An ugly battle over clean power

By Knight Ridder Tribune


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The wind blows so hard over these desert ridges that it topples outhouses. It whistles through the high steel towers strung with cables that carry electricity west to light the cities of Puget Sound.

The hills west of Ellensburg, then, would seem an ideal spot for giant wind turbines to help quench the Northwest's thirst for clean, home-grown energy. Instead, they have become a battleground as Kittitas County officials and some locals square off against environmentalists and wind-power companies over putting towering generators near rural homes that dot these hills and valleys. Now the five-year-old debate has reached all the way to the governor's office, elevating this beyond a classic not-in-my-backyard tale in a sparsely populated county. The outcome of this fight could set a precedent for future fights over wind power in the state as demand continues to mount. "There are going to be sites that aren't out in the middle of wheat fields anymore," said Dana Peck of Horizon Wind Energy of Houston, one of two companies seeking to build dozens of the turbines here. "It wouldn't be allowed in King County," counters Rick Forster, a Redmond man who owns a vacation cabin nearby. "But they just figure in this little county over there it doesn't matter." New popularity If Horizon gets its way, its Kittitas Valley Wind Power project will erect 65 wind turbines with poles the size of old-growth firs and propeller blades up to 145 feet long. They would line ridges on either side of Highway 97 outside of Ellensburg. Another company, California-based enXco, wants to build an additional 90 in the same area under the name Desert Claim Wind Power. All told, they could produce enough power to light roughly 100,000 homes. Wind turbines have become popular in the Northwest lately, thanks to the current worry about global warming and to recent government subsidies and mandates. Last year, Washington voters passed a law requiring major utilities in the state to get 15 percent of their power from renewable sources by 2020, and big dams don't count. Much of it is expected to come from wind power. California and Oregon have even more aggressive targets.

There are 42 wind-power projects in the works in Washington, Oregon and Idaho, more than double the number already running, according to the Renewable Northwest Project, an alliance of energy companies and environmental groups. Kittitas County already has 127 massive wind turbines. The Wild Horse project, on the flanks of Whisky Dick Mountain east of town, is visible from Ellensburg. But there are hardly any homes near it, so it's been warmly received by locals. Not so for the Horizon and enXco proposals. Gov. Christine Gregoire sidestepped a final decision on allowing the Horizon project.

Instead, she asked a state agency, the Energy Facility Site Evaluation Council (EFSEC), to look for a way to build the turbines farther from homes while keeping the project economically viable. It's unlikely to end the feud. "This is not the place" Sandy Sandall can't see how to make dozens of 410-foot-tall wind turbines palatable, even if they're a mile or more from his back deck. The retired Boeing mechanic moved into a log home on a forested ridge in 1997. He had discovered the spot while elk hunting, and was charmed by the quiet and the view. Now it looks down on the proposed Horizon wind farm.

Sandall says he doesn't oppose wind power. He gets his electricity from solar panels and from his own relatively tiny wind turbine mounted on a 50-foot pole. But rows of white massive white poles, topped with blinking lights and propeller blades that make a "whoosh" audible from several hundred yards away – that's another thing. Sandall remains unconvinced by assurances that the sound won't be noticeable from farther off, and that it won't hurt property values. "I'm 72 years old. I came out here to be alone," said Sandall, who is part of a citizen group, Residents Opposed to Kittitas Turbines.

"I have no objection to alternative energy. This is just not the place." With such concerns from the neighbors, the three-member Kittitas County Commission rejected the enXco plan in 2005 and Horizon's in 2006. There are signs of displeasure elsewhere in the region. Last month in Columbia County, where several wind projects have already been built, a group of landowners challenged yet another project. In Oregon, a proposal for turbines near the Columbia River Gorge prompted a call in May for a moratorium on all new wind farms in the state while officials sort out how to regulate them. But not everyone in Kittitas County is against the turbines.

