With coal production, cleaner skies could mean more landfills

By Charleston Daily Mail


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
As the nation's coal-fired power plants work to create cleaner skies, they'll likely fill up landfills with millions more tons of potentially harmful ash.

More than one-third of the ash generated at the country's hundreds of coal-fired plants is now recycled - mixed with cement to build highways or used to stabilize embankments, among other things.

But in a process being used increasingly across the nation, chemicals are injected into plants' emissions to capture airborne pollutants.

That, in turn, changes the composition of the ash and cuts its usefulness. It can't be used in cement, for example, because the interaction of the chemicals may keep the concrete from hardening.

That ash has to go somewhere - so it usually ends up in landfills, along with the rest of the unusable waste.

"You're replacing an air problem with a land problem - a disposal problem,'' said Bruce Dockter, a research engineer with the Energy and Environmental Research Center at the University of North Dakota.

Coal ash naturally contains arsenic and mercury, and if the elements leach into groundwater they can contaminate drinking supplies. The EPA says ash disposed of in landfills could pose significant risks when mismanaged, and there are gaps in state regulation.

And the chemicals added to clean up emissions - such as ammonia, lime and calcium hydroxide - make the ash worse, environmental groups say, because they take toxins such as mercury out of the air but leave higher levels of it in the ash.

The U.S. Environmental Protection Agency doesn't classify coal ash - with or without the added chemicals - as a hazardous waste, although many environmental groups say it should.

"As a general rule, anything you do to make the air emissions cleaner makes the ash more toxic,'' said Lisa Evans, an attorney with Earthjustice, a nonprofit environmental law firm.

More than 120 million tons of ash and other leftovers come from coal combustion each year in the United States, and more than 46 million tons are reused, according to the American Coal Ash Association.

Environmental groups encourage reuse of the ash because it keeps most of the waste out of landfills. And substituting ash for cement means less mining for the materials typically used to make cement - consequently causing a drop in the amount of carbon dioxide that would be emitted by mining machinery.

But the EPA is pushing power companies to cut emissions of the sulfur dioxide and nitrogen oxides, which add to smog and acid rain and contribute to thousands of premature deaths, asthma and other respiratory ailments. A large portion of those emissions come from coal plants, the EPA says.

"If you live near a power plant, you want the cleanest air possible,'' said Dave Goss, executive director of the American Coal Ash Association. "If in exchange for clean air they have to dispose of material - that's the challenge. The only option may be putting it in a landfill.''

It's not clear how many plants already using or will use the new technology or how much ash may be affected, but the technique is becoming widespread as companies work to comply with federal guidelines, Goss said.

The issue was raised as the EPA developed air emissions rules, but the power sector has found ways to minimize the impact, said EPA spokesman John Millett, who said the agency doesn't believe the increased injection of the chemicals into ash will cause a significant drop-off in ash recycling.

But the effects are evident in Nebraska, for example, where the Omaha Public Power District sells about 135,000 tons of ash from its current plant near Nebraska City every year. Ash from a new plant being built nearby will be injected with chemicals to clean emissions, and it will be dumped in a 16-acre landfill to be built onsite at a cost of $2.7 million, said Mike Jones, a spokesman for the utility.

"You've got to do something with it,'' Jones said. "This was the best option.''

The landfill will fill up in about five years and likely have to be expanded.

Xcel Energy Inc. will use the injection equipment on a new plant near Pueblo, Colo., and also will install the equipment on two existing units there. The ash will be dumped in a 250-acre onsite landfill.

But even if there is a drop in recycling, the trade-off might be worth it.

"The benefits of the additional (emission) reductions from these controls is immense,'' Millett said.

In Nebraska, the dump sites are closely regulated, said Bill Gidley, a section supervisor with the state's Department of Environmental Quality. Landfills must have liners to collect seepage, and they are inspected every year.

This month, the Maryland Department of the Environment ordered the operator of an 80-acre Anne Arundel County coal ash dump to clean contaminated water detected near the site. Cancer-causing metals were discovered last fall in almost two dozen wells in the area. BBSS Inc. also was fined an undisclosed amount.

Related News

American Households Struggle with Sky-High Energy Bills During Extreme Summer Heat

US Summer Energy Bills Crisis is driven by record heatwaves, soaring electricity prices, AC cooling demand, energy poverty risks, and LIHEAP relief, straining low-income households, vulnerable seniors, and budgets amid volatile utilities and peak demand.

