Energy corridor moratorium lifted

By CBC News


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The Maine legislature has lifted a moratorium on the development of energy corridor projects through the state.

The moratorium was put in place last year in part to pressure Canada into allowing tankers carrying liquefied natural gas, known as LNG, through Canadian waters on the way to the Maine coast near Calais.

We understand that Canada may have been offended by Maines moratorium, said Senator Barry Hobbins, chairman of the joint standing committee on utilities and energy.

The decision to lift the moratorium is a goodwill gesture toward Canada and Canadian industries that want to transport electricity or products such as natural gas through Maine to large American markets, Hobbins said.

He said he hopes Canada will reconsider its opposition to the passage of LNG tankers through Head Harbour Passage in Passamaquoddy Bay.

Maine is now turning the other cheek and expects Canada to do so as well. Lets give peace a chance, said Hobbins.

We kind of extended almost an olive branch to the Canadian government hoping that they will look favourably upon passageway issues.

But thats unlikely, according to New Brunswick Southwest MP Greg Thompson.

Nothing has changed in terms of our position, he said. The federal government has safety and environmental concerns about LNG tankers sailing through the narrow passage.

Two American companies have plans to put liquefied natural gas terminals on the Maine side of the bay.

Senator Kevin Raye, who represents Maines Washington County, contends the proposed LNG projects near Calais are critical to lower electricity costs and to job creation.

As well as lifting the moratorium, the legislation also protects Maines interests, according to Maine Jobs First, a coalition of business, labour and individuals.

We are grateful that the Maine legislature adopted this legislation that will allow Maine to fully review these corridor proposals and ensure that they are in the best interest of Maine people and Maine businesses, said spokesman John Hansen.

In addition to any proposals from Canadian companies, the legislation also covers Mainebased companies, such as wind and tidal energy generators, that want to transmit power through the state.

In March 2009, New Brunswick Premier Shawn Graham and Maine Gov. John Baldacci announced their governments intention to explore the development of an energy corridor to move electricity and natural gas between the Maritimes and New England.

The corridor would eventually include pipelines, but the immediate focus is the construction of the electricity transmission line.

Along with the electricity from a potential 500 to 600megawatt natural gasfired Irvingowned power plant, the corridor could carry energy from offshore Nova Scotia or hydro from Newfoundland and Labrador.

Related News

'For now, we're not touching it': Quebec closes door on nuclear power

Quebec Energy Strategy focuses on hydropower, energy efficiency, and new dams as Hydro-Que9bec pursues Churchill Falls deals and the Champlain Hudson Power Express to New York, while nuclear power remains off the agenda.

 

Key Points

Quebec's plan prioritizes hydropower, efficiency, and new dams, excludes nuclear, and expands exports via CHPE.

✅ Nuclear power shelved; focus on renewables and dams

✅ Hydro-Que9bec pursues Churchill Falls and Gull Island talks

✅ CHPE line to New York advances; export contract with NYSERDA

 

Quebec Premier François Legault has closed the door on nuclear power, at least for now.

"For the time being, we're not touching it," said Legault when asked about the subject at a press scrum in New York on Tuesday.

The government is looking for new sources of energy as Hydro-Québec begins talks on a $185-billion strategy to wean the province off fossil fuels. In an interview with The Canadian Press at Quebec's official residence in New York, Legault said there are a number of avenues to explore:

  • Energy efficiency.
  • Negotiations with Newfoundland and Labrador over Churchill Falls and Gull Island.
  • Upgrading existing dams and building new ones.

"Nuclear power is not on the agenda," he said.

Yet the premier seemed open to the nuclear question some time ago. In August, Radio-Canada reported that he had raised the idea of nuclear power in front of dozens of MNAs at the National Assembly last April.

Also in August, Hydro-Québec was evaluating the possibility of reopening the Gentilly-2 nuclear power plant, which has been closed since 2012.

Asked about his leader's statement on Tuesday, the Minister of the Economy, Pierre Fitzgibbon, maintained his line: "At the moment, we're looking at everything that's possible because we know that we have a significant deficit in the supply of green energy," he said.

Another step forward for the Quebec-New York line

Premier Legault took part in Tuesday morning's announcement that construction had begun on the New York converter station of the Champlain Hudson Power Express line. New York State Governor Kathy Hochul was present at the announcement.

In November 2021, Hydro-Québec signed a contract with the New York State Energy Research and Development Authority (NYSERDA) to export 10.4 terawatt-hours of electricity to the American metropolis over 25 years, while Ontario declined to renew a deal with Quebec.