Mike Genson, a retired local schoolteacher, owns 420 acres below Sandall's house. He's agreed to let Horizon build seven turbines on the land. Genson, 67, said he was skeptical when the company first approached him. But he visited another wind-power project near Walla Walla and didn't mind the way it looked or sounded. Besides, Genson said, he likes the idea of providing clean power. And the income – possibly $30,000 a year or more – could allow him to keep the property, where he lives part time. "If we don't get the wind farm, we're going to be forced into gradually letting this go to development," he said. The governor's dilemma In the meantime, the fight has produced some unusual alliances. Both environmentalists and business groups, including Kittitas Valley's economic-development organization, are backing Horizon's bid. They urged the Energy Facility Site Evaluation Council to reject the county commission's denial of the project. "The fact that someone doesn't like the looks of a wind turbine, I have some sympathy for them," said Sara Patton, executive director of the NW Energy Coalition, a Seattle group. "But that's just not as important as dealing with the climate and our air. EFSEC voted to let the Horizon project go ahead. Now, enXco plans to ask for a similar ruling. Though Gregoire has asked EFSEC to do more work on its Horizon recommendation, the final decision rests with her. Kittitas County officials have been urging her to reject the EFSEC ruling. Darryl Piercy, head of the county's Community Development Services department, said it's a test of whether local development decisions will be honored by the state. "This is troubling to think that that local process can easily be ignored," he said. Gregoire simply said that she was trying to weigh the concerns of local officials against the region's need for more clean power.

"I am very mindful of the cumulative impact of wind power projects in Kittitas County and will continue to evaluate this issue," she wrote.

Related News

Ford deal to build electric cars in Oakville comes amid $500M government cash to upgrade plant

Ford Oakville EV investment secures government funding, Unifor deal, and plant retooling, channeling $500 million plus $1.98 billion for Canadian electric vehicle manufacturing, Windsor engine contracts, and 2025 production, strengthening Ontario's auto industry.

 

Key Points

Government and Ford will retool Oakville for EVs, creating jobs under a Unifor deal and Windsor engine work.

✅ $500M government funding for plant retooling

✅ Ford commits $1.98B; five new EVs by 2025

✅ Unifor deal adds Windsor engine work, jobs

 

The federal government and Ontario have pledged to spend up to $500 million to make the Ford plant in Oakville, Ont., able to build electric vehicles, aligning with efforts to capitalize on the U.S. EV pivot underway.

The future of the plant has been a key question for Canada's automotive industry, as moves like GM's Ontario EV deal point to broader changes, ever since the Unifor union started negotiating with the automaker for a new three-year pact to cover the company's Canadian workforce.

The two sides struck a deal a few hours after a midnight strike deadline on Tuesday morning, one that will see the company commit $1.98 billion to build five new electric vehicles and an engine contract that could yield new EV jobs in Windsor, Ont.

Ford has previously committed to spending $11 billion US to develop and manufacture electric vehicles, but so far all of that money was earmarked for Ford plants in Mexico and the company's home state of Michigan.

"With Oakville gaining such a substantial portion of Ford's planned investment, the assembly plant and its workers are better set for employment going forward," said Sam Fiorani, vice-president of global forecasting at AutoForecast Solutions.

Unifor's 'unique' Ford deal includes 5 new electric vehicles in Oakville, engine for Windsor plants
Currently, the plant builds the Ford Edge and Lincoln Nautilus, but concerns over the plant's future emerged earlier this year when a report suggested Ford was contemplating scrapping the Edge altogether. The new vehicles will come as welcome news for the plant, even as Fiorani says he worries that demand for the electric vehicles (EV) has so far not lived up to the hype.

"The EV market is coming, and Ford looks to be preparing for it. However, the demand is just not growing in line with the proposed investment from all vehicle manufacturers," he said.

Plant needs upgrade first
And the plant can't simply flip a switch and start building an entirely new type of vehicle. It will require a major retooling, and that will require time — and cash — to happen, which is where government cash comes in, as seen with a Niagara Region battery plant supporting the EV supply chain.

As first reported by the Toronto Star, the two branches of government have committed to spent up to $500 million combined to upgrade the plant so that it can build electric vehicles.

"The retooling will begin in 2024 with vehicles rolling off the line in 2025," Unifor president Jerry Dias said. "So we know this is a decades-long commitment."

