulatory provisions governing utility services, which may include emergency disconnection moratoriums in other jurisdictions. Utility companies are mandated to enforce bill payments to maintain operational sustainability and ensure fair distribution of resources among consumers.

Consumer Impact and Response

The power disconnections have prompted reactions from affected residents and consumer advocacy groups, highlighting issues related to affordability, transparency in billing practices, and the need for supportive measures during times of economic distress amid heat-related electricity struggles that pressure vulnerable households.

Mitigation Measures

In response to such incidents, utility companies and regulatory authorities often implement mitigation measures. These may include flexible payment options, financial assistance programs for low-income households, and enhanced communication about billing procedures and payment deadlines, along with policy scrutiny such as utility spending oversight to curb unnecessary costs.

Future Considerations

As cities like Mumbai continue to grow and face challenges related to urbanization and infrastructure development, ensuring reliable and affordable access to essential services like electricity, including efforts to prevent summer power outages, remains a priority. Balancing the operational needs of utility providers with consumer welfare concerns requires ongoing dialogue and proactive measures from all stakeholders.

Conclusion

The power supply cuts by Adani Electricity in Mumbai underscore the complexities of managing utility services in urban centers. While necessary for financial viability and regulatory compliance, such actions also highlight broader issues of affordability and consumer protection. Moving forward, collaborative efforts between utility companies, regulatory authorities, and community stakeholders are essential in addressing these challenges and ensuring equitable access to essential services for all residents.

 

Related News

View more

Time running out for Ontario to formally request Pickering nuclear power station extension

Pickering Nuclear Plant Extension faces CNSC approval as Ontario Power Generation pursues license renewal before the June 30, 2023 deadline, amid a 2025 capacity crunch and grid reliability risks from decommissioning and overlapping nuclear outages.

 

Key Points

A plan to run Pickering past 2024 to Sept 2026, pending CNSC license renewal to address Ontario's 2025 capacity gap.

✅ CNSC approval needed for operation beyond Dec 31, 2024

✅ OPG aims to file by June 30, 2023 deadline

✅ Extension targets grid reliability through 2026

 

Ontario’s electricity generator has yet to file an official application to extend the life of the Pickering nuclear power plant, more than eight months after the Ford government announced a plan to continue operating Pickering for longer.

As the province faces an electricity shortfall in 2025 and beyond, the Ford government scrambled to prolong the Pickering power plant until September 2026, in order to guarantee a steady supply of power as the province experiences a rise in demand and shutdowns at other nuclear power plants.

The life extension may come down to the wire, however, as the Canadian Nuclear Safety Commission (CNSC), the federal regulator tasked with approving or denying the extension, tells Global News the province has yet to file key paperwork.

The information is required for the application, including materials related to the proposed Pickering B refurbishment, and the government now has a month before the deadline runs out.

“The Commission requires that Ontario Power Generation submit specific information by June 30, 2023, if it intends to operate the Pickering Nuclear Generating Station beyond December 31, 2024,” the CNSC told Global News in a statement. “The Commission Registry has not yet received an application from Ontario Power Generation.”

If Ontario doesn’t receive the green light, the power plant which currently is responsible for 14 per cent of the province’s energy grid will be decommissioned in 2025, leaving the province with a significant electricity supply gap if replacement sources are not secured.

For its part, the Ford government doesn’t seem concerned about the impending timeline, even though the station was slated to close as planned, suggesting the Crown corporation responsible for the application will get it in on time.

“OPG is on track to submit their application before the end of June and has already started to submit supporting materials as part of the regulatory process toward clean power goals,” a spokesperson for energy minister Todd Smith said.

 

Related News

View more

WEC Energy Group to buy 80% stake in Illinois wind farm for $345 million

WEC Energy Blooming Grove Investment underscores Midwest renewable energy growth, with Invenergy, GE turbines, and 250 MW wind power capacity, tax credits, PPAs, and utility-scale generation supplying corporate offtakers via long-term contracts.

 

Key Points

It is WEC Energy's $345M purchase of an 80% stake in Invenergy's 250 MW Blooming Grove wind farm in Illinois.

✅ 94 GE turbines; 250 MW utility-scale wind capacity

✅ Output contracted to two multinational offtakers

✅ Eligible for 100% bonus depreciation and wind tax credits

 

WEC Energy Group, the parent company of We Energies, is buying an 80% stake in a wind farm, as seen with projects like Enel's 450 MW wind farm coming online, in McLean County, Illinois, for $345 million.