At a time when the Quebec government is constantly asserting that more energy will be needed for future economic projects -- particularly the battery industry -- Legault sees no contradiction in selling electricity to the Americans and to neighboring provinces such as NB Power deals to import Hydro-Québec power.

"Whether it's this contract or the contract for companies coming to set up in Quebec, it's out of the surplus we currently have in Quebec. Now, we have dozens of investment project proposals in Quebec where we need additional electricity," he explained.

The line will supply 20 per cent of New York City's electricity needs, despite transmission constraints on Quebec-to-U.S. deliveries. Commissioning is scheduled for May 2026. The spin-offs are estimated at $30 billion, according to the premier.

Will this money be used to finance new dams, such as the La Romaine hydroelectric complex built in recent years?

"It's certain that future projects will cost several tens of billions of dollars. Hydro-Québec has the capacity to borrow. It's a very healthy company. There's no doubt that these revenues will improve Hydro-Québec's image," he said.

 

Related News

View more

Air Conditioning Related Power Usage Set To Create Power Shortages In Many States

Texas Power Grid Blackouts loom as ERCOT forecasts record air conditioning load, tight reserve margins, peak demand spikes, and rising natural gas prices; heatwaves could trigger brownouts without added solar, storage, and demand response.

 

Key Points

Texas Power Grid Blackouts are outages when AC-driven peak demand and ERCOT reserves outstrip supply during heatwaves.

✅ ERCOT forecasts record AC load and tight reserve margins.

✅ Coal retirements cut capacity; gas and solar additions lag.

✅ Peak prices, brownouts likely without storage and demand response.

 

U.S. Air conditioning related electricity usage will break records and may cause blackouts across the U.S. and in Texas this summer. Power grid operators are forecasting that electricity supplies will exceed demands during the summer months.

Most of Texas will face severe electricity shortages because of hot temperatures, air conditioning, and a strong economy, with millions at risk of electricity shut-offs during extreme heat, Bill Magness the president of the Electric Reliability Council of Texas (ERCOT) told the Associated Press. Magness thinks the large numbers people moving to Texas for retirement will increase the demand for air conditioning and electricity use. Retired people are more likely to be home during the day when temperatures are high – so they are more likely to turn up the air conditioner.

Around 50% of all electricity in Texas is used for air conditioning and 100% of homes in Texas have air conditioners, Forbes reported. That means just a few hot days can strain the grid and a heatwave can trigger brownouts and blackouts, in a system with more blackouts than other developed countries on average.

The situation was made worse by Vistra Energy’s decision to close more coal-fired power plants last year, The Austin American Statesman reported. The closed plants; Big Brown, Sadow, and Monticello, generated around 4,100 megawatts (4.1 million watts) of electricity, enough generation capacity to power two million homes, The Waco Herald-Tribune reported.

 

Texas Electric Grid Might Not Meet Demand

Texas’s grid has never operated without those plants will make this summer a test of its capacity. Texas only has a 6% reserve of electricity that might fall will because of problems like downed lines or a power plant going offline.

A Vistra subsidiary called Luminant has added around 8,000 megawatts of generation capacity from natural-gas burning plants, The Herald-Tribune reported. Luminant also plans to open a giant solar power plant in Texas to increase grid capacity.

The Texas grid already reached peak capacity in May because of unexpectedly high demand and technical problems that reflect more frequent outages in many states, Houston Public Media reported. Grid capacity fell because portions of the system were offline for maintenance.

Some analysts have suggested starting schools after Labor Day to shift peak August demand, potentially easing stress on the grid.

 

 

Electricity Reserves are Tight in Texas

Electricity reserves will be very tight on hot summer days in Texas this summer, Magness predicted. When the thermometer rises, people crank up the air conditioner which burns more electricity.

The grid operator ERCOT anticipates that Texas will need an additional 1,600 megawatts of electricity this summer, but record-high temperatures can significantly increase the demand. If everything is running correctly, Texas’s grid can produce up to 78,184 megawatts of electricity.

“The margin between absolute peak power usage and available peak supply is tighter than in years past,” Andrew Barlow, a spokesman for Texas’s Public Utility Commission admitted.

Around 90% of Texas’s grid has enough generating capacity, ERCOT estimated. That means 10% of Texas’s power grid lacks sufficient generating capacity which increases the possibility of blackouts.

Even if the electricity supply is adequate electricity prices can go up in Texas because of higher natural gas prices, Forbes reported. Natural gas prices might go up over the summer because of increased electricity demands. Texas uses between 8% and 9% of America’s natural gas supply to generate electricity for air conditioning in the summer.

 

Be Prepared For Blackouts This Summer.