It's not clear what portion of the cash will come from what branch of government, but CBC News has previously reported that Wednesday's throne speech is expected to contain a number of policies aimed at beefing up Canada's electric vehicle industry, as EV assembly deals are putting Canada in the race, both on the consumer side and for businesses that build them.

Ontario's minister of economic development and trade welcomed the news of a tentative deal on Tuesday and confirmed that Queen's Park legislators stand ready to do their part, as shown by Honda's Ontario battery investment moves in the province.

"Our government will always work with our federal colleagues, workers and the auto sector to ensure the right conditions are in place for the industry to remain stable today and seize the new opportunities of tomorrow," a spokesperson for Vic Fedeli told CBC News in an emailed statement Tuesday.

 

Related News

View more

Alberta Faces Challenges with Solar Energy Expansion

Alberta Solar Energy Expansion confronts high installation costs, grid integration and storage needs, and environmental impact, while incentives, infrastructure upgrades, and renewable targets aim to balance reliability, land use, and emissions reductions provincewide.

 

Key Points

Alberta Solar Energy Expansion is growth in solar tempered by costs, grid limits, environmental impact, and incentives.

✅ High capex and financing challenge utility-scale projects

✅ Grid integration needs storage, transmission, and flexibility

✅ Site selection must mitigate land and wildlife impacts

 

Alberta's push towards expanding solar power is encountering significant financial and environmental hurdles. The province's ambitious plans to boost solar power generation have been met with both enthusiasm and skepticism as stakeholders grapple with the complexities of integrating large-scale solar projects into the existing energy framework.

The Alberta government has been actively promoting solar energy as part of its strategy to diversify the energy mix in a province that is a powerhouse for both green energy and fossil fuels today and reduce greenhouse gas emissions. Recent developments have highlighted the potential of solar power to contribute to Alberta's clean energy goals. However, the path forward is fraught with challenges related to costs, environmental impact, and infrastructure needs.

One of the primary issues facing the solar energy sector in Alberta is the high cost of solar installations. Despite decreasing costs for solar technology in recent years, the upfront investment required for large-scale solar farms remains substantial, even as some facilities have been contracted at lower cost than natural gas in Alberta today. This financial barrier has led to concerns about the economic viability of solar projects and their ability to compete with other forms of energy, such as natural gas and oil, which have traditionally dominated Alberta's energy landscape.

Additionally, there are environmental concerns associated with the development of solar farms. While solar energy is considered a clean and renewable resource, the construction of large solar installations can have environmental implications. These include potential impacts on local wildlife habitats, land use changes, where approaches like agrivoltaics can co-locate farming and solar, and the ecological effects of large-scale land clearing. As solar projects expand, balancing the benefits of renewable energy with the need to protect natural ecosystems becomes increasingly important.

Another significant challenge is the integration of solar power into Alberta's existing energy grid. Solar energy production is variable and dependent on weather conditions, especially with Alberta's limited hydro capacity for flexibility, which can create difficulties in maintaining a stable and reliable energy supply. The need for infrastructure upgrades and energy storage solutions is crucial to address these challenges and ensure that solar power can be effectively utilized alongside other energy sources.

Despite these challenges, the Alberta government remains committed to advancing solar energy as a key component of its renewable energy strategy. Recent initiatives include financial incentives and support programs aimed at encouraging investment in solar projects and supporting a renewable energy surge that could power thousands of jobs across Alberta today. These measures are designed to help offset the high costs associated with solar installations and make the technology more accessible to businesses and homeowners alike.

Local communities and businesses are also playing a role in the growth of solar energy in Alberta. Many are exploring opportunities to invest in solar power as a means of reducing energy costs and supporting sustainability efforts and, increasingly, to sell renewable energy into the market as demand grows. These smaller-scale projects contribute to the overall expansion of solar energy and demonstrate the potential for widespread adoption across the province.

The Alberta government has also been working to address the environmental concerns associated with solar energy development. Efforts are underway to implement best practices for minimizing environmental impacts and ensuring that solar projects are developed in an environmentally responsible manner. This includes conducting environmental assessments and working with stakeholders to address potential issues before projects are approved and built.