 

Key Points

Rising household energy costs from extreme heat, higher electricity prices, and AC demand, straining vulnerable families.

✅ Record heatwaves drive peak electricity and cooling loads

✅ Tiered rates and volatile markets inflate utility bills

✅ LIHEAP aid and cooling centers offer short-term relief

 

As the sweltering heat of summer continues to grip much of the United States, American households are grappling with a staggering rise in energy bills. The combination of record-breaking temperatures and rising electricity prices is placing an unprecedented financial strain on families, raising concerns about the long-term impact on household budgets and overall well-being.

Record Heat and Energy Consumption

This summer has witnessed some of the hottest temperatures on record across the country. With many regions experiencing prolonged heatwaves, the demand for air conditioning and cooling systems has surged amid unprecedented electricity demand across parts of the U.S. The increased use of these energy-intensive appliances has led to a sharp rise in electricity consumption, which, combined with elevated energy prices, has pushed household energy bills to new heights.

The situation is particularly dire for households that are already struggling financially. Many families are facing energy bills that are not only higher than usual but are reaching levels that are unsustainable, underscoring electricity struggles for thousands of families across the country. This has prompted concerns about the potential for energy poverty, where individuals are forced to make difficult choices between paying for essential services and covering other necessary expenses.

Impact on Low-Income and Vulnerable Households

Low-income households and vulnerable populations are disproportionately affected by these soaring energy costs. For many, the financial burden of high energy bills is compounded by energy insecurity during the pandemic and other economic pressures, such as rising food prices and stagnant wages. The strain of paying for electricity during extreme heat can lead to tough decisions, including cutting back on other essential needs like healthcare or education.

Moreover, the heat itself poses a serious health risk, particularly for the elderly, children, and individuals with pre-existing health conditions. High temperatures can exacerbate conditions such as cardiovascular and respiratory illnesses, making the need for reliable cooling even more critical. For those struggling to afford adequate cooling, the risk of heat-related illnesses and fatalities increases significantly.

Utilities and Energy Pricing

The sharp rise in energy bills can be attributed to several factors, including higher costs of electricity production and distribution. The ongoing transition to cleaner energy sources, while necessary for long-term environmental sustainability, has introduced short-term volatility in energy markets. Additionally, power-company supply chain crises and increased demand during peak summer months have contributed to higher prices.

Utilities are often criticized for their pricing structures, which can be complex and opaque. Some regions, including areas where California electricity bills soar under scrutiny, use tiered pricing models that charge higher rates as energy consumption increases. This can disproportionately impact households that need to use more energy during extreme heat, further exacerbating financial strain.

Government and Community Response

In response to the crisis, various government and community initiatives are being rolled out to provide relief. Federal and state programs aimed at assisting low-income households with energy costs are being expanded. These programs, such as the Low-Income Home Energy Assistance Program (LIHEAP), offer financial assistance to help with utility bills, but demand often outstrips available resources.

Local community organizations are also stepping in to offer support. Initiatives include distributing fans and portable air conditioners, providing temporary cooling centers, and offering financial assistance to help cover energy costs. These efforts are crucial in helping to mitigate the immediate impact of high energy bills on vulnerable households.

Long-Term Solutions and Sustainability

The current crisis highlights the need for long-term solutions to address both the causes and consequences of high energy costs. Investing in energy efficiency and renewable energy technologies can help reduce the overall demand for electricity and lower long-term costs. Improvements in building insulation, the adoption of energy-efficient appliances, and advancements in smart grid technologies to prevent summer power outages are all essential components of a sustainable energy future.

Furthermore, addressing income inequality and supporting economic stability are critical to ensuring that all households can manage their energy needs without facing financial hardship. Policymakers will need to consider a range of strategies, including financial support programs, regulatory reforms, and infrastructure investments, to create a more equitable and resilient energy system.

Conclusion

As American households endure the double burden of extreme summer heat and skyrocketing energy bills, the need for immediate relief and long-term solutions has never been clearer. The current crisis serves as a reminder of the broader challenges facing the nation’s energy system and the importance of addressing both short-term needs and long-term sustainability. By investing in efficient technologies, supporting vulnerable populations, and developing resilient infrastructure, the U.S. can work towards a future where energy costs are manageable, and everyone has access to the resources they need to stay safe and comfortable.

 

Related News

View more

Texas Utilities back out of deal to create smart home electricity networks

Smart Meter Texas real-time pricing faces rollback as utilities limit on-demand reads, impacting demand response, home area networks, ERCOT wholesale tracking, and thermostat automation, reducing efficiency gains promised through deregulation and smart meter investments.

