Regulators consider Duke’s “Save-a-Watt” plan

By The News & Observer


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Charging Duke Energy Corp. customers in North Carolina a little more will help the company with its energy conservation efforts, the utility's top executive in the state told regulators recently.

Duke Energy Carolinas President Ellen Ruff said at the opening of a hearing by the state Utilities Commission that the company wants the panel to approve its proposed method for paying for energy efficiency.

Charlotte-based Duke Energy wants to initially charge the average customer about $1 more per month. The rate could go up or down in the years ahead to help recover much of the cost of building new power plants or buying electricity, along with a return. The utility's profits are regulated by the commission.

"We have an opportunity - not a guarantee - of recovering our program costs and achievable earnings comparable to supply side resources on our energy-efficient investments," Ruff told the commission.

But attorneys and advocates representing the state, utility consumers and environmentalists say Duke's "Save-a-Watt" plan is too expensive and doesn't save enough energy - only about a 1 percent reduction by 2015.

"We agree with the company that we need to give utilities proper incentives to maximize efficiency and energy conservation in particular," said Gudrun Thompson with the Southern Environmental Law Center. "This proposal is just not going to get the job done."

Duke Energy Carolinas presented the program in May 2007. It is designed in part to meet a state law that required electric utilities to generate 12.5 percent of their power from alternative energy sources or through energy savings by 2021.

Under Save-a-Watt, the utility would be permitted in 2009 to add on average 98 cents per month to the bills of its 1.8 million customers in North Carolina.

Duke would create financial incentives and rebates to encourage customers to save electricity by sealing windows and doors, buying fluorescent light bulbs or purchasing energy-efficient appliances.

The company wants to raise rates to an amount equal to 90 percent of what it would cost to generate the electricity that would have been produced had it not been for the energy-savings plan. If Save-a-Watt doesn't produce energy savings, Duke says it will return what it has charged on a prorated basis.

"The company will take the risk that its programs will perform and that customers only pay for actual results," Duke lawyer Lara Simmons Nichols said.

Duke can do much better than its projected energy savings, according to environmental groups that staged a small protest outside the hearing. They said Duke could reduce energy use by 1 percent annually.

"That's not an energy-efficient program. That's a small drop in the bucket of the world of possibility," said Shana Becker with the North Carolina Public Interest Research Group, one of about a dozen groups that want Duke Energy to withdraw the Save-a-Watt proposal.

Duke Energy plans to call several executives as witnesses. The panel also will meet Aug. 18 to hear from Duke Energy chief executive Jim Rogers. It's unclear when the committee would rule.

Related News

Most Energy Will Come From Fossil Fuels, Even In 2040

2040 Energy Outlook projects a shifting energy mix as renewables scale, EV adoption accelerates, and IEA forecasts plateauing oil demand alongside rising natural gas, highlighting policy, efficiency, and decarbonization trends that shape global consumption.

 

Key Points

A data-driven view of future energy mix, covering renewables, fossil fuels, EVs, oil demand, and policy impacts.

✅ Renewables reach 16-30% by 2040, higher with strong policy support.

✅ Fossil fuels remain dominant, with oil flat and natural gas rising.

✅ EV share surges, cutting oil use; efficiency curbs demand growth.

 

Which is more plausible: flying taxis, wind turbine arrays stretching miles into the ocean, and a solar roof on every house--or a scorched-earth, flooded post-Apocalyptic world? 

We have no way of peeking into the future, but we can certainly imagine it. There is plenty of information about where the world is headed and regardless of how reliable this information is—or isn’t—we never stop wondering. Will the energy world of 20 years from now be better or worse than the world we live in now? 

The answer may very well lie in the observable trends.


A Growing Population

The global population is growing, and it will continue to grow in the next two decades. This will drive a steady growth in energy demand, at about 1 percent per year, according to the International Energy Agency.

This modest rate of growth is good news for all who are concerned about the future of the planet. Parts of the world are trying to reduce their energy consumption, and this should have a positive effect on the carbon footprint of humanity. The energy thirst of most parts of the world will continue growing, however, hence the overall growth.

The world’s population is currently growing at a rate of a little over 1 percent annually. This rate of growth has been slowing since its peak in the 1960s and forecasts suggest that it will continue to slow. Growth in energy demand, on the other hand, may at some point stop moving in tune with population growth trends as affluence in some parts of the world grows. The richer people get, the more energy they need. So, to the big question: where will this energy come from?