In summary, while Alberta's solar energy initiatives hold promise for advancing the province's clean energy goals, they are also met with significant financial and environmental challenges. Addressing these issues will be crucial to the successful expansion of solar power in Alberta. The government's ongoing efforts to support solar projects through incentives and infrastructure improvements, coupled with responsible environmental practices, will play a key role in determining the future of solar energy in the province.

 

Related News

View more

Energy-insecure households in the U.S. pay 27% more for electricity than others

Community Solar for Low-Income Homes expands energy equity by delivering renewable energy access, predictable bill savings, and tax credit benefits to renters and energy-insecure households, accelerating distributed generation and storage adoption nationwide.

 

Key Points

A program model enabling renters and LMI households to subscribe to off-site solar and save on utility bills.

✅ Earn bill credits from shared solar generation.

✅ Expands access for renters and LMI subscribers.

✅ Often paired with storage and IRA tax credit adders.

 

On a square-foot basis, the issue of inequality is made worse by higher costs for energy usage in the nation. Efforts like community solar programs such as Maryland community solar are underway to boost low-income participation in the cost benefits of renewable energy.

The Energy Information Administration (EIA) shows that households that are considered energy insecure, or those that have the inability to adequately meet basic household energy costs, are paying more for electricity than their wealthier counterparts. 

On average in the United States in 2020, households were billed about $1.04 per square foot for all energy sources. For homes that did not report energy insecurity, that average was $0.98 per square foot, while homes with energy insecurity issues paid an average of $1.24 per square foot for energy. This means that U.S. residents that need the most support on their energy bills are stuck with costs 27% higher than their neighbors on square-foot-basis.

EIA said energy-insecure households have reduced or forgone basic necessities to pay energy bills, kept their houses at unsafe temperatures because of energy cost concerns, or been unable to repair heating or cooling equipment because of cost.

In 2020, households with income less than $10,000 a year were billed an average of $1.31 per square foot for energy, while households making $100,000 or more were billed an average of $0.96 per square foot, said EIA. Renters paid considerably more ($1.28 per square foot) than owners ($0.98 per square foot). There were also considerable differences between regions, with New England solar growth sparking grid upgrade debates, ethnic groups and races, and insulation levels, as seen below.

The energy transition toward renewables like solar has offered price stability, amid record solar and storage growth nationwide, but thus far energy-insecure communities have relatively been left behind. A recent Berkeley Lab report, Residential Solar-Adopter Income and Demographic Trends, indicates that even though the rate of solar adoption among low-income residents is increasing (from 5% in 2010 to 11% in 2021), that segment of energy consumers remains under-represented among solar adopters, relative to its share of the population.


Community solar efforts

As such, the United States is targeting communities most impacted by energy costs that have not benefitted from the transition, highlighting “Energy Communities” that are eligible for an additional 10% tax credit through funds made possible by the Inflation Reduction Act.

Additionally, a push for community solar development is taking place nationwide to extend access to affordable solar energy to renters and other residents that aren’t able to leverage finances to invest in predictable, low-cost residential solar systems. The Biden Administration set a goal this year to sign up 5 million community solar households, achieving $1 billion in bill savings by 2025. The community solar model only represents about 8% of the total distributed solar capacity in the nation. This target would entail a jump from 3 GW installed capacity to 20 GW by the target year. The Department of Energy estimates community solar subscribers save an average of 20% on their bills.

California this year passed AB 2316, the Community Renewable Energy Act takes aim at four acute problems in the state’s power market: reliability amid rising outage risks, rates, climate and equity. The law creates a community renewable energy program, including community solar-plus-storage, supported by cheaper batteries, to overcome access barriers for nearly half of Californians who rent or have low incomes. Community solar typically involves customers subscribing to an off-site solar facility, receiving a utility bill credit for the power it generates.

“Community renewable energy is a proven powerful tool to help close California’s clean energy gap, bringing much needed relief to millions struggling with high housing costs and utility debt,” said Alexis Sutterman, energy equity program manager at the California Environmental Justice Alliance.