 

Key Points

A plan linking smart meters to ERCOT prices, enabling near real-time usage alignment and automated demand response.

✅ Twice-hourly reads miss 15-minute ERCOT price spikes.

✅ Less than 1% of 7.3M meters use HAN real-time features.

✅ Limits hinder automation for HVAC, EV charging, and pool pumps.

 

Utilities made a promise several years ago when they built Smart Meter Texas that they’d come up with a way for consumers to monitor their electricity use in real time. But now they’re backing out of the deal with the approval of state regulators, leaving in the lurch retail power companies that are building their business model on the promise of real time pricing and denying consumers another option for managing their electricity costs.

Texas utilities collected higher rates to finance the building of a statewide smart meter network that would allow customers to track their electricity use and the quickly changing prices on wholesale power markets almost as they happened. Some retailers are building electricity plans around this promise, providing customers with in-home devices that would eventually track pricing minute-by-minute and allow them to automatically turn down or shut off air conditioners, pool pumps and energy sucking appliances when prices spiked on hot summer afternoons and turn them back on when they prices fell again.

The idea is to help save consumers money by allowing them to shift their electricity consumption to periods when power is cheaper, typically nights and weekends, even as utility revenue in a free-power era remains a debated topic.

“We’re throwing away a large part of (what) ratepayers paid for,” said John Werner, CEO of GridPlus Texas, one of the companies offering consumers a real-time pricing plan that is scheduled to begin testing next month. “They made the smart meters dumb meters.”

When Smart Meter Texas was launched a decade ago by a consortium of the state’s biggest utilities, it was considered an important part of deregulation. The competitive market for electricity held the promise that consumers would eventually have the technology to control their electricity use through a home area network and cut their power bills.

Regulators and legislators also were enticed by the possibility of making the electric system more efficient and relieving pressure on the power grid as consumers responded to high prices and cut consumption when temperatures soared, with ongoing discussions about Texas grid reliability informing policy choices.

One study found that smart meters coupled with smart real time consumption monitors could reduce electricity use between 3 percent and 5 percent, according to Call Me Power, a website sponsored by the European electricity price shopping service Selectra.

But utilities complained that the home area network devices were expensive to install and not used very often, and, with flat electricity demand weighing on growth, they questioned further investment. CenterPoint manager Esther Floyd Kent filed an affidavit with the commission in May that it costs the utility about $30,000 annually to support the network devices, plus maintenance.

Over a six-year period, CenterPoint paid $124,500, or about $20,000 a year, to maintain the system. As of April, there were only 4,067 network devices in CenterPoint’s service area, meaning the utility pays about $30.70 each year to maintain each device.

Centerpoint last year generated $9.6 billion in revenues and earned a $1.8 billion profit, according to its financial filings. CenterPoint officials did not respond to requests for comment.

Other utilities that are part of the Smart Meter consortium also complained to the Public Utility Commission that, up to now, the system hasn’t developed. All told, Texas has 7.3 million meters connected to Smart Meter Texas, but less than 1 percent are using the networking functions to track real-time prices and consumption, according to the testimony of Donny R. Helm, director of technology strategy and architecture for the state’s largest utility Oncor Electric Delivery Co. in Dallas.

The isssue was resolved recently through a settlement agreement that limits on-demand readings to twice an hour that Smart Meter Texas must provide customers. The price of power changes every 15 minutes, so a twice an hour reading may miss some price spikes.

The Public Utility Commission signed off on the deal, and so did several other groups including several retail electricity providers and the Office of Public Utility Counsel which represents residential customers and small businesses.

Michele Gregg, spokeswoman for the Public Utility Counsel, testified in December that the consumer advocate supported the change because widespread use of the networks never materialized. Catherine Webking, an Austin lawyer who represents the Texas Energy Association for Marketers, a group of retail electric providers, said she believes the deal was a reasonable resolution of providing the benefits of Smart Meter Texas while not incurring too much cost.

But Griddy, an electricity provider that offers customers the opportunity to pay wholesale power prices, which also issued a plea to customers during a price surge, said the state hasn’t given the smart-meter networks a chance and could miss out on its potential. Griddy was counting on the continued adoption of real time pricing as the next step for customers wanting to control their electricity costs.