The Rise of Renewables

For all the headline space they have been claiming, it may come as a disappointing surprise to many that renewable energy, excluding hydropower, to date accounts for just 14 percent of the global primary energy mix. 

Certainly, adoption of solar and wind energy has been growing in leaps and bounds, with their global share doubling in five years in many markets, but unless governments around the world commit a lot more money and effort to renewable energy, by 2040, solar and wind’s share in the energy mix will still only rise to about 16 to 17 percent. That’s according to the only comprehensive report on the future of energy that collates data from all the leading energy authorities in the world, by non-profit Resources for the Future.

The growth in renewables adoption, however, would be a lot more impressive if governments do make serious commitments. Under that scenario, the share of renewables will double to over 30 percent by 2040, echoing milestones like over 30% of global electricity reached recently: that’s the median rate of all authoritative forecasts. Amongst them, the adoption rates of renewables vary between 15 percent and 61 percent by 2040.

Even the most bullish of the forecasts on renewables is still far below the 100-percent renewable future many would like to fantasize about, although BNEF’s 50% by 2050 outlook points to what could be possible in the power sector. 

But in 2040, most of the world’s energy will still come from fossil fuels.


EV Energy

Here, forecasters are more optimistic. Again, there is a wide variation between forecasts, but in each and every one of them the share of electric vehicles on the world’s roads in 2040 is a lot higher than the meagre 1 percent of the global car fleet EVs constitute today.
Related: Gas Prices Languish As Storage Falls To Near-Record Lows

Government policy will be the key, as U.S. progress toward 30% wind and solar shows how policy steers the power mix that EVs ultimately depend on. Bans of internal combustion engines will go a long way toward boosting EV adoption, which is why some forecasters expect electric cars to come to account for more than 50 percent of cars on the road in 2040. Others, however, are more guarded in their forecasts, seeing their share of the global fleet at between 16 percent and a little over 40 percent.

Many pin their hopes for a less emission-intensive future on electric cars. Indeed, as the number of EVs rises, they displace ICE vehicles and, respectively, the emission-causing oil that fuels for ICE cars are made from.  It should be a no brainer that the more EVs we drive, the less emissions we produce. Unfortunately, this is not necessarily the case: China is the world’s biggest EV market, and its solar PV expansion has been rapid, it has the most EVs—including passenger cars and buses—but it is also one of the biggest emitters.

Still, by 2040, if the more optimistic forecasts come true, the world will be consuming less oil than it is consuming now: anywhere from 1.2 million bpd to 20 million bpd less, the latter case envisaging an all-electric global fleet in 2040. 


This Ain’t Your Daddy’s Oil

No, it ain’t. It’s your grandchildren’s oil, for good or for bad. The vision of an oil-free world where renewable power is both abundant and cheap enough to replace all the ways in which crude oil and natural gas are used will in 2040 still be just that--a vision, with practical U.S. grid constraints underscoring the challenges. Even the most optimistic energy scenarios for two decades from now see them as the dominant source of energy, with forecasts ranging between 60 percent and 79 percent. While these extremes are both below the over-80 percent share fossil fuels have in the world’s energy mix, they are well above 50 percent, and in the U.S. renewables are projected to reach about one-fourth of electricity soon, even as fossil fuels remain foundational.

Still, there is good news. Fuel efficiency alone will reduce oil demand significantly by 2040. In fact, according to the IEA, demand will plateau at a little over 100 million bpd by the mid-2030s. Combined with the influx of EVs many expect, the world of 20 years from now may indeed be consuming a lot less oil than the world of today. It will, however, likely consume a lot more natural gas. There is simply no way around fossil fuels, not yet. Unless a miracle of politics happens (complete with a ripple effect that will cost millions of people their jobs) in 2040 we will be as dependent on oil and gas as we are but we will hopefully breathe cleaner air.

By Irina Slav for Oilprice.com

 

Related News

View more

Germany considers U-turn on nuclear phaseout

Germany Nuclear Power Extension debated as Olaf Scholz weighs energy crisis, gas shortages from Russia, slow grid expansion in Bavaria, and renewables delays; stress test results may guide policy alongside coal plant reactivations.

 

Key Points

A proposal to delay Germany's nuclear phaseout to stabilize power supply amid gas cuts and slow grid upgrades.

✅ Driven by Russia gas cuts and Nord Stream 1 curtailment

✅ Targets Bavaria grid bottlenecks; renewables deployment delays

✅ Decision awaits grid stress test; coalition parties remain split

 

The German chancellor on Wednesday said it might make sense to extend the lifetime of Germany's three remaining nuclear power plants.