The program has energy equity baked into its structure, working to make sure Californians of all income levels participate in the benefits of the energy transition. Not only does it open solar access to renters, the law ensures that at least 51% of subscribers are low-income customers, which is expected to make projects eligible for a 10% tax credit adder under the IRA.

“The money’s on the table now,” said Jeff Cramer, president and chief executive of the Coalition for Community Solar Access. “While there are groups pushing for solar access for all, and states with strong legislation, there are other pockets of interest in surprising places in the United States. For example, Louisiana has no policy for community solar or support for low-income residents going solar but the city of New Orleans has its own utility commission with a community solar program. In Nebraska, forward-looking co-operatives have created community solar projects.

Community solar markets are active in 22 states, with more expected to come online in the future as states pursue 100% clean energy targets across the country. However, the market is expected to require strong community outreach efforts to foster trust and gain subscribers.

“There is a distrust of community solar initially in LMI communities as many have been burned before by retail energy false promises,” said Eric LaMora, executive director, community solar, Nautilus Solar on a panel at the Solar Energy Industries Association Finance, Tax, and Buyers seminar. “People are suspicious but there really are no hooks with community solar.”

LMI residents are leery to provide tax records or much documents at all in order to sign up for community solar, LaMora said. “We were surprised to see less of a default rate with LMI residents. We attribute this to the fact that they see significant savings on their electric bill, making it easier to pay each month,” he said.

 

Related News

View more

Atlantic Canadians less charged up to buy electric vehicle than rest of Canada

Atlantic Canada EV adoption lags, a new poll finds, as fewer buyers consider electric vehicles amid limited charging infrastructure, lower provincial rebates, and affordability pressures in Nova Scotia and Newfoundland compared to B.C. and Quebec.

 

Key Points

Atlantic Canada EV adoption reflects demand, shaped by rebates, charging access, costs, and the regional energy mix.

✅ Poll shows lowest purchase intent in Atlantic Canada

✅ Lack of rebates and charging slows EV consideration

✅ Income and energy mix affect affordability and benefits

 

Atlantic Canadians are the least likely to buy a car, truck or SUV in the next year and the most skittish about going electric, according to a new poll. 

Only 31 per cent of Nova Scotians are looking at buying a new or used vehicle before December 2021 rolls around. And just 13 per cent of Newfoundlanders who are planning to buy are considering an electric vehicle. Both those numbers are the lowest in the country. Still, 47 per cent of Nova Scotians considering buying in the next year are thinking about electric options, according to the numbers gathered online by Logit Group and analyzed by Halifax-based Narrative Research. That compares to 41 per cent of Canadians contemplating a vehicle purchase within the next year, with 54 per cent of them considering going electric. 

“There’s still a high level of interest,” said Margaret Chapman, chief operating officer at Narrative Research.  

“I think half of people who are thinking about buying a vehicle thinking about electric is pretty significant. But I think it’s a little lower in Atlantic Canada compared to other parts of the country probably because the infrastructure isn’t quite what it might be elsewhere. And I think also it’s the availability of vehicles as well. Maybe it just hasn’t quite caught on here to the extent that it might have in, say, Ontario or B.C., where the highest level of interest is.” 


Provincial rebates
Provincial rebates also serve to create more interest, she said, citing New Brunswick's rebate program as an example in the region. 

“There’s a $7,500 rebate on top of the $5,000 you get from the feds in B.C. But in Nova Scotia there’s no provincial rebate,” Chapman said. “So I think that kind of thing actually is significant in whether you’re interested in buying an electric vehicle or not.” 

The survey was conducted online Nov. 11–13 with 1,231 Canadian adults. 

Of the people across Canada who said they were not considering an electric vehicle purchase, 55 per cent said a provincial rebate would make them more likely to consider one, she said.  

In Nova Scotia, that number drops to 43 per cent. 

Nova Scotia families have the lowest median after-tax income in the country, according to numbers released earlier this year.  

The national median in 2018 was $61,400, according to Statistics Canada. Nova Scotia was at the bottom of the pack with $52,200, up from $51,400 in 2017. 