Right now, Griddy sends out price alerts from the grid operator Electric Reliability Council of Texas so businesses like hotels can run washers and dryers when electricity prices are cheapest. But the company was counting on a smart-meter program that would allow customers to track wholesale prices and manage consumption themselves, making Griddy’s offerings attractive to more people.

Wholesale prices are generally cheaper than retail prices, but they can fluctuate widely, especially when the Texas power grid faces another crisis during extreme weather. Last year, wholesale prices averaged less than 3 cents per kilowatt hour, much lower than than retail rates that now are running above 11 cents, but they can spike at times of high demand to as much as $9 a kilowatt hour.

What customers want is to be able to use energy when it’s cheapest, said Greg Craig, Griddy’s CEO, and they want to do it automatically. They want to be able to program their thermostat so that if the price rises they can shut off their air conditioning and if the price falls, they can charge their electric-powered vehicle.

Griddy customers may still save money even without real time data, he said. But they won’t be able to see their usage in real time or see how much they’re spending.

“The big utilities have big investments in the existing way and going to real time and more transparency isn’t really in their best interest,” said Craig.

 

Related News

View more

Ontario hydro rates set to increase Nov. 1, Ontario Energy Board says

Ontario Electricity Rebate clarifies hydro rates as OEB aligns bills with inflation, shows true cost per kilowatt hour, and replaces Fair Hydro Plan; transparent on-bill credit offsets increases tied to nuclear refurbishment and supply costs.

 

Key Points

A line-item credit on Ontario hydro bills that offsets higher electricity costs and reflects OEB-set rates.

✅ Starts Nov. 1 with rates in line with inflation

✅ Shows true per-kWh cost plus separate rebate line

✅ Driven by nuclear refurbishment and supply costs

 

The Ontario Energy Board says electricity rate changes for households and small businesses will be going up starting next week.

The agency says rates are scheduled to increased by about $1.99 or nearly 2% for a typical residential customer who uses 700 kilowatt hours per month.

The provincial government said in March it would continue to subsidize hydro rates, through legislation to lower rates, and hold any increases to the rate of inflation.

The OEB says the new rates, which the board says are “in line” with inflation, will take effect Nov. 1 as changes for electricity consumers roll out and could be noticed on bills within a few weeks of that date.

Prices are increasing partly due to government legislation aimed at reflecting the actual cost of supply on bills, and partly due to the refurbishment of nuclear facilities, contributing to higher hydro bills for some consumers.

So, effective November 1, Ontario electricity bills will show the true cost of power, after a period of a fixed COVID-19 hydro rate, and will include the new Ontario Electricity Rebate.

Previously the electricity rebate was concealed within the price-per-kilowatt-hour line item on electricity statements, prompting Hydro One bill redesign discussions to improve clarity. This meant customers could not see how much the government rebate was reducing their monthly costs, and bills did not display the true cost of electricity used.

"People deserve facts and accountability, especially when it comes to hydro costs," said Energy Minister Rickford.

The new Ontario Electricity Rebate will appear as a transparent on-bill line item and will replace the former government's Fair Hydro Plan says a government news release. This change comes in response to the Auditor General's special report on the former government's Fair Hydro Plan which revealed that "the government created a needlessly complex accounting/financing structure for the electricity rate reduction in order to avoid showing a deficit or an increase in net debt."

"The Electricity Distributors Association commends the government's commitment to making Ontario's electricity bills more transparent," said Teresa Sarkesian, President of the Electricity Distributors Association. "As the part of our electricity system that is closest to customers, local hydro utilities appreciated the opportunity to work with the government on implementing this important initiative. We worked to ensure that customers who receive their electricity bill will have a clear understanding of the true cost of power and the amount of their on-bill rebate. Local hydro utilities are focused on making electricity more affordable, reducing red tape, and providing customers with a modern and reliable electricity system that works for them."

The average customer will see the electricity line on their bill rise, showing the real cost per kilowatt hour. The new Ontario Electricity Rebate will compensate for that rise, and will be displayed as a separate line item on hydro bills. The average residential bill will rise in line with the rate of inflation.

 

Related News

View more

Ontario Provides Stable Electricity Pricing for Industrial and Commercial Companies

Ontario ICI Electricity Pricing Freeze helps Industrial Conservation Initiative (ICI) participants by stabilizing Global Adjustment charges, suspending peak hours curtailment, and reducing COVID-19-related electricity cost volatility to support large employers returning operations to full capacity.