Texas’s problems might affect other regions including neighboring states such as Oklahoma, Arkansas, Louisiana, and New Mexico and parts of Mexico, as lawmakers push to connect Texas’s grid to the rest of the nation to improve resilience because those areas are connected to the same grid. Electricity from states like Colorado might be diverted to Texas in case of power shortages there.

Beyond the U.S., Canadian electricity grids are increasingly exposed to harsh weather that can ripple across markets as well.

Home and business owners can avoid summer blackouts by tapping sources of Off-Grid electricity. The two best sources are backup battery storage and solar panels which can run your home or business if the grid runs dry.

If you have family members with health problems who need air conditioning, or you rely on a business or freelance work that requires electricity for income, backup power is vital. Those who need backup electricity for their business should be able to use the expense of installing it as a tax deduction.

Having backup electricity available might be the only way for Texans to keep cool this summer.

 

Related News

View more

Perry presses ahead on advanced nuclear reactors

Advanced Nuclear Reactors drive U.S. clean energy with small modular reactors, a new test facility at Idaho National Laboratory, and public-private partnerships accelerating nuclear innovation, safety, and cost reductions through DOE-backed programs and university simulators.

 

Key Points

Advanced nuclear reactors are next-gen designs, including SMRs, offering safer, cheaper, low-carbon power.

✅ DOE test facility at Idaho National Laboratory

✅ Small modular reactors with passive safety systems

✅ University simulators train next-gen nuclear operators

 

Energy Secretary Rick Perry is advancing plans to shift the United States towards next-gen nuclear power reactors.

The Energy Department announced this week it has launched a new test facility at the Idaho National Laboratory where private companies can work on advanced nuclear technologies, as the first new U.S. reactor in nearly seven years starts up, to avoid the high costs and waste and safety concerns facing traditional nuclear power plants.

“[The National Reactor Innovation Center] will enable the demonstration and deployment of advanced reactors that will define the future of nuclear energy,” Perry said.

With climate change concerns growing and net-zero emissions targets emerging, some Republicans and Democrats are arguing for the need for more nuclear reactors to feed the nation’s electricity demand. But despite nuclear plants’ absence of carbon emissions, the high cost of construction, questions around what to do with the spent nuclear rods and the possibility of meltdown have stymied efforts.

A new generation of firms, including Microsoft founder Bill Gates’ Terra Power venture, are working on developing smaller, less expensive reactors that do not carry a risk of meltdown.

“The U.S. is on the verge of commercializing groundbreaking nuclear innovation, and we must keep advancing the public-private partnerships needed to traverse the dreaded valley of death that all too often stifles progress,” said Rich Powell, executive director of ClearPath, a non-profit advocating for clean energy and green industrial strategies worldwide.

The new Idaho facility is budgeted at $5 million under next year’s federal budget, even as the cost of U.S. nuclear generation has fallen to a ten-year low, which remains under negotiation in Congress.

On Thursday another advanced nuclear developer working on small modular systems, Oregon-based NuScale Power, announced it was building three virtual nuclear control rooms at Texas A&M University, Oregon State University and the University of Idaho, with funding from the Energy Department.

The simulators will be open to researchers and students, to train on the operation of smaller, modular reactors, as well as the general public.

NuScale CEO John Hopkins said the simulators would “help ensure that we educate future generations about the important role nuclear power and small modular reactor technology will play in attaining a safe, clean and secure energy future for our country.”

 

Related News

View more

Opinion: Nuclear Beyond Electricity

Nuclear decarbonization leverages low-carbon electricity, process heat, and hydrogen from advanced reactors and SMRs to electrify industry, buildings, and transport, supporting net-zero strategies and grid flexibility alongside renewables with dispatchable baseload capacity.

 

Key Points

Nuclear decarbonization uses reactors to supply low-carbon power, heat, and hydrogen, cutting emissions across industry.

✅ Advanced reactors and SMRs enable high-temperature process heat

✅ Nuclear-powered electrolysis and HTSE produce low-carbon hydrogen

✅ District heating from reactors reduces pollution and coal use

 

By Dr Henri Paillere, Head of the Planning and Economics Studies Section of the IAEA

Decarbonising the power sector will not be sufficient to achieving net-zero emissions, with assessments indicating nuclear may be essential across sectors. We also need to decarbonise the non-power sectors - transport, buildings and industry - which represent 60% of emissions from the energy sector today. The way to do that is: electrification with low-carbon electricity as much as possible; using low-carbon heat sources; and using low-carbon fuels, including hydrogen, produced from clean electricity.
The International Energy Agency (IEA) says that: 'Almost half of the emissions reductions needed to reach net zero by 2050 will need to come from technologies that have not reached the market today.' So there is a need to innovate and push the research, development and deployment of technologies. That includes nuclear beyond electricity.