So big price tags on electric vehicles might put them out of reach for many Nova Scotians, and a recent cost-focused survey found similar concerns nationwide. 

“I think it’s probably that combination of cost and infrastructure,” Chapman said. 

“But you saw this week in the financial update from the federal government that they’re putting $150 million into new charging station, so were some of that cash to be spread in Atlantic Canada, I’m sure there would be an increase in interest … The more charging stations around you see, you think ‘Alright, it might not be so hard to ensure that I don’t run out of power for my car.’ All of that stuff I think will start to pick up. But right now it is a little bit lagging in Atlantic Canada, and in Labrador infrastructure still lags despite a government push in N.L. to expand EVs.” 


'Simple dollars and cents'
The lack of a provincial government rebate here for electric vehicles definitely factors into the equation, said Sean O’Regan, president and chief executive officer of O'Regan's Automotive Group.  

“Where you see the highest adoption are in the provinces where there are large government rebates,” he said. “It’s a simple dollars and cents (thing). In Quebec, when you combine the rebates it’s up to over $10,000, if not $12,000, towards the car. If you can get that kind of a rebate on a car, I don’t know that it would matter much what it was – it would help sell it.” 

A lot of people who want to buy electric cars are trying to make a conscious decision about the environment, O’Regan said. 

While Nova Scotia Power is moving towards renewable energy, he points out that much of our electricity still comes from burning coal and other fossil fuels, and N.L. lags in energy efficiency as the region works to improve.  

“So the power that you get is not necessarily the cleanest of power,” O’Regan said. “The green advantage is not the same (in Nova Scotia as it is in provinces that produce a lot of hydro power).” 

Compared to five years ago, the charging infrastructure here is a lot better, he said. But it doesn’t compare well to provinces including Quebec and B.C., though Newfoundland recently completed its first fast-charging network for electric car owners. 

“Certainly (with) electric cars – we're selling more and more and more of them,” O'Regan said, noting the per centage would be in the single digits of his overall sales. “But you're starting from zero a few years ago.” 

The highest number of people looking at buying electric cars was in B.C., with 57 per cent of those looking at buying a car saying they’d go electric, and even in southern Alberta interest is growing; like Bob Dylan in 1965 at the Newport Folk Festival.  

“The trends move from west to east across Canada,” said Jeff Farwell, chief executive officer of the All EV Canada electric car store in Burnside.  

“I would use the example of the craft beer market. It started in B.C. about 15 years before it finally went crazy in Nova Scotia. And if you look at Vancouver right now there’s (electric vehicles) everywhere.” 


Expectations high
Farwell expects electric vehicle sales to take off faster in Atlantic Canada than the craft beer market. “A lot faster.” 

His company also sells used electric vehicles in Prince Edward Island and is making moves to set up in Moncton, N.B. 

He’s been talking to Nova Scotia’s Department of Energy and Mines about creating rebates here for new and used electric vehicles. 

 “I guess they’re interested, but nothing’s happened,” Farwell said.  

Electric vehicles require “a bit of a lifestyle change,” he said. 

“The misconception is it takes a lot longer to charge a vehicle if it’s electric and gas only takes me 10 minutes to fill up at the gas station,” Farwell said.  

“The reality is when I go home at night, I plug my vehicle in,” he said. “I get up in the morning and I unplug it and I never have to think about it. It takes two seconds.”  
 

 

Related News

View more

Hydro-Québec to Invest $750 Million in Carillon Generating Station

Hydro-Québec Carillon Refurbishment delivers a $750M hydropower modernization, replacing six turbines and upgrading civil works, water passageways, and grid equipment to extend run-of-river, renewable energy output for peak demand near Montréal.

 

Key Points

A $750M project replacing six units and upgrading civil, water and electrical systems to supply power for 50 years.

✅ Replaces six generating units with Andritz turbines.

✅ Upgrades civil works, water passageways, and electrical gear.

✅ Extends run-of-river output for 50 years; boosts peak supply.