Germany famously decided to stop using atomic energy in 2011, and the last remaining plants were set to close at the end of this year.

However, an increasing number of politicians have been arguing for the postponement of the closures amid energy concerns arising from Russia's invasion of Ukraine. The issue divides members of Scholz's ruling traffic-light coalition.

What did the chancellor say?
Visiting a factory in western Germany, where a vital gas turbine is being stored, Chancellor Olaf Scholz was responding to a question about extending the lifetime of the power stations.

He said the nuclear power plants in question were only relevant for a small proportion of electricity production. "Nevertheless, that can make sense," he said.

The German government has previously said that renewable energy alternatives are the key to solving the country's energy problems.

However, Scholz said this was not happening quickly enough in some parts of Germany, such as Bavaria.

"The expansion of power line capacities, of the transmission grid in the south, has not progressed as quickly as was planned," the chancellor said.

"We will act for the whole of Germany, we will support all regions of Germany in the best possible way so that the energy supply for all citizens and all companies can be guaranteed as best as possible."

The phaseout has been planned for a long time. Germany's Social Democrat government, under Merkel's predecessor Gerhard Schröder, had announced that Germany would stop using nuclear power by 2022 as planned.

Schröder's successor Angela Merkel — herself a former physicist — had initially sought to extend to life of existing nuclear plants to as late as 2037. She viewed nuclear power as a bridging technology to sustain the country until new alternatives could be found.

However, Merkel decided to ditch atomic energy in 2011, after the Fukushima nuclear disaster in Japan, setting Germany on a path to become the first major economy to phase out coal and nuclear in tandem.

Nuclear power accounted for 13.3% of German electricity supply in 2021. This was generated by six power plants, of which three were switched off at the end of 2021. The remaining three — Emsland, Isar and Neckarwestheim — were due to shut down at the end of 2022. 

Germany's energy mix 1st half of 2022
The need to fill an energy gap has emerged after Russia dramatically reduced gas deliveries to Germany through the Nord Stream 1 pipeline, though nuclear power would do little to solve the gas issue according to some officials. Officials in Berlin say the Kremlin is seeking to punish the country — which is heavily reliant on Moscow's gas — for its support of Ukraine and sanctions on Russia.

Germany has already said it will temporarily fire up mothballed coal and oil power plants in a bid to solve the looming power crisis.

Social Democrat Scholz and Germany's energy minister, Robert Habeck, from the Green Party, a junior partner in the three-way coalition government, had previously ruled out any postponement of the nuclear phasout, despite debate over a possible resurgence of nuclear energy among some lawmakers. The third member of Scholz's coalition, the neoliberal Free Democrats, has voiced support for the extension, as has the opposition conservative CDU-CSU bloc.

Berlin has said it will await the outcome of a new "stress test" of Germany's electric grid before deciding on the phaseout.

 

Related News

View more

Covid-19 puts brake on Turkey’s solar sector

Turkey Net Metering Suspension freezes regulator reviews, stalling rooftop solar permits and grid interconnections amid COVID-19, pausing licensing workflows, EPC pipelines, and electricity bill credits that drive commercial and household prosumer adoption.

 

Key Points

A pause on technical reviews freezing net metering applications and slowing rooftop solar deployment in Turkey.

✅ Monthly technical committee meetings suspended indefinitely

✅ Rooftop solar permits and grid interconnections on hold

✅ EPC firms urge remote evaluations for transparency

 

The decision by the Turkish Energy Market Regulatory Authority to halt part of the system of processing net metering applications risks bringing the only vibrant segment of the nation’s solar industry to a grinding halt, a risk amplified as global renewables face Covid-19 disruptions across markets.

The regulator has suspended monthly meetings of the committee which makes technical evaluations of net metering applications, citing concerns about the spread of Covid-19, which has already seen U.S. utility-scale solar face delays this year.

The availability of electricity bill credits for net-metering-approved households which inject surplus power into the grid, similar to how British households can sell power back to energy firms, has seen the rooftop projects the scheme is typically associated with remain the only source of new solar generation capacity in Turkey of late.

However the energy regulator’s decision to suspend technical evaluation committee meetings until further notice has seen the largely online licensing process for new solar systems practically cease; by contrast, Berlin is being urged to remove PV barriers to keep projects moving.

The Turkish solar industry has claimed the move is unnecessary, with solar engineering, procurement and construction services businesses pointing out the committee could meet to evaluate projects remotely. It has been argued such a move would streamline the application process and make it more transparent, regardless of the current public health crisis.

 

Net metering 

Turkey introduced net metering for rooftop installations last May and pv magazine has reported the specifics of the scheme, amid debates like New England's grid upgrade costs over who pays.

National grid operator Teias confirmed recently the country added 109 MW of new solar capacity in the first quarter, most of it net-metered rooftop systems, even as Australian distributors warn excess solar can strain local networks.

Net metering has been particularly attractive to commercial electricity users because the owners of small and medium-sized businesses pay more for power, as solar reshapes electricity prices in Northern Europe, than either households or large scale industrial consumers.

Until the recent technical committee decision by the regulator, the chief obstacle to net metering adoption had been the nation’s economic travails. The Turkish lira has lost 14% of its value since January and around 36% over the last two years. The central bank has been using its foreign reserves to support state lenders and the lira but the national currency slipped near an all-time low on Friday and foreign analysts predict the central bank reserves could run dry in July.

The level of exports shipped last month was down 41% on April last year and imports fell 28% by the same comparison, further depressing the willingness of companies to make capital investments such as rooftop solar.

 

Related News

View more

Solar farm the size of 313 football fields to be built at Edmonton airport

Airport City Solar Edmonton will deliver a 120-megawatt, 627-acre photovoltaic, utility-scale renewable energy project at EIA, creating jobs, attracting foreign investment, and supplying clean power to Fortis Alberta and airport distribution systems.

 

Key Points

A 120 MW, 627-acre photovoltaic solar farm at EIA supplying clean power to Fortis Alberta and airport systems.

✅ 120 MW utility-scale project over 627 acres at EIA

✅ Feeds Fortis Alberta and airport distribution networks

✅ Drives jobs, investment, and regional sustainability

 

A European-based company is proposing to build a solar farm bigger than 300 CFL football fields at Edmonton's international airport, aligning with Alberta's red-hot solar growth seen across the province.

Edmonton International Airport and Alpin Sun are working on an agreement that will see the company develop Airport City Solar, a 627-acre, 120-megawatt solar farm that reflects how renewable power developers combine resources for stronger projects on what is now a canola field on the west side of the airport lands.

The solar farm will be the largest at an airport anywhere in the world, EIA said in a news release Tuesday, in a region that also hosts the largest rooftop solar array at a local producer.

"It's a great opportunity to drive economic development as well as be better for the environment," Myron Keehn, vice-president, commercial development and air service at EIA, told CBC News, even as Alberta faces challenges with solar expansion that require careful planning.

"We're really excited that [Alpin Sun] has chosen Edmonton and the airport to do it. It's a great location. We've got lots of land, we're geographically located north, which is great for us, because it allows us to have great hours of sunlight.

"As everyone knows in Edmonton, you can golf early in the morning or golf late at night in the summertime here. And in wintertime it's great, because of the snow, and the reflective [sunlight] off the snow that creates power as well."

Airport official Myron Keehn says the field behind him will become home to the world's largest solar farm at an airport. (Scott Neufeld/CBC)

The project will "create jobs, provide sustainable solar power for our region and show our dedication to sustainability," Tom Ruth, EIA president and CEO, said in the news release, while complementing initiatives by Ermineskin First Nation to expand Indigenous participation in electricity generation.

Construction is expected to begin in early 2022, as new solar facilities in Alberta demonstrate lower costs than natural gas. The solar farm would be operational by the end of that year, the release said. 

Alpin Sun says the project will bring in $169 million in foreign investment to the Edmonton metro region amid federal green electricity contracts that are boosting market certainty. 

Power generated by Airport City Solar will feed into Fortis Alberta and airport distribution systems.

 

Related News

View more

Some old dams are being given a new power: generating clean electricity

Hydroelectric retrofits for unpowered dams leverage turbines to add renewable capacity, bolster grid reliability, and enable low-impact energy storage, supporting U.S. and Canada decarbonization goals with lower costs, minimal habitat disruption, and climate resilience.

 

Key Points

They add turbines to existing dams to make clean power, stabilize the grid, and offer low-impact storage at lower cost.

✅ Lower capex than new dams; minimal habitat disruption

✅ Adds firming and storage to support wind and solar

✅ New low-head turbines unlock more retrofit sites

 

As countries race to get their power grids off fossil fuels to fight climate change, there's a big push in the U.S. to upgrade dams built for purposes such as water management or navigation with a feature they never had before — hydroelectric turbines. 

And the strategy is being used in parts of Canada, too, with growing interest in hydropower from Canada supplying New York and New England.

The U.S. Energy Information Administration says only three per cent of 90,000 U.S. dams currently generate electricity. A 2012 report from the U.S. Department of Energy found that those dams have 12,000 megawatts (MW) of potential hydroelectric generation capacity. (According to the National Hydropower Association, 1 MW can power 750 to 1,000 homes. That means 12,000 MW should be able to power more than nine million homes.)

As of May 2019, there were projects planned to convert 32 unpowered dams to add 330 MW to the grid over the next several years.

One that was recently completed was the Red Rock Hydroelectric Project, a 60-year-old flood control dam on the Des Moines River in Iowa that was retrofitted in 2014 to generate 36.4 MW at normal reservoir levels, and up to 55 MW at high reservoir levels and flows. It started feeding power to the grid this spring, and is expected to generate enough annually to supply power to 18,000 homes.

It's an approach that advocates say can convert more of the grid from fossil fuels to clean energy, often with a lower cost and environmental impact than building new dams.

Hydroelectric facilities can also be used for energy storage, complementing intermittent clean energy sources such as wind and solar with pumped storage to help maintain a more reliable, resilient grid.

The Nature Conservancy and the World Wildlife Fund are two environmental groups that oppose new hydro dams because they can block fish migration, harm water quality, damage surrounding ecosystems and release methane and CO2, and in some regions, Western Canada drought has reduced hydropower output as reservoirs run low. But they say adding turbines to non-powered dams can be part of a shift toward low-impact hydro projects that can support expansion of solar and wind power.

Paul Norris, president of the Ontario Waterpower Association, said there's typically widespread community support for such projects in his province amid ongoing debate over whether Ontario is embracing clean power in its future plans. "Any time that you can better use existing assets, I think that's a good thing."

New turbine technology means water doesn't need to fall from as great a height to generate power, providing opportunities at sites that weren't commercially viable in the past, Norris said, with recent investments such as new turbines in Manitoba showing what is possible.

In Ontario, about 1,000 unpowered dams are owned by various levels of government. "With the appropriate policy framework, many of these assets have the potential to be retrofitted for small hydro," Norris wrote in a letter to Ontario's Independent Electricity System Operator this year as part of a discussion on small-scale local energy generation resources.

He told CBC that several such projects are already in operation, such as a 950 kW retrofit of the McLeod Dam at the Moira River in Belleville, Ont., in 2008. 

Four hydro stations were going to be added during dam refurbishment on the Trent-Severn Waterway, but they were among 758 renewable energy projects cancelled by Premier Doug Ford's government after his election in 2018, a move examined in an analysis of Ontario's dirtier electricity outlook and its implications.

Patrick Bateman, senior vice-president of Waterpower Canada, said such dam retrofit projects are uncommon in most provinces. "I don't see it being a large part of the future electricity generation capacity."

He said there has been less movement on retrofitting unpowered dams in Canada compared to the U.S., because:

There are a lot more opportunities in Canada to refurbish large, existing hydro-generating stations to boost capacity on a bigger scale.

There's less growth in demand for clean energy, because more of Canada's grid is already non-carbon-emitting (80 per cent) compared to the U.S. (40 per cent).

Even so, Norris thinks Canadians should be looking at all opportunities and options when it comes to transitioning the grid away from fossil fuels, including retrofitting non-powered dams, especially as a recent report highlights Canada's looming power problem over the coming decades.

"If we're going to be serious about addressing the inevitable challenges associated with climate change targets and net zero, it really is an all-of-the-above approach."

 

Related News

View more

Residential electricity use -- and bills -- on the rise thanks to more working from home

Work From Home Energy Consumption is driving higher electricity bills as residential usage rises. Smart meter data, ISO-New-England trends, and COVID-19 telecommuting show stronger power demand and sensitivity to utility rates across regions.

 

Key Points

Higher household electricity use from telecommuting, shifting load to residences and raising utility bills.

✅ Smart meters show 5-22 percent residential usage increases.

✅ Commercial demand fell as home cooling and IT loads rose.

✅ Utility rates and AC use drive bill spikes during summer.

 

Don't be surprised if your electric bills are looking higher than usual, with a sizable increase in the amount of power that you have used.

Summer traditionally is a peak period for electricity usage because of folks' need to run fans and air-conditioners to cool their homes or run that pool pump. But the arrival of the coronavirus and people working from home is adding to amount of power people are using.

Under normal conditions, those who work in their employer's offices might not be cooling their homes as much during the middle of the day or using as much electricity for lights and running computers.