The wind farm, known as the Blooming Grove Wind Farm, is being developed by Invenergy, which recently completed the largest North American wind build with GE partners, a company based in Chicago that develops wind, solar and other power projects. WEC Energy has invested in several wind farms developed by Invenergy.

With the agreement announced Monday, WEC Energy will have invested more than $1.2 billion in wind farms in the Midwest, echoing heartland investment growth across the region. The power from the wind farms is sold to other utilities or companies, as federal initiatives like DOE wind awards continue to support innovation, and the projects are separate from the investments made by WEC Energy's regulated utilities, such as We Energies, in wind power.

The project, which will consist of 94 wind turbines from General Electric, is expected to be completed this year, similar to recent project operations in the sector, and will have a capacity of 250 megawatts, WEC said in a news release.

Affiliates of two undisclosed multinational companies akin to EDF's offshore investment activity have contracted to take all of the wind farm's output.

The investment is expected to be eligible for 100% bonus depreciation and, as wind economics help illustrate key trends, the tax credits available for wind projects, WEC Energy said.

 

Related News

View more

Rising Solar and Wind Curtailments in California

California Renewable Energy Curtailment highlights grid congestion, midday solar peaks, limited battery storage, and market constraints, with WEIM participation and demand response programs proposed to balance supply-demand and reduce wasted solar and wind generation.

 

Key Points

It is the deliberate reduction of solar and wind output when grid limits or low demand prevent full integration.

✅ Grid congestion restricts transmission capacity

✅ Midday solar peaks exceed demand, causing surplus

✅ Storage, WEIM, and demand response mitigate curtailment

 

California has long been a leader in renewable energy adoption, achieving a near-100% renewable milestone in recent years, particularly in solar and wind power. However, as the state continues to expand its renewable energy capacity, it faces a growing challenge: the curtailment of excess solar and wind energy. Curtailment refers to the deliberate reduction of power output from renewable sources when the supply exceeds demand or when the grid cannot accommodate the additional electricity.

Increasing Curtailment Trends

Recent data from the U.S. Energy Information Administration (EIA) highlights a concerning upward trend in curtailments in California. In 2024, the state curtailed a total of 3,102 gigawatt-hours (GWh) of electricity generated from solar and wind sources, surpassing the 2023 total of 2,660 GWh. This represents a 32.4% increase from the previous year. Specifically, 2,892 GWh were from solar, and 210 GWh were from wind, marking increases of 31.2% and 51.1%, respectively, compared to the first nine months of 2023.

Causes of Increased Curtailment

Several factors contribute to the rising levels of curtailment:

  1. Grid Congestion: California's transmission infrastructure has struggled to keep pace with the rapid growth of renewable energy sources. This congestion limits the ability to transport electricity from generation sites to demand centers, leading to curtailment.

  2. Midday Solar Peaks: Amid California's solar boom, solar energy production typically peaks during the midday when electricity demand is lower. This mismatch between supply and demand results in excess energy that cannot be utilized, necessitating curtailment.

  3. Limited Energy Storage: While battery storage technologies are advancing, California's current storage capacity is insufficient to absorb and store excess renewable energy for later use. This limitation exacerbates curtailment issues.

  4. Regulatory and Market Constraints: Existing market structures and regulatory frameworks may not fully accommodate the rapid influx of renewable energy, leading to inefficiencies and increased curtailment.

Economic and Environmental Implications

Curtailment has significant economic and environmental consequences. For renewable energy producers, curtailed energy represents lost revenue and undermines the economic viability of new projects. Environmentally, curtailment means that clean, renewable energy is wasted, and the grid may rely more heavily on fossil fuels to meet demand, counteracting the benefits of renewable energy adoption.

Mitigation Strategies

To address the rising curtailment levels, California is exploring several strategies aligned with broader decarbonization goals across the U.S.:

  • Grid Modernization: Investing in and upgrading transmission infrastructure to alleviate congestion and improve the integration of renewable energy sources.

  • Energy Storage Expansion: Increasing the deployment of battery storage systems to store excess energy during peak production times and release it during periods of high demand.

  • Market Reforms: Participating in the Western Energy Imbalance Market (WEIM), a real-time energy market that allows for the balancing of supply and demand across a broader region, helping to reduce curtailment.

  • Demand Response Programs: Implementing programs that encourage consumers to adjust their energy usage patterns, such as shifting electricity use to times when renewable energy is abundant.