 

Hydro-Québec will invest $750 million to refurbish its Carillon generating station with a major powerhouse upgrade that will mainly replace six generating units. The investment also covers the cost of civil engineering work, including making adjustments to water passageways, upgrading electrical equipment and replacing the station roof. Work will start in 2021, aligning with Hydro-Québec's capacity expansion plans for 2021, and continue until 2027.

Carillon generating station is a run-of-river power plant consisting of 14 generating units with a total installed capacity of 753 MW. Built in the early 1960s, it is a key part of Hydro-Québec's hydroelectric generating fleet, which includes the La Romaine complex as well. The station is close to the greater Montréal area and feeds power into the grid to support industrial demand growth during peak consumption periods.

The selected supplier, turbine manufacturer Andritz, has been asked to maximize the project's economic spinoffs in Québec, as Canada continues investing in new turbines across the country to modernize assets. Once the work is completed, the new generating units will be able to provide clean, renewable energy, supporting Hydro-Québec's strategy to reduce fossil fuel reliance for the next 50 years.

"Carillon generating station is a symbol of our hydroelectric development and plays a strategic role in our production fleet. However, most of the generating units' main components date back to the station's original construction from 1959 to 1962. Hydropower generating stations have long service lives - with this refurbishment, Carillon will be producing clean renewable energy for decades to come." said David Murray, Chief Innovation Officer and President, Hydro-Québec Production.

"In light of today's economic situation, this is an important announcement that clearly reaffirms Hydro-Québec's role in relaunching Québec's economy and strengthening interprovincial electricity partnerships that open new markets. Over 600,000 hours of work will be required for everything from the engineering work to component assembly, creating many new high-quality skilled jobs for Québec industries."

 

Related News

View more

Duke Energy Florida's smart-thinking grid improves response, power restoration for customers during Hurricane Ian

Self-healing grid technology automatically reroutes power to reduce outages, speed restoration, and boost reliability during storms like Hurricane Ian in Florida, leveraging smart grid sensors, automation, and grid hardening to support Duke Energy customers.

 

Key Points

Automated smart grid systems that detect faults and reroute power to minimize outages and accelerate restoration.

✅ Cuts outage duration via automated fault isolation

✅ Reroutes electricity with sensors and distribution automation

✅ Supports storm resilience and faster field crew restoration

 

As Hurricane Ian made its way across Florida, where restoring power in Florida can take weeks in hard-hit areas, Duke Energy's grid improvements were already on the job helping to combat power outages from the storm.

Smart, self-healing technology, similar to smart grid improvements elsewhere, helped to automatically restore more than 160,000 customer outages and saved nearly 3.3 million hours (nearly 200 million minutes) of total lost outage time.

"Hurricane Ian is a strong reminder of the importance of grid hardening and storm preparedness to help keep the lights on for our customers," said Melissa Seixas, Duke Energy Florida state president. "Self-healing technology is just one of many grid improvements that Duke Energy is making to avoid outages, restore service faster and increase reliability for our customers."

Much like the GPS in your car can identify an accident ahead and reroute you around the incident to keep you on your way, self-healing technology is like a GPS for the grid. The technology can quickly identify power outages and alternate energy pathways to restore service faster for customers when an outage occurs.

Additionally, self-healing technology provides a smart tool to assist crews in the field with power restoration after a major storm like Ian, helping reduce outage impacts and freeing up resources to help restore power in other locations.

Three days after Hurricane Ian exited the state, Duke Energy Florida wrapped up restoration of approximately 1 million customers. This progress enabled the company to deploy more than 550 Duke Energy workers from throughout Florida, as well as contractors from across the country, to help restore power for Lee County Electric Cooperative customers.

Crews worked in Cape Coral and Pine Island, one of the hardest-hit areas in the storm's path, as Canadian power crews have in past storms, and completed power restoration for the majority of customers on Pine Island within approximately one week after arriving to the island.

Prior to Ian in 2022, smart, self-healing technology had helped avoid nearly 250,000 extended customer outages in Florida, similar to Hydro One storm recovery efforts, saving around 285,000 hours (17.1 million minutes) of total lost outage time.

Duke Energy currently serves around 59% of customers in Florida with self-healing capabilities on its main power distribution lines, with a goal of serving around 80% over the next few years.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.