Environmental, economic benefits of solar energy

By The Fayetteville Observer


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Surrounded by a cornfield and trees sits one of the state's newer power plants.

There are no telltale signs of a power plant — no long lines of railroad cars filled with coal, no cooling towers releasing steam clouds, no smokestacks or big transformers.

As the sun grows the corn, it also makes power on the roof of a metal building — anywhere from 150 to 750 kilowatt hours per day, or enough to meet the needs of 15 typical houses.

The solar power plant at the Hamlin Cos.' shop near Benson, which makes duct work, is a sign of what may come. The 107,000-watt system is among the largest in the state but will soon be eclipsed by even bigger systems.

Solar energy, proponents say, is on the cusp of a big wave. They are optimistic because: the solar-energy industry is no longer in its infancy. The technology, and those who install it, have made great strides with more efficient systems and more professional installers.

Solar energy makes sense for environmental and economic reasons, experts say. A solar water heater system can cut residential utility bills by as much as 30 percent.

North Carolina's legislators are pushing renewal energy. By 2021, utilities must get 12.5 percent of customers' power needs from renewal energy such as solar power or through energy efficiencies.

The potential of solar power is affecting all segments of the market — from energy giant Duke Power to small companies in Fayetteville.

In June, Duke Power announced plans to install up to 850 solar panels throughout North Carolina at a cost of $100 million. Homes, schools, stores and factories will get solar panels. The idea is to produce power where it is used, rather than at large plants.

Duke is also partnering with SunEdison on a solar farm in Davidson County. The proposed 16-megawatt facility would be the largest photovoltaic solar facility in the country. SunEdison hopes to be operational by late 2010. All of the electricity generated would go to Duke. The solar panels would supply enough energy to meet the demands of 2,600 homes.

Progress Energy Carolina and SunPower Corp. are developing a 1-megawatt solar farm in Cary.

Manufacturers are also taking advantage of the growing interest in solar power.

The DuPont plant in northern Bladen County makes components used in about 40 percent of solar panels produced annually, said Steve Kalland of the North Carolina Solar Center. The center is part of N.C State University and is the state's clearinghouse for renewable energy programs and research.

Sencera International Corp. announced recently it will invest $36.8 million to build a solar-module factory in Mecklenburg County. The state gave the company $62,000 from the One North Carolina Fund and $100,000 from the state's Green Business fund. Charlotte and Mecklenburg County will give Sencera about $1 million over three years — equal to 90 percent of what the company will pay in property taxes during that time — to satisfy the local match requirements of the Green Fund grant.

It's not only the big boys who see opportunity. Hamlin has been in the roofing business for 54 years. When company officials started looking at solar energy, they soon realized it was more than an add-on.

"This is not a roofing accessory," said William Hamlin, the executive vice president of Hamlin Energy Solutions. "This is a power plant on someone's roof."

In March, the company installed 24,000 square feet of photovoltaic strips on the roof of the Benson plant. The panels are connected so that if one panel goes out, the remaining panels continue to work.

The panels have semi-conductors that turn sunlight into power. Peak production is between 11 a.m. and 3 p.m.

Inverters convert the electricity to alternating current. The output immediately goes to a transformer owned by South River Electric Membership Corp.

The solar panels provide about 30 percent of the shop's needs.

Hamlin invested about $760,000 in its solar roof. A scaffolding allows people to climb up to see the thin, purple tiles.

The company uses the roof for both training and demonstrations. Most of all, Hamlin said, they try to show potential customers that solar energy is "clean, simple and safe."

Alternative Energy Concepts of Fayetteville is another company that spun into the business.

When the owners of Intelect Inc. — an electrical contractor in Fayetteville — looked into solar, they also decided they needed their own separate company. They formed Alternative Energy Concepts.

"We knew electrical work — there was no mystery there," said Joseph Sheffield of Alternative Energy Concepts.

But there was a learning curve in understanding solar, he said. The inquiries have been nonstop since the company opened several months ago. It can install solar, wind or hydroelectric systems.

Some of the interest has been in installing solar hot water-heating systems. During the mid-1970s, such systems were popular but bulky and not always reliable.

Today's technology still uses large panels that are 4 feet by 8 feet. But they are more efficient. Distilled water circulating through the panels heats up, then runs through a control panel. Water from a hot-water heater also flows through the control panel.

The systems are separate, but the heat is transferred. That decreases the need for the water heater's electrical element.

Fayetteville lawyer Graham Gurnee and his wife, Elizabeth, consulted the book "Solar Energy For Dummies" when they considered installing a system.

They decided to install a system at their home. Elizabeth Gurnee said the foremost reason was environmental. The second was economic; with federal and state tax credits, their system will pay for itself in about four years.

Tax credits can pay for as much as 65 percent of a solar-energy system. The credits are needed, said Kalland of the North Carolina Solar Center, to offset the high cost. But the costs are coming down, and Kalland predicts by 2020 the cost of producing solar power should be about the same as conventional electricity.

Kalland does not expect solar to supplant conventional plants. He noted that today's largest solar plant produces about 20 megawatts of power. In comparison, the average conventional coal plant produces 800 megawatts daily.

Related News

Canadian gold mine cleans up its act with electricity

Electric mining equipment enables zero-emission, diesel-free operations at Goldcorp's Borden mine, using Sandvik battery-electric drills and LHD trucks to cut ventilation costs, noise, and maintenance while improving underground air quality.

 

Key Points

Battery-powered mining equipment replaces diesel, cutting emissions and ventilation costs in underground operations.

✅ Cuts diesel use, heat load, and noise in underground headings.

✅ Reduces ventilation infrastructure and operating expense.

✅ Improves air quality, worker health, and equipment uptime.

 

Mining operations get a lot of flack for creating environmental problems around the world. Yet they provide much of the basic material that keeps the global economy humming. Some mining companies are drilling down in their efforts to clean up their acts, exploring solutions such as recovering mine heat for power to reduce environmental impact.

As the world’s fourth-largest gold mining company Goldcorp has received its share of criticism about the impact it has on the environment.

In 2016, the Canadian company decided to do something about it. It partnered with mining-equipment company Sandvik and began to convert one of its mines into an all-electric operation, a process that is expected to take until 2021.

The efforts to build an all-electric mine began with the Sandvik DD422iE in Goldcorp’s Borden mine in Ontario, Canada.

Goldcorp's Borden mine in Borden, Ontario, CanadaGoldcorp's Borden mine in Borden, Ontario, Canada

The machine weighs 60,000 pounds and runs non-stop on a giant cord. It has a 75-kwh sodium nickel chloride battery to buffer power demands, a crucial consideration as power-hungry Bitcoin facilities can trigger curtailments during heat waves, and to move the drill from one part of the mine to another.

This electric rock-chewing machine removes the need for the immense ventilation systems needed to clean the emissions that diesel engines normally spew beneath the surface in a conventional mining operation, though the overall footprint depends on electricity sources, as regions with Clean B.C. power imports illustrate in practice.

These electric devices improve air quality, dramatically reduce noise pollution, and remove costly maintenance of internal combustion engines, Goldcorp says.

More importantly, when these electric boring machines are used across the board, it will eliminate the negative health effects those diesel drills have on miners.

“It would be a challenge to go back,” says big drill operator Adam Ladouceur.

Mining with electric equipment also removes second- or third-highest expenditure in mining, the diesel fuel used to power the drills, said Goldcorp spokesman Pierre Noel, even as industries pursue dedicated energy deals like Bitcoin mining in Medicine Hat to manage power costs. (The biggest expense is the cost of labor.)

Electric load, haul, dump machine at Goldcorp Borden mine in OntarioElectric load, haul, dump machine at Goldcorp Borden mine in Ontario

Aside from initial cost, the electric Borden mine will save approximately $7 million ($9 million Canadian) annually just on diesel, propane and electricity.

Along with various sizes of electric drills and excavating tools, Goldcorp has started using electric powered LHD (load, haul, dump) trucks to crush and remove the ore it extracts, and Sandvik is working to increase the charging speed for battery packs in the 40-ton electric trucks which transport the ore out of the mines, while utilities add capacity with new BC generating stations coming online.