Today, most of the scenario projections see nuclear's role ONLY in the power sector, despite ongoing debates over whether nuclear power is in decline globally, but increased electrification will require more low-carbon electricity, so potentially more nuclear. Nuclear energy is also a source of low-carbon heat, and could also be used to produce low-carbon fuels such as hydrogen. This is a virtually untapped potential.

There is an opportunity for the nuclear energy sector - from advanced reactors, next-gen nuclear small modular reactors, and non-power applications - but it requires a level playing field, not only in terms of financing today's technologies, but also in terms of promoting innovation and supporting research up to market deployment. And of course technology readiness and economics will be key to their success.

On process heat and district heating, I would draw attention to the fact there have been decades of experience in nuclear district heating. Not well spread, but experience nonetheless, in Russia, Hungary and Switzerland. Last year, we had two new projects. One floating nuclear power plant in Russia (Akademik Lomonosov), which provides not only electricity but district heating to the region of Pevek where it is connected. And in China, the Haiyang nuclear power plant (AP1000 technology) has started delivering commercial district heating. In China, there is an additional motivation to reducing emissions, namely to cut air pollution because in northern China a lot of the heating in winter is provided by coal-fired boilers. By going nuclear with district heating they are therefore cutting down on this pollution and helping with reducing carbon emissions as well. And Poland is looking at high-temperature reactors to replace its fleet of coal-fired boilers and so that's a technology that could also be a game-changer on the industry side.

There have also been decades of research into the production of hydrogen using nuclear energy, but no real deployment. Now, from a climate point of view, there is a clear drive to find substitute fuels for the hydrocarbon fuels that we use today, and multiple new nuclear stations are seen by industry leaders as necessary to meet net-zero targets. In the near term, we will be able to produce hydrogen with electrolysis using low-carbon electricity, from renewables and nuclear. But the cheapest source of low-carbon power is from the long-term operation of existing nuclear power plants which, combined with their high capacity factors, can give the cheapest low-carbon hydrogen of all.

In the mid to long term, there is research on-going with processes that are more efficient than low-temperature electrolysis, which is high temperature steam electrolysis or thermal splitting of water. These may offer higher efficiencies and effectiveness but they also require advanced reactors that are still under development. Demonstration projects are being considered in several countries and we at the IAEA are developing a publication that looks into the business opportunities for nuclear production of hydrogen from existing reactors. In some countries, there is a need to boost the economics of the existing fleet, especially in the electricity systems where you have low or even negative market prices for electricity. So, we are looking at other products that have higher values to improve the competitiveness of existing nuclear power plants.

The future means not only looking at electricity, but also at industry and transport, and so integrated energy systems. Electricity will be the main workhorse of our global decarbonisation effort, but through heat and hydrogen. How you model this is the object of a lot of research work being done by different institutes and we at the IAEA are developing some modelling capabilities with the objective of optimising low-carbon emissions and overall costs.

This is just a picture of what the future might look like: a low-carbon power system with nuclear lightwater reactors (large reactors, small modular reactors and fast reactors) drawing on the green industrial revolution reactor waves in planning; solar, wind, anything that produces low-carbon electricity that can be used to electrify industry, transport, and the heating and cooling of buildings. But we know there is a need for high-temperature process steam that electricity cannot bring but which can be delivered directly by high-temperature reactors. And there are a number of ways of producing low-carbon hydrogen. The beauty of hydrogen is that it can be stored and it could possibly be injected into gas networks that could be run in the future on 100% hydrogen, and this could be converted back into electricity.

So, for decarbonising power, there are many options - nuclear, hydro, variable renewables, with renewables poised to surpass coal in global generation, and fossil with carbon capture and storage - and it's up to countries and industries to invest in the ones they prefer. We find that nuclear can actually reduce the overall cost of systems due to its dispatchability and the fact that variable renewables have a cost because of their intermittency. There is a need for appropriate market designs and the role of governments to encourage investments in nuclear.

Decarbonising other sectors will be as important as decarbonising electricity, from ways to produce low-carbon heat and low-carbon hydrogen. It's not so obvious who will be the clear winners, but I would say that since nuclear can produce all three low-carbon vectors - electricity, heat and hydrogen - it should have the advantage.
We at the IAEA will be organising a webinar next month with the IEA looking at long-term nuclear projections in a net-zero world, building on IAEA analysis on COVID-19 and low-carbon electricity insights. That will be our contribution from the point of view of nuclear to the IEA's special report on roadmaps to net zero that it will publish in May.