 

Key Points

A two-year policy stabilizing GA costs and pausing peak-hour cuts to aid industrial and commercial recovery.

✅ GA cost share frozen for two years

✅ No peak-hour curtailment obligations

✅ Supports industrial and commercial restart

 

The Ontario government is helping large industrial and commercial companies return to full levels of operation without the fear of electricity costs spiking by providing more stable electricity pricing for two years. Effective immediately, companies that participate in the Industrial Conservation Initiative (ICI) will not be required to reduce their electricity usage during peak hours or shift some load to ultra-low overnight pricing where applicable, as their proportion of Global Adjustment (GA) charges for these companies will be frozen.

"Ontario's industrial and commercial electricity consumers continue to experience unprecedented economic challenges during COVID-19, with electricity relief for households and small businesses introduced to help," said Greg Rickford, Minister of Energy, Northern Development and Mines. "Today's announcement will allow large industrial employers to focus on getting their operations up and running and employees back to work, instead of adjusting operations in response to peak electricity demand hours."

Due to COVID-19, electricity consumption in Ontario has been below average as fall in demand as people stayed home across the province, and the province is forecast to have a reliable supply of electricity, supported by the system operator's staffing contingency plans during the pandemic, to accommodate increased usage. Peak hours generally occur during the summer when the weather is hot and electricity demand from cooling systems is high.

"Today's action will reduce the burden of anticipating and responding to peak hours for more than 1,300 ICI participants with 2,000 primarily industrial facilities in Ontario," said Bill Walker, Associate Minister of Energy. "Now these large employers can focus on getting their operations back up and running at full tilt and explore new energy-efficiency programs to manage costs."

The government previously announced it was providing temporary relief for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP) by deferring a portion of GA charges for April, May and June 2020 and by extending off-peak rates for many customers, as well as a disconnect moratorium extension for residential electricity users.

 

Related News

View more

Yukon eyes connection to B.C. electricity grid

Yukon-BC Electricity Intertie could link Yukon to BC's hydroelectric power, enabling renewable energy integration, net-zero grid goals by 2035, transmission expansion for mining, and stronger Arctic energy security through a coast-to-coast network.

 

Key Points

A link connecting Yukon's grid to BC hydro to import renewables, cut emissions, and strengthen northern energy security.

✅ Enables renewable imports to meet 2035 net-zero electricity target

✅ Supports mining growth with reliable, low-carbon power

✅ Enhances Arctic energy security via national grid integration

 

Yukon's energy minister says Canada's push for more green energy and a net-zero electricity grid should spark renewed interest in connecting the territory's power to British Columbia, home to the Electric Highway network.

Minister of Energy, Mines and Resources John Streicker says linking the territory's power grid to the south would help with the national move to renewable energy, including new wind turbines being added in the Yukon, support the mineral extraction required for green projects, and improve northern energy and Arctic security.

"We're getting to the moment in time when we will want an electricity grid which stretches from coast to coast to coast. … I think that the moment is coming for this — it's sort of a nation-building moment. And I think that from the Yukon's perspective, we're very interested," Streicker said in an interview.

The idea of a link, originally proposed to span 763 kilometres between Whitehorse and Iskut, B.C., was first floated in 2016 but sat on the shelf after a viability study put the price tag at as much as $1.7 billion, even as a study indicates B.C. may need to double its power output to electrify all road vehicles.


Two years later, Yukon's then-energy-minister Ranj Pillai — now premier — mused again about the possibility of connecting to power from B.C., where green energy ambitions include the Site C hydro dam.

The idea appeared to have been resurrected at this year's Western Premiers' Conference in June, with both Pillai and B.C. Premier David Eby publicly mentioning early conversations about grid development and interties.

At the conference, Eby said British Columbia was fortunate to have the ability to support other jurisdictions with its hydro electricity.

"So certainly part of the conversation was how do we support each other in sharing our strength, including emerging hydrogen projects across the province?" he said.

"And one of those that British Columbia was able to put on the table is if we can find ways to enter ties with, for example, with the Yukon, to support them in their efforts to access more electricity to grow their economy and decarbonize their electrical grid, then that's very good news for everybody."

The federal government has set a target of making the country's electricity grid net-zero by 2035, while jurisdictions like the N.W.T. plan for more residents to drive electric vehicles as part of the transition.

 

Related News

View more

Warren Buffett’s Secret To Cheap Electricity: Wind

Berkshire Hathaway Energy Wind Power drives cheap electricity rates in Iowa via utility-scale wind turbines, integrated transmission, battery storage, and grid management, delivering renewable energy, stable pricing, and long-term rate freezes through 2028.