For many, that's changed.

Estimates on how much of an increase residential electric customers are seeing as result of working from home vary widely.

ISO-New England, the regional electric grid operator, has seen a 3 percent to 5 percent decrease in commercial and industrial power demand, even as the grid overseer issued pandemic warnings nationally. The expectation is that much of that decrease translates into a corresponding increase in residential electricity usage.

But other estimates put the increase in residential electricity usage much higher. A Washington state company that makes smart electric meters, Itron, estimates that American households are using 5 percent to 10 percent more electricity per month since March, when many people began working from home as part of an effort to prevent the spread of the coronavirus.

Another smart metering company, Cambridge, Mass.-based Sense, found that average home electricity usage increased 22 percent in April compared to the same period in 2019, a reflection of people using more electricity while they stayed home. Based on its analysis of data from 5,000 homes across 30 states, Sense officials said a typical customer's monthly electric bill increased by between $22 and $25, with a larger increase for consumers in states with higher electricity rates.

Connecticut-specfic data is harder to come by.

Officials with Orange-based United Illuminating declined to provide any customer usage data, though, like others in the power industry, they did acknowledge that residential customers are using more electricity. And the state's other large electric distribution utility, Eversource, was unable to provide any recent data on residential electric usage. The company did tell Connecticut utility regulators there was a 3 percent increase in residential power usage for the week of March 21 compared to the week before.

Over the same time period, Eversource officials saw a 3 percent decrease in power usage by commercial and industrial customers.

Separately, nuclear plant workers raised concerns about pandemic precautions at some facilities, reflecting operational strains.

Alan Behm of Cheshire said he normally uses 597 kilowatt hours of electricity during an average month. But in April of this year, the amount of electricity he used rose by nearly 51 percent.

With many offices closed, the expense of heating, cooking and lighting is being shifted from employer to employee, and some utilities such as Manitoba Hydro have pursued unpaid days off to trim costs during the pandemic. And one remote work expert believes some companies are recognizing the burden those added costs are placing on workers -- and are trying to do something about it.

Technology giant Google announced in late May that it was giving employees who work from home $1,000 allowances to cover equipment costs and other expenses associated with establishing a home office.

Moe Vela, chief transparency officer for the New York City-based computer software company TransparentBusiness, said the move by Google executives is a savvy one.

"Google is very smart to have figured this out," Vela said. "This is what employees want, especially millenials. People are so much happier to be working remotely, getting those two to three hours back per day that some people spend getting to and from work is so much more important than a stipend."

Vela predicted that even after a vaccine is found for the corona virus, one of the key worklife changes is likely to be a broader acceptance of telework and working from home.

Beyond the immediate shifts, more young Canadians would work in electricity if awareness improved, pointing to future talent pipelines.

"I think that's where we're headed," he said. "I think it will make an employer more attractive as they try to attract talent from around the world."

Vela said employers save an average of $11,000 per year for each employee they have working from home.

"It would be a brilliant move if a company were to share some of that amount with employees," he said. "I wouldn't do it if it's going to cause a company to not be there (in business) though."

The idea of a company sharing whatever savings it achieves by having employees work from home wasn't well received by many Connecticut residents who responded to questions posed via social media by Hearst Connecticut Media. More than 100 people responded and an overwhelming number of people spoke out against the idea.

"You are saving on gas and other travel related expenses, so the small increase in your electric bill shouldn't really be a concern," said Kathleen Bennett Charest of Wallingford.

Jim Krupp, also of Wallingford, said, "to suggest that the employers compensate the employees makes as much sense as suggesting that the employees should take a pay cut due to their reduced expenses for travel, day care, and eating lunch at work."

"Employers must still maintain their offices and incur all of the fixed expenses involved, including basic utilities, taxes and insurance," Krupp said. "The cost savings (for employers) that are realized are also offset by increased costs of creating and maintaining IT networks that allow employees to access their work sites from home and the costs of monitoring and managing the work force."

Kiki Nichols Nugent of Cheshire said she was against the idea of an employee trying to get their employer to pay for the increased electricity costs associated with working from home.

"I would not nickle and dime," Nugent said. "If companies are saving on electricity now, maybe employers will give better raises next year."

New Haven resident Chris Smith said he is "just happy to have a job where I am able to telecommute."

"When teleworking becomes more the norm, either now or in the future, we may see increased wages for teleworkers either for the lower cost to the employer or for the increase in productivity it brings," Smith said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.