 

Related News

View more

Hydro-Québec to Invest $750 Million in Carillon Generating Station

Hydro-Québec Carillon Refurbishment delivers a $750M hydropower modernization, replacing six turbines and upgrading civil works, water passageways, and grid equipment to extend run-of-river, renewable energy output for peak demand near Montréal.

 

Key Points

A $750M project replacing six units and upgrading civil, water and electrical systems to supply power for 50 years.

✅ Replaces six generating units with Andritz turbines.

✅ Upgrades civil works, water passageways, and electrical gear.

✅ Extends run-of-river output for 50 years; boosts peak supply.

 

Hydro-Québec will invest $750 million to refurbish its Carillon generating station with a major powerhouse upgrade that will mainly replace six generating units. The investment also covers the cost of civil engineering work, including making adjustments to water passageways, upgrading electrical equipment and replacing the station roof. Work will start in 2021, aligning with Hydro-Québec's capacity expansion plans for 2021, and continue until 2027.

Carillon generating station is a run-of-river power plant consisting of 14 generating units with a total installed capacity of 753 MW. Built in the early 1960s, it is a key part of Hydro-Québec's hydroelectric generating fleet, which includes the La Romaine complex as well. The station is close to the greater Montréal area and feeds power into the grid to support industrial demand growth during peak consumption periods.

The selected supplier, turbine manufacturer Andritz, has been asked to maximize the project's economic spinoffs in Québec, as Canada continues investing in new turbines across the country to modernize assets. Once the work is completed, the new generating units will be able to provide clean, renewable energy, supporting Hydro-Québec's strategy to reduce fossil fuel reliance for the next 50 years.

"Carillon generating station is a symbol of our hydroelectric development and plays a strategic role in our production fleet. However, most of the generating units' main components date back to the station's original construction from 1959 to 1962. Hydropower generating stations have long service lives - with this refurbishment, Carillon will be producing clean renewable energy for decades to come." said David Murray, Chief Innovation Officer and President, Hydro-Québec Production.

"In light of today's economic situation, this is an important announcement that clearly reaffirms Hydro-Québec's role in relaunching Québec's economy and strengthening interprovincial electricity partnerships that open new markets. Over 600,000 hours of work will be required for everything from the engineering work to component assembly, creating many new high-quality skilled jobs for Québec industries."

 

Related News

View more

France nuclear power stations to limit energy output due to high river temps

France Nuclear Heatwave Restrictions signal reduced nuclear power along the Rhone River as EDF imposes output limits due to high water temperatures, grid needs, with minimal price impact amid strong solar and exports.

 

Key Points

Temporary EDF output limits at Rhone River reactors due to hot water, protecting ecosystems and grid reliability.

✅ EDF expects halved output at Bugey and Saint Alban.

✅ Cuts align with water temperature and discharge rules.

✅ Weekend midday curtailments offset by solar supply.

 

The high temperature warning has come early this year but will affect fewer nuclear power plants. High temperatures could halve nuclear power production, with river temperature limits at plants along France's Rhone River this week. 

Output restrictions are expected at two nuclear plants in eastern France due to high temperature forecasts, nuclear operator EDF said. It comes several days ahead of a similar warning that was made last year but will affect fewer plants, and follows a period when power demand has held firm during lockdowns across Europe.

The hot weather is likely to halve the available power supply from the 3.6 GW Bugey plant from 13 July and the 2.6 GW Saint Alban plant from 16 July, the operator said.

However, production will be at least 1.8 GW at Bugey and 1.3 GW at Saint Alban to meet grid requirements, and may change according to grid needs, the operator said.

Kpler analyst Emeric de Vigan said the restrictions were likely to have little effect on output in practice. Cuts are likely only at the weekend or midday when solar output was at its peak so the impact on power prices would be slim.

He said the situation would need monitoring in the coming weeks, however, noting it was unusually early in the summer for nuclear-powered France to see such restrictions imposed.

Water temperatures at the Bugey plant already eclipsed the initial threshold for restrictions on 9 July, as European power hits records during the heatwave. They are currently forecast to peak next week and then drop again, Refinitiv data showed.

"France is currently net exporting large amounts of power – and, despite a nuclear power dispute with Germany, single nuclear units' supply restrictions will not have the same effect as last year," Refinitiv analyst Nathalie Gerl said.

The Garonne River in southern France has the highest potential for critical levels of warming, but its Golfech plant is currently offline for maintenance until mid-August, as Europe faces nuclear losses, the data showed.

"(The restrictions were) to be expected and it will probably occur more often," Greenpeace campaigner Roger Spautz said.

"The authorities must stick to existing regulations for water discharges. Otherwise, the ecosystems will be even more affected," he added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.