Looking Ahead

As California continues to expand its renewable energy capacity, addressing curtailment will be crucial to ensuring the effectiveness and sustainability of its energy transition. By investing in grid infrastructure, energy storage, and market reforms, the state can reduce curtailment levels and make better use of its renewable energy resources, while managing challenges like wildfire smoke impacts on solar output. These efforts will not only enhance the economic viability of renewable energy projects but also contribute to California's 100% clean energy targets by maximizing the use of clean energy and reducing reliance on fossil fuels.

While California's renewable energy sector faces challenges related to curtailment, proactive measures and strategic investments can mitigate these issues, as scientists continue to improve solar and wind power through innovation, paving the way for a more sustainable and efficient energy future.

 

Related News

View more

UK electricity and gas networks making ‘unjustified’ profits

UK Energy Network Profits are under scrutiny as Ofgem price controls, Citizens Advice claims, and National Grid margins spark debate over monopolies, allowed returns, consumer bills, rebates, and future investment under tougher regulation.

 

Key Points

UK Energy Network Profits are returns set by Ofgem for regulated grid operators, shaping consumer bills and investment

✅ Ofgem sets allowed returns for monopoly networks via price controls

✅ Dispute over interest rates, bond yields, and risk premiums

✅ Reforms proposed: shorter controls, tougher investor incentives

 

Companies that run Britain’s electricity and gas networks, including National Grid, are making “eye-watering” profits at the expense of households, according to a well-known consumer group.

Citizens Advice believes £7.5bn in “unjustified” profits should be returned to consumers who pay for network costs via their electricity and gas bills, with parallels seen in a deferred BC Hydro costs report abroad, although its figures have been contested by the energy industry and regulator.

Ownership of electricity and gas networks came under the spotlight in the run-up to June’s general election, after the Labour party said in its manifesto it would bring both national and regional grid infrastructure to back into public ownership, amid wider debates about grid privatization concerns elsewhere, over time.

Electricity sector privatisation began in 1990 and the gas industry was privatised in 1986. Energy network companies — which own and operate the cables and wires that help deliver electricity and gas to homes and businesses — are in effect monopolies that are regulated by Ofgem. Ofgem evaluates what their costs, including the cost of capital to finance investments, might be over an eight-year “price control” period, similar to determinations like the OEB decision on Hydro One rates in Ontario, Canada. Citizens Advice claims many of the regulator’s calculations for the most recent price control went “considerably in networks’ financial favour”.

It believes assumptions Ofgem made about factors such as the future path of interest rates and returns on government bonds were too generous, with international contrasts like power theft challenges in India illustrating different risk contexts, as was the regulator’s assessment of the risk associated with operating a network company. 

These “generous” assumptions will lead to network companies making average profit margins of 19 per cent and an average return of 10 per cent for their investors at the expense of consumers, Citizens Advice claims in a report published on Wednesday, which recommends a shorter price control period to allow for more accurate forecasting.

“Decisions made by Ofgem have allowed gas and electricity network companies to make sky-high profits that we’ve found are not justified by their performance,” said Gillian Guy, chief executive of Citizens Advice. Ofgem defended its regulatory regime, saying it helped to cut costs, improve reliability and customer satisfaction. 

“Ofgem has already cut costs to consumers by 6 per cent in the current price control and secured a rebate of over £4.5bn from network companies and is engaging with the industry to deliver further savings, with some regions seeing Ontario electricity rate reductions for businesses as well,” said Dermot Nolan, chief executive of the energy regulator.

Mr Nolan insisted the next price controls would be “tougher for investors”. The current price controls for the gas and electricity transmission networks, plus gas distribution, run until 2021 and until 2023 for local electricity distribution networks.

“While we don’t agree with its modelling and the figures it has produced, the Citizens Advice report raises some important issues about network regulation which will be addressed in the next control,” Mr Nolan said.

The Energy Networks Association, a trade body, refuted the claims of Citizens Advice, insisting that costs had fallen by 17 per cent in real terms since privatisation. The current regulatory framework was established after a public consultation, it said, adding that today’s report repeated several old claims that had previously been rejected by the Competition and Markets Authority.

“Our energy networks are among the most reliable and lowest cost in the world and their performance has never been better. In the next six years energy network companies are forecasted to deliver £45bn of investment in the UK economy,” a spokesman for the networks association added. National Grid said that since 2013 it had generated savings of £460m for bill payers.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.