Harnessing ocean power is no longer just a dream for New Zealand

By New Zealand Daily News


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
This is a blue planet and it's getting bluer. Seventy percent of the Earth's surface is covered in water. The ice-caps are melting, shorelines are slowly receding, islands are going under.

Suddenly marine power - the new thing on the energy scene - looks mighty appealing.

It takes advantage of the immense (and free) power of the oceans and, because the process is so clean, it might also help stop the rising oceans drowning us all.

That's at least one reason the Government is now so interested. In the draft New Zealand Energy Strategy released recently, marine energy was hailed as "a developing technology of significant potential".

"New Zealand has a vast marine energy resource if it can be tapped," the report said. To back that up, Energy Minister David Cunliffe announced an $8 million contestable funding package for the industry.

Put simply, marine power is technologies to capture the motion of waves and tides, and turn it into electricity.

Already, the technological approaches come in all shapes and sizes. Last year, three 150m-long snake-shaped devices were planted off the northern coast of Portugal.

The long, red pontoons - the first of a planned wave farm for the area - stretch out across the ocean surface like lane markers in a swimming pool.

As waves hit them, they bend at specially designed hinges, transforming the motion into electricity using power-converter modules that run down their sides.

Other wave-power designs include buoy-like machines that catch the ocean swells, as well as structures built into coastal cliff faces that use air pressure from waves to power turbines.

Tidal power is the other half of marine energy and it's simpler to understand.

Typically, one long barrage, or a series of underwater turbines, uses the tide's energy as it moves in and out. It's this sort of project which has so far been most developed in New Zealand. Auckland firm Crest Energy plans to install turbines in Kaipara Harbour, which it says could eventually generate 200 megawatts - or enough power for 250,000 homes - at full capacity.

Plans are also afoot to develop something similar in Cook Strait, where Neptune Power director David Beach believes thousands of small turbines could sit 40m under the water.

The idea of using the ocean to generate electricity emerged in the 1970s when University of Edinburgh engineer Stephen Salter devised a prototype wave-power device known as the nodding duck.

However, with oil prices declining again in the 1980s, development money dried up.

The comeback is on now, though, with Britain leading the charge. A wave farm is close to being launched in Scottish waters, while plans to milk at least three of Britain's largest rivers for their power are under way.

Marine power prototypes have also been launched in seas or rivers off Western Australia, Japan, China and Spain. One British device, dubbed the Snapper, has shown the potential to be 10 times as efficient as existing models.

Governments have been taking notice. A report by Britain's Carbon Trust - set up by the government there to reduce greenhouse gas emissions - estimated last year that marine energy might eventually power 20% of Britain.

That's about 12,000 megawatts a day, or three times what the largest British power plant now produces.

Meanwhile, the World Energy Council has estimated the global export market for such technology could eventually be worth more than $1.5 trillion (New Zealand dollars).

In the United States, congressional committees have started taking submissions from marine energy players, while state- sponsored projects are sprouting along the seaboard, especially in California and the northeast.

Dr John Huckerby, one of the drivers of the local movement, and the head of Awatea - the Aotearoa Wave and Tidal Energy Association, welcomes the $8 million Government injection.

He says blue energy could contribute to our power supply by 2010, and eventually provide 20% of our power.

The Government's recent cash investment will encourage private capital, adding that with 14 local projects already in the pipeline, marine energy is perfect for New Zealand's creative approach to technology, he says.

There are hurdles to marine power. One barrier that the Economic Development Ministry and Dr Huckerby identify is the Resource Management Act.

"The Government needs to give consideration to whether the Act is the best mechanism for the allocation of space and resources for marine energy projects."

The next step, Dr Huckerby says, is for the Government to come up with incentive packages.

Feed-in tariffs are one option and are already being used in Europe, particularly for solar power, with electricity companies paying for electricity that is fed back into the public grid.

The other hurdle is cost. No matter what the incentive, it is clear that marine power will be expensive for the first few years.

The London Economist puts the average cost of British marine power at somewhere between two and five times the cost of power from natural gas.

Dr Huckerby says it's about twice as expensive as wind power at the moment, although many industry experts think they may even up in the future.

Another challenge for innovators is designing machines that are hardy enough to withstand what the sea can throw at them, without having to be prohibitively huge or expensive.

"To be frank, no devices have been put in the water for long enough to really test that yet," Dr Huckerby says.

Other issues critics have raised are similar to those levelled at the wind power industry - unsightly blots on the landscape (for those visible from land), lack of predictability, and damage to wildlife.

Where wind turbines have attracted charges of killing birds, The New York Times reported one case where a series of tidal turbines in the East River were scuttled after environmentalists complained of potential damage to fish.

However, environmental economist Ralph Chapman, an associate professor at Victoria University, says it's a smart move for New Zealand to develop new technologies.

"We've got to pick a few areas where we can develop an edge. There are really good examples of where governments have invested strategically in these areas - the Danish wind industry, for one. It's made a big difference there."

Wave power was a good option as New Zealand had a long coastline and big wave resources because of our latitude, he says.

"The British are really zooming ahead, so we would have to work with them."

If anything, $8 million may not be enough to keep up, Mr Chapman says.

But evidence of climate change grows by the week and it is clear governments like New Zealand's are keen to be seen as responsive to an issue of which the public is growing more aware.

Related News

Effort to make Philippines among best power grids in Asia

NGCP-SGCC Partnership drives transmission grid modernization in the Philippines, boosting high-voltage capacity, reliability, and resilience, while developing engineering talent via the Trailblazers Program to meet Southeast Asia best practices and utility standards.

 

Key Points

A partnership to modernize the Philippines' grid, boost high-voltage capacity, and upskill NGCP engineers.

✅ Modernizes transmission assets and grid reliability nationwide

✅ Trailblazers Program develops NGCP's engineering leadership

✅ SGCC knowledge transfer on UHV, high-voltage, and best practices

 

The National Grid Corp. of the Philippines (NGCP) is building on its partnership with State Grid Corp of China (SGCC) to expand and modernize transmission facilities, as well as enhance the capabilities of its personnel to advance the country's grid network, aligning with smart grid transformation in Egypt seen in other markets. NGCP Internal Affairs Department head Edwin Natividad said the grid operator is implementing various development programs with SGCC to make the country's power grid among the best power utilities in Asia.

"We have to look at policies aligned with best global practices, including smart grid solutions increasingly adopted worldwide, that we can choose in adopting in the Philippines too," he said. One of NGCP's flagship development program is the Trailblazers Program, the company's strategy to further develop engineers "who will not just be technical experts, but also be the change agents and movers in the NGCP organization as well as in the Philippines' power sector," Natividad said.

"Having the support of the largest utility in the world gives us comfort that this program is designed and implemented by the best in the power industry," he said. Under the program, high performing personnel participating will be prepared for bigger roles later on in their careers at NGCP.

Business ( Article MRec ), pagematch: 1, sectionmatch: 1 "The advantage of such a pool is that it provides flexibility and, eventually, organizational self-sufficiency around the current and future talent needs of NGCP," Natividad said. Now on its third edition, the Trailblazers Program has already sent 76 personnel since it started in November 2016. Natividad said more than 16 of those who previously attended similar programs have already assumed higher roles in NGCP.

Apart from technical skills development, NGCP's partnership with SGCC also provides technical development to improve on the physical transmission assets. "If you will compare the facilities being handled by SGCC with other countries, in terms of handling high voltage capability, SGCC is way ahead.

The higher the voltage it's going to be more difficult to handle," Natividad said, adding they can handle more power to distribute to power distributors. As an example, SGCC's transmission facilities can handle high voltage to as much as 1,000 kiloVolts (kV), whereas the Philippines only has one high voltage facility, the interconnection between Luzon and Visayas, which can handle 500 kV, echoing proposals for macrogrids in Canada to improve reliability.

Natividad said NGCP was the first and biggest investment of SGCC outside of China before it made investments in other parts of the world, even as cybersecurity concerns in Britain have influenced supplier choices. A consortium among businessmen Henry Sy Jr., Robert Coyuito Jr., and SGCC as technical partner, NGCP holds a 25-year concession contract to operate and maintain the country's transmission grid.

Earlier, Sy, NGCP president and CEO, said the company is targeting to become the best utility firm in Southeast Asia. Since it took over the operations and maintenance of the country's power transmission network in 2009, the grid operator has introduced major physical and technological upgrades to ageing state-owned lines and facilities, while in Great Britain an independent operator model is being advanced to reshape system operations.

 

Related News

View more

Electric shock: China power demand drops as coronavirus shutters plants

China Industrial Power Demand 2020 highlights COVID-19 disruption to electricity consumption as factory output stalls; IHS Markit estimates losses equal to Chile's usage, impacting thermal coal, LNG, and Hubei's industrial load.

 

Key Points

An analysis of COVID-19's hit to China's electricity use, cutting industry demand and fuel needs for coal and LNG.

✅ 73 billion kWh loss equals Chile's annual power use

✅ Cuts translate to 30m tonnes coal or 9m tonnes LNG

✅ Hubei peak load 21 percent below plan amid shutdowns

 

China’s industrial power demand in 2020 may decline by as much as 73 billion kilowatt hours (kWh), according to IHS Markit, as the outbreak of the coronavirus has curtailed factory output and prevented some workers from returning to their jobs.

FILE PHOTO: Smoke is seen from a cooling tower of a China Energy ultra-low emission coal-fired power plant during a media tour, in Sanhe, Hebei province, China July 18, 2019. REUTERS/Shivani Singh
The cut represents about 1.5% of industrial power consumption in China. But, as the country is the world’s biggest electricity consumer and analyses of China's electricity appetite routinely underscore its scale, the loss is equal to the power used in the whole of Chile and it illustrates the scope of the disruption caused by the outbreak.

The reduction is the energy equivalent of about 30 million tonnes of thermal coal, at a time when China aims to reduce coal power production, or about 9 million tonnes of liquefied natural gas (LNG), IHS said. The coal figure is more than China’s average monthly imports last year while the LNG figure is a little more than one month of imports, based on customs data.

China has tried to curtail the spread of the coronavirus that has killed more than 1,400 and infected over 60,000 by extending the Lunar New Year holiday for an extra week and encouraging people to work from home, measures that contributed to a global dip in electricity demand as well.

Last year, industrial users consumed 4.85 trillion kWh electricity, accounting for 67% of the country’s total, even as India's electricity demand showed sharp declines in the region.

Xizhou Zhou, the global head of power and Renewables at IHS Markit, said that in a severe case where the epidemic goes on past March, China’s economic growth will be only 4.2% during 2020, down from an initial forecast of 5.8%, while power consumption will climb by only 3.1%, down from 4.1% initially, even as power cuts and blackouts raise concerns.

“The main uncertainty is still how fast the virus will be brought under control,” said Zhou, adding that the impact on the power sector will be relatively modest from a full-year picture in 2020, even though China's electric power woes are already clouding solar markets.

In Hubei province, the epicenter of the virus outbreak, the peak power load at the end of January was 21% less than planned, mirroring how Japan's power demand was hit during the outbreak, data from Wood Mackenzie showed.

Industrial operating rates point to a firm reduction in power consumption in China.

Utilization rates at plastic processors are between 30% and 60% and the low levels are expected to last for another two week, according to ICIS China.

Weaving machines at textile plants are operating at below 10% of capacity, the lowest in five years, ICIS data showed. China is the world’s biggest textile and garment exporter.

 

Related News

View more

California's solar energy gains go up in wildfire smoke

California Wildfire Smoke Impact on Solar reduces photovoltaic output, as particulate pollution, soot, and haze dim sunlight and foul panels, cutting utility-scale generation and grid reliability across CAISO during peak demand and heatwaves.

 

Key Points

How smoke and soot cut solar irradiance and foul panels, slashing PV generation and straining CAISO grid operations.

✅ Smoke blocks sunlight; soot deposition reduces panel efficiency.

✅ CAISO reported ~30% drop versus July during peak smoke.

✅ Longer fire seasons threaten solar reliability and capacity planning.

 

Smoke from California’s unprecedented wildfires was so bad that it cut a significant chunk of solar power production in the state, even as U.S. solar generation rose in 2022 nationwide. Solar power generation dropped off by nearly a third in early September as wildfires darkened the skies with smoke, according to the US Energy Information Administration.

Those fires create thick smoke, laden with particles that block sunlight both when they’re in the air and when they settle onto solar panels. In the first two weeks of September, soot and smoke caused solar-powered electricity generation to fall 30 percent compared to the July average, according to the California Independent System Operator (CAISO), which oversees nearly all utility-scale solar energy in California, where wind and solar curtailments have been rising amid grid constraints. It was a 13.4 percent decrease from the same period last year, even though solar capacity in the state has grown about 5 percent since September 2019.

California depends on solar installations for nearly 20 percent of its electricity generation, and has more solar capacity than the next five US states trailing it combined as it works to manage its solar boom sustainably. It will need even more renewable power to meet its goal of 100 percent clean electricity generation by 2045, building on a recent near-100% renewable milestone that underscored the transition. The state’s emphasis on solar power is part of its long-term efforts to avoid more devastating effects of climate change. But in the short term, California’s renewables are already grappling with rising temperatures.

Two records were smashed early this September that contributed to the loss of solar power. California surpassed 2 million acres burned in a single fire season for the first time (1.7 million more acres have burned since then). And on September 15th, small particle pollution reached the highest levels recorded since 2000, according to the California Air Resources Board. Winds that stoked the flames also drove pollution from the largest fires in Northern California to Southern California, where there are more solar farms.

Smaller residential and commercial solar systems were affected, too, and solar panels during grid blackouts typically shut off for safety, although smoke was the primary issue here. “A lot of my systems were producing zero power,” Steve Pariani, founder of the solar installation company Solar Pro Energy Systems, told the San Mateo Daily Journal in September.

As the planet heats up, California’s fire seasons have grown longer, and blazes are tearing through more land than ever before, while grid operators are also seeing rising curtailments as they integrate more renewables. For both utilities and smaller solar efforts, wildfire smoke will continue to darken solar energy’s otherwise bright future, even as it becomes the No. 3 renewable source in the U.S. by generation.

 

Related News

View more

California Faces Power Outages and Landslides Amid Severe Storm

California Storm Outages and Landslides strain utilities, trigger flooding, road closures, and debris flows, causing widespread power cuts and infrastructure damage as emergency response teams race to restore service, clear slides, and support evacuations.

 

Key Points

California Storm Outages and Landslides are storm-driven power cuts and slope failures disrupting roads and utilities.

✅ Tens of thousands face prolonged power outages across regions

✅ Landslides block highways, damage property, hinder access

✅ Crews restore grids, clear debris, support shelters and evacuees

 

California is grappling with a dual crisis of power outages and landslides following a severe storm that has swept across the state. The latest reports indicate widespread disruptions affecting thousands of residents and significant infrastructure damage. This storm is not only a test of California's emergency response capabilities but also a stark reminder of the increasing vulnerability of the state to extreme weather events, and of the U.S. electric grid in the face of climate stressors.

Storm’s Impact on California

The recent storm, which hit California with unprecedented intensity, has unleashed torrential rain, strong winds, and widespread flooding. These severe weather conditions have overwhelmed the state’s infrastructure, leading to significant power outages that are affecting numerous communities. According to local utilities, tens of thousands of homes and businesses are currently without electricity. The outages have been exacerbated by the combination of heavy rain and gusty winds, which have downed power lines and damaged electrical equipment.

In addition to the power disruptions, the storm has triggered a series of landslides across various regions. The combination of saturated soil and intense rainfall has caused several hillside slopes to give way, leading to road closures and property damage. Emergency services are working around the clock to address the aftermath of these landslides, but access to affected areas remains challenging due to blocked roads and ongoing hazardous conditions.

Emergency Response and Challenges

California’s emergency response teams are on high alert as they coordinate efforts to manage the fallout from the storm. Utility companies are deploying repair crews to restore power as quickly as possible, but the extensive damage to infrastructure means that some areas may be without electricity for several days. The state’s Department of Transportation is also engaged in clearing debris from landslides and repairing damaged roads to ensure that emergency services can reach affected communities.

The response efforts are complicated by the scale of the storm’s impact. With many areas experiencing both power outages and landslides, the logistical challenges are immense. Emergency shelters have been set up to provide temporary refuge for those displaced by the storm, but the capacity is limited, and there are concerns about overcrowding and resource shortages.

Community and Environmental Implications

The storm’s impact on local communities has been profound. Residents are facing not only the immediate challenges of power outages and unsafe road conditions but also longer-term concerns about recovery and rebuilding. Many individuals have been forced to evacuate their homes, and local businesses are struggling to cope with the disruption.

Environmental implications are also significant. The landslides and flooding have caused considerable damage to natural habitats and have raised concerns about water contamination and soil erosion. The impact on the environment could have longer-term consequences for the state’s ecosystems and water supply.

Climate Change and Extreme Weather

This storm underscores a growing concern about the increasing frequency and intensity of extreme weather events linked to climate change. California has been experiencing a rise in severe weather patterns, including intense storms, prolonged droughts, and extreme heat waves that strain the grid. These changes are putting additional strain on the state’s infrastructure and emergency response systems.

Experts have pointed out that while individual storms cannot be directly attributed to climate change, the overall trend towards more extreme weather is consistent with scientific predictions. As such, there is a pressing need for California to invest in infrastructure improvements and resilience measures, and to consider accelerating its carbon-free electricity mandate to better withstand future events.

Looking Ahead

As California deals with the immediate aftermath of this storm, attention will turn to recovery and rebuilding efforts. The state will need to address the damage caused by power outages and landslides while also preparing for future challenges posed by climate change.

In the coming days, the focus will be on restoring power, clearing debris, and providing support to affected communities. Long-term efforts will likely involve reassessing infrastructure vulnerabilities, improving emergency response protocols, and investing in climate resilience measures across the grid.

 

Related News

View more

NB Power launches public charging network for EVs

NB Power eCharge Network expands EV charging in New Brunswick with fast chargers, level 2 stations, Trans-Canada Highway coverage, and green infrastructure, enabling worry-free electric vehicle travel and lower emissions across the province.

 

Key Points

NB Power eCharge Network is a provincewide EV charging system with fast and level 2 stations for reliable travel.

✅ 15 fast-charging sites on Trans-Canada and northern New Brunswick

✅ Level 2 stations at highways, municipalities, and businesses

✅ 20-30 minute DC fast charging; cut emissions ~80% and fuel ~75%

 

NB Power announced Friday the eCharge Network, the province’s first electric vehicle charging network aimed at giving drivers worry-free travel everywhere in the province.

The network includes 15 locations along the province’s busiest highways where both fast-chargers and level-2 chargers will be available. In addition, nine level-2 chargers are already located at participating municipalities and businesses throughout the province. The new locations will be installed by the end of 2017.

NB Power is working with public and private partners to add to the network to enable electric vehicle owners to drive with confidence and to encourage others to make the switch from gas to electric vehicles, supported by a provincial rebate program now available.

“We are incredibly proud to offer our customers and visitors to New Brunswick convenient charging with the launch of our eCharge Network,” said Gaëtan Thomas, president and CEO of NB Power. “Our goal is to make it easy for owners of electric vehicles to drive wherever they choose in New Brunswick, and to encourage more drivers to consider an electric vehicle for their next purchase.”

An electric vehicle owner in New Brunswick can shrink their vehicle carbon footprint by about 80 per cent while reducing their fuel-related costs by about 75 per cent, according to NB Power, and broader grid benefits are being explored through Nova Scotia's vehicle-to-grid pilot across the region.

In addition to the network of standard charging stations, the eCharge network will also include 400 volt fast-charging stations along the Trans-Canada Highway and in the northern parts of New Brunswick. The first of their kind in New Brunswick, these 15 fast-charging stations, similar to Newfoundland and Labrador's newly completed fast-charging network connecting communities, will enable all-electric vehicles to recharge in as little as 20 to 30 minutes. Fast-charge sites will include standard level-2 stations for both battery electric vehicles and plug-in hybrids.

NB Power will install fast-charge and level-2 sites at five locations throughout northern New Brunswick, addressing northern coverage challenges seen elsewhere, such as Labrador's infrastructure gaps today, which will be cost-shared with government. Locations include the areas of Saint-Quentin/Kedgwick, Campbellton, Bathurst, Tracadie, and Miramichi.

“Our government understands that embracing the green economy and reducing our carbon footprint is a priority for New Brunswickers,” said Environment and Local Government Minister Serge Rousselle. “Our climate change action plan calls for a collaborative approach to creating the strategic infrastructure to support electric vehicles throughout all regions in the province, and we are pleased to see this important step underway. New Brunswickers will now have the necessary network to adopt new methods of transportation and contribute to our provincial plan to increase the number of electric vehicles on the road and will help meet emission reduction targets as we work to combat climate change.”

An investment of $500,000 from Natural Resources Canada will go towards purchasing and installing the charging stations for the 10 fast-charging stations along the Trans-Canada Highway.

“The eCharge Network will make it easier for Canadians to choose cleaner options and helps put New Brunswick’s transportation system on a path to a lower-carbon future,” said Moncton-Riverview-Dieppe MP Ginette Petitpas Taylor. “The Government of Canada continues to support green infrastructure in the transportation sector that will advance Canada’s efforts to build a clean economy, create well-paying jobs, and achieve our climate change goals.”

Petitpas Taylor attended for federal Natural Resources Minister Jim Carr.

Fast chargers are being installed at the following locations along the Trans-Canada Highway across New Brunswick:

– Irving Big Stop, Aulac

– Edmundston Truck Stop

– Irving Big Stop, Saint-André

– Johnson Guardian, Perth-Andover

– Murray’s Irving, Woodstock

– Petro-Canada / Acorn Restaurant, Prince William

– Irving Big Stop, Waasis

 

Related News

View more

Trump Tariff Threat Delays Quebec's Green Energy Bill

Quebec Energy Bill Tariff Delay disrupts Canada-U.S. trade, renewable energy investment, hydroelectric expansion, and clean technology projects, as Trump tariffs on aluminum and steel raise costs, threatening climate targets and green infrastructure timelines.

 

Key Points

A policy pause in Quebec from U.S. tariff threats, disrupting clean investment, hydro expansion, and climate targets.

✅ Tariff risk inflates aluminum and steel project costs.

✅ Quebec delays clean energy legislation amid trade uncertainty.

✅ Hydroelectric reliance complicates emissions reduction timelines.

 

The Trump administration's tariff threat has had a significant impact on Quebec's energy sector, with tariff threats boosting support for projects even as the uncertainty resulted in the delay of a critical energy bill. Originally introduced to streamline energy development and tackle climate change, the bill was meant to help transition Quebec towards greener alternatives while fostering economic growth. However, the U.S. threat to impose tariffs on Canadian goods, including energy products, introduced a wave of uncertainty that led to a pause in the bill's legislative process.

Quebec’s energy bill had ambitious goals of transitioning to renewable sources like wind, solar, and hydroelectric power. It sought to support investments in clean technologies and the expansion of the province's clean energy infrastructure, as the U.S. demand for Canadian green power continues to grow across the border. Moreover, it emphasized the reduction of carbon emissions, an important step towards meeting Quebec's climate targets. At its core, the bill aimed to position the province as a leader in green energy development in Canada and globally.

The interruption caused by President Donald Trump's tariff rhetoric has, however, cast a shadow over the legislation. Tariffs, if enacted, would disproportionately affect Canada's energy exports, with electricity exports at risk under growing tensions, particularly in sectors like aluminum and steel, which are integral to energy infrastructure development. These tariffs could increase the cost of energy-related projects, thereby hindering Quebec's ability to achieve its renewable energy goals and reduce carbon emissions in a timely manner.

The tariff threat was seen as a part of the broader trade tensions between the U.S. and Canada, a continuation of the trade war that had escalated under Trump’s presidency. In this context, the Quebec government was forced to reconsider its legislative priorities, with policymakers citing concerns over the potential long-term consequences on the energy industry, as leaders elsewhere threatened to cut U.S.-bound electricity to exert leverage. With the uncertainty around tariffs and trade relations, the government opted to delay the bill until the geopolitical situation stabilized.

This delay underscores the vulnerability of Quebec’s energy agenda to external pressures. While the provincial government had set its sights on an ambitious green energy future, it now faces significant challenges in ensuring that its projects remain economically viable under the cloud of potential tariffs, even as experts warn against curbing Quebec's exports during the dispute. The delay in the energy bill also reflects broader challenges faced by the Canadian energy sector, which is highly integrated with the U.S. market.

The situation is further complicated by the province's reliance on hydroelectric power, a cornerstone of its energy strategy that supplies markets like New York, where tariffs could spike New York energy prices if cross-border flows are disrupted. While hydroelectric power is a clean and renewable source of energy, there are concerns about the environmental impact of large-scale dams, and these concerns have been growing in recent years. The tariff threat may prompt a reevaluation of Quebec’s energy mix and force the government to balance its environmental goals with economic realities.

The potential imposition of tariffs also raises questions about the future of North American energy cooperation. Historically, Canada and the U.S. have enjoyed a symbiotic energy relationship, with significant energy trade flowing across the border. The energy bill in Quebec was designed with the understanding that cross-border energy trade would continue to thrive. The Trump administration's tariff threat, however, casts doubt on this stability, forcing Quebec lawmakers to reconsider how they proceed with energy policy in a more uncertain trade environment.

Looking forward, Quebec's energy sector will likely need to adjust its strategies to account for the possibility of tariffs, while still pushing for a sustainable energy future, especially if Biden outlook for Canada's energy proves more favorable for the sector in the medium term. It may also open the door for deeper discussions about diversification, both in terms of energy sources and trade partnerships, as Quebec seeks to mitigate the impact of external threats. The delay in the energy bill, though unfortunate, may serve as a wake-up call for Canadian lawmakers to rethink how they balance environmental goals with global trade realities.

Ultimately, the Trump tariff threat highlights the delicate balance between regional energy ambitions and international trade dynamics. For Quebec, the delay in the energy bill could prove to be a pivotal moment in shaping the future of its energy policy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.