 

Related News

View more

Putting Africa on the path to universal electricity access

West and Central Africa Electricity Access hinges on utility reform, renewable energy, off-grid solar, mini-grids, battery storage, and regional grid integration, lowering costs, curbing energy poverty, and advancing SDG7 with sustainable, reliable power solutions.

 

Key Points

Expanding reliable power via renewables, grid trade, and off-grid systems to cut energy poverty and unlock inclusive growth.

✅ Utility reform lowers costs and improves service reliability

✅ Regional grid integration enables clean, least-cost power trade

✅ Off-grid solar and mini-grids electrify remote communities

 

As commodity prices soar and leaders around the world worry about energy shortages and prices of gasoline at the pump, millions of people in Africa still lack access to electricity.  One-half of the people on the continent cannot turn on a fan when temperatures go up, can’t keep food cool, or simply turn the lights on. This energy access crisis must be addressed urgently.

In West and Central Africa, only three countries are on track to give every one of their people access to electricity by 2030. At this slow pace, 263 million people in the region will be left without electricity in ten years.  West Africa has one of the lowest rates of electricity access in the world; only about 42% of the total population, and 8% of rural residents, have access to electricity.

These numbers, some far too big, others far too small, have grave consequences. Electricity is an important step toward enhancing people’s opportunities and choices. Access is key to boosting economic activity and contributes to improving human capital, which, in turn, is an investment in a country’s potential.  

Without electricity, children can’t do their schoolwork at night. Businesspeople can’t get information on markets or trade with each other. Worse, as the COVID-19 pandemic has shown so starkly, limited access to energy constrains hospital and emergency services, further endangering patients and spoiling precious medicine.  

What will it take to power West and Central Africa?  
As the African continent recovers from COVID-19 impacts, now is the critical time to accelerate progress towards universal energy access to drive the region’s economic transformation, promote socio-economic inclusion, and unlock human capital growth. Without reliable access to electricity, the holes in a country’s social fabric can grow bigger, those without access growing disenchanted with inequality.  

Tackling the Africa region’s energy access crisis requires four bold approaches. 

First, this involves making utilities financially viable. Many power providers in the region are cash-strapped, operate dilapidated and aging generation fleet and infrastructure. Therefore, they can’t deliver reliable and affordable electricity to their customers, let alone deliver electricity to those that currently must rely on inadequate alternatives to electricity. Overall, fewer than half of the utilities in Sub-Saharan Africa recover their operating costs, resulting in GDP losses as high as four percent in some countries.

Improving the performance of national utilities and greening their power generation mix is a prerequisite to lowering the costs of supply, thus expanding electricity access to those currently unelectrified, usually lower-income and often remote households. 

In that effort — and this a critical second point — West and Central African countries need to look beyond their borders and further integrate their national utilities and grids to other systems in the region. The region has an abundance of affordable clean energy sources — hydropower in Guinea, Mali, and Cote d’Ivoire; high solar irradiation in the Sahel — but the regional energy market is fragmented. 

Without efficient regional trade, many countries are highly dependent on one or two energy resources and heavily reliant on inefficient, polluting generation sources, requiring fuel imports linked to volatile international oil prices.

The vision of an integrated regional power market in countries of the Economic Community of West African States (ECOWAS) is coming a step closer to reality thanks to an ambitious program of cross-border interconnection projects. If countries take full advantage of this grid, the share of the region’s electricity consumption traded across borders would more than double from 8 percent today to about 17 percent by 2030. Overall, regional power trade could lower the lifecycle cost of West Africa’s power generation system by about 10 percent and provide greener energy by 2030. 

Third, electrification efforts need to be open to private sector investments and innovations, such as renewables like solar energy and battery storage, which have made a tremendous impact in enabling access for millions of poor and underserved households.  Specifically, off-grid solar systems and mini-grids have become a proven reliable way to provide affordable modern electricity services, powering homes in rural communities, healthcare facilities, and schools.

Burkina Faso, which enjoys one of the best solar radiation conditions in the region, is a successful example of leveraging the transformative impact of solar energy and battery storage. With support from the World Bank, the country is deploying solar energy to power its national grid, as well as mini-grids and individual household systems. Solar power with battery storage is competitive in Burkina Faso compared to other technologies and its government was successful in attracting private sector investments to support this technology.

Last, achieving universal electricity access will involve significant commitment from political leaders, especially developing policies and regulations that can attract high-quality investments.  

A significant step in that direction was achieved at the World Bank’s 2020 Annual Meetings with a commitment to set up the Powering Transformation Platform in each African country. Through the platform, each government will set their country-specific vision, goals and metrics, track progress, and explore and exchange innovative ideas and emerging best practices according to their own national energy needs and plans. 

This platform will bring together the elements needed to bring electricity to all in West and Central Africa and help attract new financing.

Over the last 3 years, the World Bank has doubled its investments to increase electricity access rates in Central and West Africa.  We have committed more than $7.8 billion to support 40 electricity access programs, of which more than half directly support new electricity connections. These operations are expected to provide access to 16 million people. The aim is to increase electricity access rates in West and Central Africa from 50 percent today to 64 percent by 2026.

However, World Bank’s financing alone is not enough. Our estimates show that nearly $20 billion are required for universal electrification across Sub-Saharan Africa, aligning with calls to quadruple power investment to meet demand, with about $10 billion annually needed for West and Central Africa. 

Closing the funding gap will require mobilizing traditional and new partners, especially the private sector, which is willing to invest if enabling conditions are in place, as well as philanthropic capital, that can fill in the space in areas not yet commercially attractive. The World Bank is ready to play a catalytical role in leveraging new investments. 

This is vital as less than a decade remains to reach the 2030 SDG7 goal of ensuring electricity for all through affordable, reliable, and modern energy services. As headlines worldwide focus on soaring energy prices in the developed world, we cannot lose sight of the vast populations in Africa that still cannot access basic energy services. This is the true global energy crisis.  

 

Related News

View more

US January power generation jumps 9.3% on year: EIA

US January power generation climbed to 373.2 TWh, EIA data shows, with coal edging natural gas, record wind output, record nuclear generation, rising hydro, and stable utility-scale solar amid higher Henry Hub prices.

 

Key Points

US January power generation hit 373.2 TWh; coal led gas, wind and nuclear set records, with solar edging higher.

✅ Coal 31.8% share; gas 29.4%; coal output 118.7 TWh, gas 109.6 TWh.

✅ Wind hit record 26.8 TWh; nuclear record 74.6 TWh.

✅ Total generation 373.2 TWh, highest January since 2014.

 

The US generated 373.2 TWh of power in January, up 7.9% from 345.9 TWh in December and 9.3% higher than the same month in 2017, Energy Information Administration data shows.

The monthly total was the highest amount in January since 377.3 TWh was generated in January 2014.

Coal generation totaled 118.7 TWh in January, up 11.4% from 106.58 TWh in December and up 2.8% from the year-ago month, consistent with projections of a coal-fired generation increase for the first time since 2014. It was also the highest amount generated in January since 132.4 TWh in 2015.

For the second straight month, more power was generated from coal than natural gas, as 109.6 TWh came from gas, up 3.3% from 106.14 TWh in December and up 19.9% on the year.

However, the 118.7 TWh generated from coal was down 9.6% from the five-year average for the month, due to the higher usage of gas and renewables and a rising share of non-fossil generation in the overall mix.

#google#

Coal made up 31.8% of the total US power generation in January, up from 30.8% in December but down from 33.8% in January 2017.

Gas` generation share was at 29.4% in the latest month, with momentum from record gas-fired electricity earlier in the period, down from 30.7% in December but up from 26.8% in the year-ago month.

In January, the NYMEX Henry Hub gas futures price averaged $3.16/MMBtu, up 13.9% from $2.78/MMBtu averaged in December but down 4% from $3.29/MMBtu averaged in the year-ago month.

 

WIND, NUCLEAR GENERATION AT RECORD HIGHS

Wind generation was at a record-high 26.8 TWh in January, up 29.3% from 22.8 TWh in December and the highest amount on record, according to EIA data going back to January 2001. Wind generated 7.2% of the nation`s power in January, as an EIA summer outlook anticipates larger wind and solar contributions, up from 6.6% in December and 6.1% in the year-ago month.

Utility-scale solar generated 3.3 TWh in January, up 1.3% from 3.1 TWh in December and up 51.6% on the year. In January, utility-scale solar generation made up 0.9% of US power generation, during a period when solar and wind supplied 10% of US electricity in early 2018, flat from December but up from 0.6% in January 2017.

Nuclear generation was also at a record-high 74.6 TWh in January, up 1.3% month on month and the highest monthly total since the EIA started tracking it in January 2001, eclipsing the previous record of 74.3 TWh set in July 2008. Nuclear generation made up 20% of the US power in January, down from 21.3% in December and 21.4% in the year-ago month.

Hydro power totaled 25.4 TWh in January, making up 6.8% of US power generation during the month, up from 6.5% in December but down from 8.2% in January 2017.

 

Related News

View more

N.S. abandons Atlantic Loop, will increase wind and solar energy projects

Nova Scotia Clean Power Plan 2030 pivots from the Atlantic Loop, scaling wind and solar, leveraging Muskrat Falls via the Maritime Link, adding battery storage and transmission upgrades to decarbonize grid and retire coal.

 

Key Points

Nova Scotia's 2030 roadmap to replace coal with wind, solar, hydro imports, storage, and grid upgrades.

✅ 1,000 MW onshore wind to supply 50% by 2030

✅ Battery storage sites and New Brunswick transmission upgrades

✅ Continued Muskrat Falls imports via Maritime Link

 

Nova Scotia is abandoning the proposed Atlantic Loop in its plan to decarbonize its electrical grid by 2030 amid broader discussions about independent grid planning nationwide, Natural Resources and Renewables Minister Tory Rushton has announced.

The province unveiled its clean power plan calling for 30 per cent more wind power and five per cent more solar energy in the Nova Scotia power grid over the coming years. Nova Scotia's plan relies on continued imports of hydroelectricity from the Muskrat Falls project in Labrador via the Emera-owned Maritime Link.

Right now Nova Scotia generates 60 per cent of its electricity by burning fossil fuels, mostly coal, and some increased use of biomass has also factored into the mix. Nova Scotia Power must close its coal plants by 2030 when 80 per cent of electricity must come from renewable sources in order reduce greenhouse gas emissions causing climate changes.

Critics have urged reducing biomass use in electricity generation across the province.

The clean power plan calls for an additional 1,000 megawatts of onshore wind by 2030 which would then generate 50 per cent of the the province's electricity, while also advancing tidal energy in the Bay of Fundy as a complementary source.    

"We're taking the things already know and can capitalize on while we build them here in Nova Scotia," said Rushton, "More importantly, we're doing it at a lower rate so the ratepayers of Nova Scotia aren't going to bear the brunt of a piece of equipment that's designed and built and staying in Quebec."

The province says it can meet its green energy targets without importing Quebec hydro through the Atlantic loop. It would have brought hydroelectric power from Quebec into New Brunswick and Nova Scotia via upgraded transmission links. But the government said the cost is prohibitive, jumping to $9 billion from nearly $3 billion three years ago with no guarantee of a secure supply of power from Quebec.

"The loop is not viable for 2030. It is not necessary to achieve our goal," said David Miller, the provincial clean energy director. 

Miller said the cost of $250 to $300 per megawatt hour was five times higher than domestic wind supply.

Some of the provincial plan includes three new battery storage sites and expanding the transmission link with New Brunswick. Both were Nova Scotia Power projects paused by the company after the Houston government imposed a cap on the utility's rate increased in the fall of 2022.

The province said building the 345-kilovolt transmission line between Truro, N.S., and Salisbury, N.B., and an extension to the Point Lepreau Nuclear Generating Station, as well as aligning with NB Power deals for Quebec electricity underway, would enable greater access to energy markets.

Miller says Nova Scotia Power has revived both.

Nova Scotia Power did not comment on the new plan, but Rushton spoke for the company.

"All indications I've had is Nova Scotia Power is on board for what is taking place here today," he said.

 

Related News

View more

Denmark's climate-friendly electricity record is incinerated

Denmark Renewable Energy Outlook assesses Eurostat ranking, district heating and trash incineration, EV adoption, wind turbine testing expansions, and electrification to cut CO2, aligning policies with EU 2050 climate goals and green electricity usage.

 

Key Points

A brief analysis of Denmark's green power use, electrification, EVs, and policies needed to meet EU 2050 CO2 goals.

✅ Eurostat rank low due to trash incineration in district heating.

✅ EV adoption stalled after tax reinstatement, slowing electrification.

✅ Wind test centers expanded; electrification could cut 95% CO2.

 

Denmark’s low ranking in the latest figures from Eurostat regarding climate-friendly electricity, which places the country in 32nd place out of 40 countries, is partly a result of the country’s reliance on the incineration of trash to warm our homes via long-established district heating systems.

Additionally, there are not enough electric vehicles – a recent increase in sales was halted in 2016 when the government started to phase back registration taxes scrapped in 2008, and Europe’s EV slump underscores how fragile momentum can be.

 

Not enough green electricity being used

Denmark is good at producing green electricity, reports Politiken, but it does not use enough, and amid electricity price volatility in Europe this is bad news if it wants to fulfil the EU’s 2050 goal to eliminate CO2 emissions.

 

A recent report by Eurelectric and McKinsey demonstrates that if heating, transport and industry were electrified, reflecting a broader European push for electrification across the energy system, 95 percent of the country’s CO2 emissions could be eliminated by that date.

 

Wind turbine testing centre expansion approved

Parliament has approved the expansion of two wind turbine centres in northwest Jutland, supporting integration as e-mobility drives electricity demand in the coming years. The centres in Østerild and Høvsøre will have the capacity to test nine and seven turbines, measuring 330 and 200 metres in size (up from 250 and 165) respectively. The Østerild expansion should be completed in 2019, while Høvsøre ​​will have to wait a little longer.

 

Third on the Environmental Performance Index

Denmark finished third on the latest Environmental Performance Index, finishing only behind Switzerland and France. Its best category ranking was third for Environmental Health, and comparative energy efficiency benchmarking can help contextualize progress. Elsewhere, it ranked 11th for Ecosystem Vitality, 18th for Biodiversity and Habitat, 94th for Forests, 87th for Fisheries, 25th for Climate and Energy and 37th for Air Pollution, 14th for Water Resources and 7th for Agriculture.

 

Related News

View more

Beating Covid Is All About Electricity

Hospital Electricity Reliability underpins ICU operations, ventilators, medical devices, and diagnostics, reducing power outages risks via grid power and backup generators, while energy poverty and blackouts magnify COVID-19 mortality in vulnerable regions.

 

Key Points

Hospital electricity reliability is steady power that keeps ICU care, ventilators and medical devices operating.

✅ ICU loads: ventilators, monitors, infusion pumps, diagnostics

✅ Grid power plus backup generators minimize outage risk

✅ Energy poverty increases COVID-19 mortality and infection

 

Robert Bryce, Contributor

During her three-year career as a registered nurse, my friend, C., has cared for tuberculosis patients as well as ones with severe respiratory problems. She’s now caring for COVID-19 patients at a hospital in Ventura County, California, where debates about keeping the lights on continue amid the state’s energy transition. Is she scared about catching the virus? “No,” she replied during a phone call on Thursday. “I’m pretty unflappable.”

What would scare her? She quickly replied, “a power outage,” a threat that grows during summer blackouts when heat waves drive demand. About a year ago, while working in Oregon, the hospital she was working in lost power for about 45 minutes. “It was terrifying,” she said. 

C., who wasn’t authorized by her hospital to talk to the media, and thus asked me to only use the initial of her first name, said that COVID-19 patients are particularly reliant on electrical devices. She quickly ticked off the machines: “The bed, the IV machine, vital signs monitor, heart monitor, the sequential compression devices...” COVID-19 patients are hooked up to a minimum of five electrical devices, she said, and if the virus-stricken patient needs high-pressure oxygen or a ventilator, the number of electrical devices could be two or three times that number. “You name it, it plugs in,” she said.  

Today In: Energy

The virus has infected some 2.2 million people around the world and killed more than 150,000,including more than 32,000 people here in the U.S. While those numbers are frightening, it is apparent that the toll would be far higher without adequate supplies of reliable electricity. Modern healthcare systems depend on electricity. Hospitals are particularly big consumers. Power demand in hospitals is about 36 watts per square meter, which is about six times higher than the electricity load in a typical American home, and utilities are turning to AI to adapt to electricity demands during surges. 

Beating the coronavirus is all about electricity. Indeed, nearly every aspect of coronavirus detection, testing, and treatment requires juice. Second, it appears that the virus is more deadly in places where electricity is scarce or unreliable. Finally, if there are power outages in virus hotspots or hospitals, a real risk in a grid with more blackouts than other developed countries, the damage will be even more severe. 

As my nurse friend in Ventura County made clear, her ability to provide high-quality care for patients is wholly dependent on reliable electricity. The thermometers used to check for fever are powered by electricity. The monitors she uses to keep track of her patients, as well as her Vocera, the walkie-talkie that she uses to communicate with her colleagues, runs on batteries. Testing for the virus requires electricity. One virus-testing machine, Abbott Labs’ m2000, is a 655-pound appliance that, according to its specification sheet, runs on either 120 or 240 volts of electricity. The operating manual for a ventilator made by Hamilton Medical is chock full of instructions relating to electricity, including how to manage the machine’s batteries and alarms. 

While it may be too soon to make a direct connection between lack of electricity and the lethality of the coronavirus, the early signs from the Navajo reservation indicate that energy poverty amplifies the danger. The sprawling reservation has about 175,000 residents, but it has a higher death toll from the virus than 13 states. About 10 percent of Navajos do not have electricity in their homes and more than 30 percent lack indoor plumbing. 

The death rate from the virus on the reservation now stands at 3.4 percent, which is nearly twice the global average. In the middle of last week, the entire population of Native American tribes in the U.S. accounted for about 1,100 confirmed cases of the virus and about 44 deaths. Navajos accounted for the majority of those, with 830 confirmed cases of coronavirus and 28 deaths. 

On Saturday night, the Navajo Times reported a major increase, with 1,197 positive cases of COVID-19 on the reservation and 44 deaths. Other factors may contribute to the high infection and mortality rates on the reservation, including  high rates of diabetes, obesity, and crowded residential living situations. That said, electricity and water are essential to good hygiene and health authorities say that frequent hand washing helps cut the risk of contracting the virus. 

The devastation happening on Navajoland provides a window into what may happen in crowded, electricity-poor countries like India, Pakistan, and Bangladesh. It also shows what could happen if a tornado or hurricane were to wipe out the electric grid in virus hotspots like New Orleans, as extreme weather increasingly afflicts the grid nationwide. Sure, most American hospitals have backup generators to help assure reliable power. But those generators can fail. Further, they usually burn diesel fuel which needs to be replenished every few days. 

The essential point here is that our hospitals and critical health care machines aren’t running on solar panels and batteries. Instead, they are running on grid power that’s being provided by reliable sources — coal, natural gas, hydro, and nuclear power — which together produce about 89 percent of the electricity consumed in this country, even as Russian hacking of utilities highlights cyber risks. The pandemic — which is inflicting trillions of dollars of damage on our economy and tens of thousands of deaths — underscores the criticality of abundant and reliable electricity to our society and the tremendous damage that would occur if our health care infrastructure were to be hit by extended blackouts during the fight to stop COVID-19.

In a follow-up interview on Saturday with my friend, C., she told me that while caring for patients, she and her colleagues “are entirely dependent on electricity. We take it for granted. It’s a hidden assumption in our work,” a reminder echoed by a grid report card that warns of dangerous vulnerabilities. She quickly added she and her fellow nurses “aren’t trained or equipped to deal with circumstances that would come with shoddy power. If we lost power completely, people will die.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.