 

Key Points

A vertically integrated wind utility lowering Iowa rates via owned generation, transmission, and advanced grid control.

✅ Owned wind assets meet Iowa residential demand

✅ Integrated transmission lowers costs and losses

✅ Rate freeze through 2028 sustains cheap power

 

In his latest letter to Berkshire Hathaway shareholders, Warren Buffett used the 20th anniversary of Berkshire Hathaway Energy to tout its cheap electricity bills for customers.

When Berkshire purchased the majority share of BHE in 2000, the cost of electricity for its residential customers in Iowa was 8.8 cents per kilowatt-hour (kWh) on average. Since then, these electricity rates have risen at a paltry <1% per year, with a freeze on rate hikes through 2028. As anyone who pays an electricity bill knows, that is an incredible deal.  

As Buffett himself notes with alacrity, “Last year, the rates [BHE’s competitor in Iowa] charged its residential customers were 61% higher than BHE’s. Recently, that utility received a rate increase that will widen the gap to 70%.”

 

The Winning Strategy

So, what’s Buffett’s secret to cheap electricity? Wind power.

“The extraordinary differential between our rates and theirs is largely the result of our huge accomplishments in converting wind into electricity,” Buffett explains. 

Wind turbines in Iowa that BHE owns and operates are expected to generate about 25.2 million megawatt-hours (MWh) of electricity for its customers, as projects like Building Energy operations begin to contribute. By Buffett’s estimations, that will be enough to power all of its residential customers’ electricity needs in Iowa.  


The company has plans to increase its renewable energy generation in other regions as well. This year, BHE Canada is expected to start construction on a 117.6MW wind farm in Alberta, Canada with its partner, Renewable Energy Systems, that will provide electricity to 79,000 homes in Canada’s oil country.

Observers note that Alberta is a powerhouse for both green energy and fossil fuels, underscoring the region's unique transition.

But I would argue that the secret to BHE’s success perhaps goes deeper than transitioning to sources of renewable energy. There are plenty of other utility companies that have adopted wind and solar power as an energy source. In the U.S., where renewable electricity surpassed coal in 2022, at least 50% of electricity customers have the option to buy renewable electricity from their power supplier, according to the Department of Energy. And some states, such as New York, have gone so far as to allow customers to pick from providers who generate their electricity.

What differentiates BHE from a lot of the competition in the utility space is that it owns the means to generate, store, transmit and supply renewable power to its customers across the U.S., U.K. and Canada, with lessons from the U.K. about wind power informing policy.

In its financial filings for 2019, the company reported that it owns 33,600MW of generation capacity and has 33,400 miles of transmission lines, as well as a 50% interest in Electric Transmission Texas (ETT) that has approximately 1,200 miles of transmission lines. This scale and integration enables BHE to be efficient in the distribution and sale of electricity, including selling renewable energy across regions.

BHE is certainly not alone in building renewable-energy fueled electricity dominions. Its largest competitor, NextEra, built 15GW of wind capacity and has started to expand its utility-scale solar installations. Duke Energy owns and operates 2,900 MW of renewable energy, including wind and solar. Exelon operates 40 wind turbine sites across the U.S. that generate 1,500 MW.

 

Integrated Utilities Power Ahead

It’s easy to see why utility companies see wind as a competitive source of electricity compared to fossil fuels. As I explained in my previous post, Trump’s Wrong About Wind, the cost of building and generating wind energy have fallen significantly over the past decade. Meanwhile, improvements in battery storage and power management through new technological advancements have made it more reliable (Warren Buffett bet on that one too).

But what is also striking is that integrated power and transmission enables these utility companies to make those decisions; both in terms of sourcing power from renewable energy, as well as the pricing of the final product. Until wind and solar power are widespread, these utility companies are going to have an edge of the more fragmented ends of the industry who can’t make these purchasing or pricing decisions independently. 

Warren Buffett very rarely misses a beat. He’s not the Oracle of Omaha for nothing. Berkshire Hathaway’s ownership of BHE has been immensely profitable for its shareholders. In the year ended December 31, 2019, BHE and its subsidiaries reported net income attributable to BHE shareholders of $2.95 billion.

There’s no question that renewable energy will transform the utility industry over the next decade. That change will be led by the likes of BHE, who have the power to invest, control and manage their own energy generation assets.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified